> Some Combinatorial Properties of Certain Trees With

Check for
Updates

Applications to Searching and Sorting*

Taomas N. HiBBagrD

System Development Corporation, Santa Monica, California

INTRODUCTION

This paper introduces an abstract entity, the binary search tree, and exhibits
some of its properties. The properties exhibited are relevant to processes occur-
ring in stored program computers—in particular, to search processes. The dis-
cussion of this relevance is deferred until Section 2.

Section 1 constitutes the body of the paper. Section 1.1 consists of some mathe-
matical formulations which arise in a natural way from the somewhat less formal
considerations of Section 2.1. The main results are Theorem 1 (Section 1.2) and
Theorem 2 (Section 1.3).

The initial motivation of the paper was an actual computer programming
problem. This problem was the need for a list which could be searched efficiently
and also changed efficiently. Section 2.1 contains a description of this problem
and explains the relevance to its solution of the results of Section 1.

Section 2.2 contains an application to sorting.

The reader who is interested in the programming applications of the results
but not in their mathematical content can profit by reading Section 2 and making
only those few references to Section 1 which he finds necessary.

1. COMBINATORIAL PROPERTIES OF BINARY SEARCH
TREES

1.1 Preliminary Definitions

The central notion of this paper is that of a certain type of directed graph
undergoing “random’ operations. The present section is given to defining the
graph and certain quantities associated with the graph. “Expected” values of
these quantities will be defined combinatorially in Section 1.2; these “expected”
values will then be calculated assuming ‘“random insertions” (Section 1.2) and
“random deletions” (Section 1.3).

DErFINITION. A binary search iree is a directed graph' having the following
properties.

* Received March, 1961; revised July, 1961.

1 A directed graph is a set of points together with a set of ordered pairs of these points.
The points are called nodes and the pairs are called links. A path in a directed graph is a
sequence (pi , P2, - , p») of nodes such that, for 1 £ 7 <mn, (p:, piy1) is & link belonging
to the directed graph. (Thus each link is a path of length 2.) Any path (p, ---, ¢) is said
to begin with p and end with ¢.

13

http://crossmark.crossref.org/dialog/?doi=10.1145%2F321105.321108&domain=pdf&date_stamp=1962-01-01

14 THOMAS N. HIBBARD

(1) There is one and only one node, called the roof, such that for any node
p there exists one and only one path which begins with the root and
ends with p.

(ii) Tfor each node p, the number of links beginning with p is either two or
zero. If the number is two, then p is said to be a proper node. If the
number is zero, then p is said to be a blank node.

(iii) The set of links is partitioned into two sets L and R. Each link belonging
to L is called a left link. Each link belonging to E is called a right link.

(iv) For each proper node p, there is exactly one left link beginning with p
and exactly one right link beginning with p.

For brevity, a search tree will here be defined as a binary search tree.

The following notational devices will be employed for search trees.

The length of a path is the number of proper nodes in the path.

To each node of any search tree we attach a label p, , where v is a sequence
of 1’s and 0’s uniquely defined by the following. Let the root be called p, (where
/\ denotes the null sequence).’ If, for any ¢, p, is a proper node, then p, and
Do are such that (ps, ve0) 18 a left link and (p, , pa) is a right link.

For a search tree T, the search subtree T, is defined for each ¢ as follows.
Every node of T, belongs to 7. A node ¢ of 7' belongs to T, if and only if ¢ belongs
to a path in 7' beginning with p, . Every left (right) link of 7', is a left (right)
link of T. A left (right) link (g, r) of T is a left (right) link of 7, if and only
if both ¢ and 7 belong to T, . (Hence, if ¢ is such that 7 contains no node p,,
then T, is defined to be empty.)

Throughout this paper, the symbols o, p, and r will denote sequences of 1’s
and 0’s. Further, any symbol having ¢, p, or 7 as a subscript is to be understood
to be a function of o, p, or 7.

In the following definitions, let T be a search tree of n proper nodes and let
S be a set of n numbers.

The list function fsr is a one-one mapping of the proper nodes of 7' onto the
elements of S, with the following property. If ¢ is a proper node of T, then
Fsr(@) < fsr(ps), and if ¢ is a proper node of T4, then fsr(q) > fsr(p.). (Thus,
given any two of (T, S, fsr), the third is uniquely defined.) When S and T are
understood, f will be used to denote fgr .

For each o, the subset S, of 8 is defined as follows. % is in S, if and only if
there exists a node ¢ of T, such that y = fsr(q).

A path in T, which begins with p, is said to be a search path in T, . If a search
path ends with a proper node then it is said to be an infernal search path. If a
search path ends with a blank node then it is said to be an open search path.
(Note that if any search tree T has n proper nodes then there exist n+1 open
search paths in 7', one for each blank node. This is easily shown by an induction
on n.) The lengths of the search paths in 7', are the subject of the next two
sections.

2 The expressions p and p are equivalent. While the use of /\ is never essential, it some-
times increases clarity. Both notations will be used here.

SOME COMBINATORIAL PROPERTIES OF CERTAIN TREES 15

1.2 Sequence Binary Search Trees

We will now formalize, in combinatorial terms, the notion of a “randomly
constructed” search tree and of the “expected length” of a search path in such
a search tree.

Notation. Throughout this and the following sections, the following notation
will be applicable to any sequence E. Tor each o, a unique subsequence R, of
R is defined as follows. For each non-null B, , let z, be the first term of £, .
If ¢ is null then K, = £. Given R, for any o, then K, and R,; are subsequences
of I, and are obtained as follows. Iach term of R, , with the exception of z, ,
belongs either to fy o to Fy . Every term of K, is less than z, , and every term
of 1, 18 greater than a, .

Drrivirion. Let B be a sequence of distinet numbers. Let S be the set of
numbers in £. For each non-null R, , let 2, denote the first term of R, . The
sequence (binary) search tree for R is the search tree T such that fsr(p,) = =, .

Observe that S, is the set of numbers in RE,, and that 7, is the sequence
search tree for B, .

Now the notion of a “randomly constructed” search tree is that of the se-
quence search tree for a “random’ sequence. The notion will be formalized
combinatorially by means of the family of sequence search trees associated
with the n! permutations of a given set of n numbers.

Notation. For each sequence I the sequence of ranks for R, written r(R), is
defined as follows. Let B = 41, %2, -, Yn. Foreach 2, 1 £ ¢ = n, let r; be
the number of integers £, 1 £ k £ n,suchthat y, £ . Now r(R) =7, ,ry, -- -,
ra . Also, 7; is said to be the rank of y; in R.

Clearly, for any two sequences P and @ such that »(P) = (@), P and @
have the same sequence search tree.

Tor a search tree T having n proper nodes, let {s;|¢ = 1,2, ---,n + 1} be
the set of n—+1 distinct open search paths in 7. Let I; denote the length of s; .
The function I(T) is now defined by

i

n4-1

UT) = 2 1.

2=l
Next let {s/]¢ = 1,2, ---, n} be the set of n distinct internal search paths
in 7, and let 1/ be the length of s/. Let I'(T') be defined by

T = 21U/
Te=]

For a set S of n numbers, let ® = {R*|¢{ = 1,2, -+, nl} be the set of n!
sequences such that each sequence has length n and contains every member of
S. For each R in ®, let T* be the sequence search tree for R®. Let

U(s) = ZZ(T),

fe=]

U(S) = (T,

=1

16 THOMAS N. HIBBARD

Since the sequence search tree for the sequence of ranks r(R") is identical to
the sequence search tree for R, it is clear that U(S) and U’(S) depend only
on n. Hence, let 8 = {1,2, ---,n} and let

Vi(n) = U(S);
Vi(n) = U'(8).

Let the mean open search length 1(n) and the mean internal search length U’ (n)

now be defined as follows.

V(n)
(n+ D1
V'(n)
n-n! ’

I(n) =

U(n) =

TarorEM 1. It is true for each n that
- 1.1 1
l(n)—2(§+§++m) (1)

and

T(n) =™ ;‘; Limy = 1. ()

Proor oF (1). Let each tree T° have search subtrees T,". For each integer
t,0 < t < n, let ®; be the set of all sequences R’ such that Ry’ has length ¢. For
each sequence R’ in ®,, the first element of R’ is t4+1; and the set of elements
in Ro' is the set of the first ¢ positive integers. Therefore, Ry’ is one of ¢! sequenges.
Let P and @ be any two of these sequences. Let mp and mq denote the number
of R" in ®, such that R’ = P and Ry’ = Q, respectively. It is clear that m, =
mg . Since ®; has (n—1)! members, it follows that m, = (n — 1)!/fl. Now
Ty is the sequence search tree for R,’. Hence,

> UTY) = @:t?,-‘-ﬂ V.

R*in®,
Hence,
nl . n—1
2. UTS) = Z !y,

Symmetry requires that
n} . nl A
S UTH = 2 UTY).
For each T,
UTY = UT) + UTY) +n + L.

It now follows that

V() = (4 D20 — 013 D0

SOME COMBINATORIAL PROPERTIES OF CERTAIN TREES 17

Writing V(n—1), solving for > ;=7 (V(t)/t!), substituting in V(n) and col-
lecting terms gives

V(n) = 20! +(n + 1)V(n — 1).
Since I(n) = V(n)/(n 4+ 1)! and Z(n — 1) = V(n — 1)/nl, this gives

(n) = + I(n —1),

from which (1) is easily obtained.

Proor or (2). To prove this, we need only note that if a proper node of
T" belongs to m open search paths in T?, then it belongs to m—1 internal search
paths of 7%, Hence, for all 4, V(T%) = I(T*) — n. From this (2) is easily ob-
tained. Q.E.D

Note that with the use of f (dz/z), bounds can be put on [(n) thus:

2 loge <g + 1) < l(n) < 2log.(n + 1) &~ 14logs(n + 1). (3)

1.3 Deletion Trees

In this section the notion of a “random deletion” will be consxdered

DerinrrioN. Let T be a search tree of n proper nodes, S a set of n numbers,
and y a member of S. The deletion search tree D(T, S, y) is defined as follows.
Let 7 be such that fsr(p,) = y. Let 8’ = S — {y}. Let the nodes of D(T, S, y)
be denoted by p,”. For each o, let D, denote the search subtree of D(T, S, y)
having p,” as its root. Now D(T, S, y) is given by (i) and (ii) below, viz:

(i) If S, is empty, then:
Dr = T10;
for each node p, not belonging to 7., »,” = p. .
(i) If S,; is not empty, then let p be such that fsr(p,) is the smallest member
of 8, . (Observe that S, must then be empty.) Now:
Dp = Tpl;
for each node p, not belonging to T, , »," = s .

Note the following. In case (i), for every proper node g of T' such that ¢ # p, ,
it is true that ¢ belongs to D(T, S, y) and fsn(¢) = fsr(q). In case (ii): for
every proper node ¢ of T such that ¢ % p,, ¢ belongs to D(T, S, y); and for
every proper node ¢ of D(T, S, y) such that ¢ # p, it is-true that fs olq) =
fsr(q); finally, forn(pr) = fsr(Ds).

For the trees 7" of the previous section, let D™ denote, for each R’ in & and
for each ¥ in S, the deletion tree D(T", 8,).

Before considering the search propertles of the trees D™, we consider briefly
the nature of the search paths t¥, where ¢ is defined as follows Let r and p be
as in the deﬁmtlon of D. For case (1) of this definition (where ps1 is a blank
node of T) t“ is the search path p° - . py . For case (i) (pi a proper node),

Yisp' - -+ pao . Let so * be an open search path, defined for each R¥in ® as follows.

1R THOMAS N. HIBBARD

s’ = g1, o, -, gmthen (g, gsa) is & left ink of 77 for 1 < j < m. Now
it can be easily verified that the search paths ¢ are all the open search paths
in the trees 7" excepting the search paths s,". Let Vo(n) denote the sum of the
search lengths of the paths s'. Let l.(n) be defined by

Tu(n) = V(.E’Ll:,lg&@

Since we are considering n-n! deletion trees, [,(n) represents the mean search
length of t¥. Vo(n) is found by a method exactly similar to that used for V(n)
in the previous section. The result is Vo(n) = ni(1l -+ & 4+ -+ -+ (1/n)).
(Thus Vo(n)/n!, which represents the mean search length of soi, 1s only about
half as large as [(n).) Hence,

zdm)=z<m+%(§+;§+—~+%—1+h11>. (1)

Hence, l4(n) is approximately equal to [(n).

We now consider the search properties of the search trees D™.

There are n-n! pairs 4y, and each corresponding D® has n open search paths
and n—1 internal search paths. Hence, for the trees D¥ we define the mean
open search length [5(n) and the mean internal search length [,/(n) as follows.

In(n) = D%)
! =1 ¥in8
and 3
7, - {4 2

Observe that, as before, the assertion that these quantities depend only on
7 is justified because two sequences having the same sequence of ranks have
the same sequence search tree. Therefore, we take S to be the set of the first
7 positive integers.

TaroreEM 2. It is true for each n that

Ip(n) = I(n — 1) (5)
and
Ipr(n) =1'(n—1). (6)
Proor. To show this, we will construct for each pair 7y a sequence R”.
R™ will be such that D" is the sequence search tree for R™. Then, letting Q
be any sequence equal to at least one of these sequences RY, we will show that
there are exactly n” distinet pairs ¢y such that R = Q. It will then follow that
the set of pairs 7y can be partitioned into n* sets such that Theorem 1 is directly
applicable to each set. That is, if 4 is any one of these sets, then
> UD®) = nll(n — 1),
iyind

> U(DYY = (n — D(n — DI (n —1).

iyind

SOMI COMBINATORIAL PROPERTIES OF CERTAIN TREES 19

{t will also follow that
n' 2, UDY) = 3

!
1yind =1

2. UD™),
yes

-

N

nz Z l/(pﬁ/) - Z'l; ZI<D.;Z/>,

iyind

<
e

&5

Bubstitution of these values into the defining equations for Ip(n) and I,/(n)
will then vield (5) and (6).

Therefore, to prove the theorem, it only remains to find the sequences R™.

Let P be any sequence of length m, m > 0, and containing m distinet numbers.
Let y be any term of P. For each such pair (P, y) we define the sequences
d(P, y) and g(P, y) as follows.

Let P = wy,wy, -+, wn. Let y = w; where 1 £ 5 £ m. If there exists a
number in P which is greater than y, let w;, be equal to the smallest such number.
Let d(P, y) be a sequence of length m—1 defined as follows.

(1) If y is the greatest number in P, or if y is not the greatest number in P and
J > k, then d(P, y) is a subsequence of P and contains every term of
P except w; .

(ii) If y is not the greatest number in P and j < k, then let @’ be a subsequence
of P containing every term of P except wy . Replace the jth term of
@’ with wy, . The sequence so obtained is d(P, y).

It can be verified easily that if S is the set of numbers in P, and if T is the
sequence search tree for P, then D(7, 8, y) is the sequence search tree for
d(P, y).

g(P, y) is defined to be the sequence of ranks for d(P, y). That is, g(P, y) =
rld(P, y)1. Clearly, D(T, S, y) is the sequence search tree for g(P, y).

Now, let R = g(R", y). It follows from the foregoing that D% is the sequence
search tree for R,

Now, let Q be any sequence equal to at least one of the sequences R”. That
is, Q is any sequence of the first n — 1 positive integers. That @ = R¥ for n®
distinet pairs sy will be proved by induction on n. The case n = 1 is trivial.
The case n = 3 shows the nature of the problem and is exhibited in Table I.

TABLE 1
Sequences R% forn = 3
; R Rt Ri? R'3
1 123 12 12 12
2 132 12 12 12
3 213 12 21 21
4 231 12 21 21
5 312 21 21 12
6 321 21 21 21

20 THOMAS N. HIBBARD

Consider arbitrary n. Let @ = r, ra, -+, oy . We define and consider in

turn the subsets 4, , 4., A; of the set of pairs 7y.
Set A, . dyisin A, if and only if ¥y = 7 is the first term of R'. It is clear that
there is exactly one pair 7y in 4; such that R = Q.
Set Ay . A, is that set of pairs 7y such that y = ;. This condition implies
y # m, thus excluding members of 4, . It also implies that the first element of
R’ is either i or y+1. For each 7, 2 £ 7 £ n, there are exactly two pairs 7y be-
longing to A. and satisfying both of the following.

(i) The jth element of R'is y or y-+1.

(i) R™ = Q. Thus, 4, contains 2n—2 pairs ¢y for which R” = Q.

Set 4;. A; is the sef of all pairs 7y which are not in A, or A, and for which
the first term of RY is r, . Clearly, each pair ¢y which we have yet to count be-
longs to Az . A necessary and sufficient condition for a pair 7y to belong to 4; is
given by the following (i) and (ii).

(i) Neither y nor y-+1 is the first element of R’ (or else 4y belongs to A; or

A,).
(i1) Let z* be the first element of R". If 2° > y then 2=t LIf2 < Y,
then z* = r,.

Therefore, there are n—1 allowable values of y in A;. These are all of the
integers 1, 2, - -+, n excepting r, . y < r; if and only if e =r + L y>n
if and only 1f =1

Now for each 7 let P’ be defined by R* = &'P’. That is, P’ is the subsequence
of R* containing all but the first term. It can be verified that for ¢y in 4, , R™ can
be constructed as follows. Let ¢, be the rank of y in P’. Denote by w, the jth
term of the sequence glr(P*), . Denote by v3¥ the jth term of R By the
definition of A3, 0¥ = ry. v} Yfor 1 < j = n—1is as follows. If w;” < r; then
v = wi¥. If wi = ry then vy’ = = wi’ + 1. Thus the sequence g[r(P%), t,] uniquely
defines R¥ for ty in A; . Thus also if 4y and kz are in A4; and R® = R* then

glr(PY), 1] = glr(P"), t.].

The induction assumption can be applied to the sequence g[r(P’ Y, t,. For,
let Q' be any sequence of length n—1 containing each of the first n—1 positive
integers. For each y it is true that there is exactly one pair 7y in A; such that
r(P*) = . This is verified as follows. It is clear that for each 2, 1 < 2z < n,
there is one and only one pair ¢y such that 2° = z and r(P") = Q. But, as ob-
served above, y uniquely defines «* when 4y is in 4;. Also, if y < r; then z =
r, + 1 and hence ¢, = y; and if y > 71 then z° = rlandhencet,, =y—1 y=*
r, for any ¢y in A, . It follows that ¢, uniquely defines z* for 4y in A;. Hence
for a given t, there is exactly one pair ¢y in Az such that r(P Y = @'. The in-
duction assumption therefore applies to the sequences glir(PH, t,].

Now, let Q” be the sequence such that if g[r(P*), ¢,] = Q" then RY = Q.
The induction assumption asserts that there are (n — 1)* pairs ¢y in A; such
that glr(PY), t,] = Q”. This would imply exactly (n — 1)* pairs ¢y in 4; such
that R = Q. These, together with the one found in 4, and the 2n—2 found
in A, , complete the induction. Q.E.D.

SOME COMBINATORIAL PROPERTIES OF CERTAIN TREES 21

2. APPLICATIONS
2.1 Searching

Computer programmers are familiar with the fact that lists which can be
searched efficiently tend to be difficult to change efficiently, and vice versa.
Some lists are never changed, and some are never searched. If a list needs to be
both searched and changed, the conflict can often be resolved by devoting more
storage to the list. But when not enough storage is available to resolve the con-
flict, a problem arises. This problem is to effect with the limited storage, a
workable compromise between a search-oriented list design and change-oriented
list design. In the next two sections we consider two well-known kinds of lists
which illustrate this conflict. In Section 2.1.3 we consider a list which offers, at
a reasonable cost in storage, a compromise between searching and changing;
and we apply to this list the main results of Section 1.

2.1.1 Sequence Lists

The classic example of a search-oriented list is the following. Let 21,2, -- -,
z» be an ascending sequence of length n. For each ¢, 1 = 7 £ n, let 2; occupy
location A-+b; in a computer. The well-known binary search algorithm is ap-
plicable to the list. This algorithm makes its first comparison with the number
in location A-bln/2] (or thereabouts), thus eliminating from the search one of
the sequences {Zi, b < ¢ < b[n/2], or {Z]}, b[n/2] < ¢ < bs. The algorithm
then applies itself recursively to the remaining sequence.

The search length, defined as the number of comparisons in a search, has an
expected value of approximately log, n. However, to make an insertion or a
deletion in the list entails a lot of work. For, on the average, assuming random
choice of the number to be inserted or deleted, n/2 numbers must be given new
memory locations.

Hence, a sequence list is search-oriented but is not change-oriented.

Note that there is a binary search tree associated with the binary search
algorithm. Each location corresponds to a proper node of the search tree. The
tree has the property that it is balanced. That is, letting m, denote for each
& the number of nodes in 7, , it is true for all ¢ that |me — ma| = 1.

2.1.2 Singly Linked Lists

The leading example of a change-oriented list is the singly linked or ‘“push-
down” list [3, 4]. Let 2y, 22, -+ , 2» be a sequence. Let a singly linked list consist
of a number J, together with a set {d; | 1 < ¢ < n} of ordered pairs d: = (z:, L).
1;,0 < ¢ < n, is the location® of di41. I, is any number not belonging to the
set of possible locations.

Clearly, an insertion or deletion is accomplished in a singly linked list simply
by changing one of the l; and, for an insertion, adding a new pair to the set of
pairs. Note, however, that searching in a singly linked list is a long process.
Expected search time is proportional to the number 7 of entries in the list.

3 The term location as used here is applicable to any set of memory components to which
the program has ready access. Thus z and I; , as well as d; have locations.

22 THOMAS N. HIBBARD

TABLE 11
A Singly Linked List

i Location |- I

6 5 200 ¢
2 ! 10 600 28
1 ! 14 100 10
4 17 400 23
5 23 500 5
3 28 ‘ 300 17

lo = 14:

2.1.3 A Doubly Linked List

The results of Section 1 imply that a doubly linked list can be designed to
give, under random conditions, expected search time and expected insertion/
deletion time both proportional to log .

Notation. Let I be a set of integers and let L = {{(x;, l;,) |¢in I} be a
set of triples. The successor relation is defined among the numbers 2; by the
following two statements.

(1) If I; (respectively r;) is in I, then z;, (respectively z,;) is a successor
of T .

(2) If z; is a successor of z; , then every successor of z; is a successor of z; .

DeriniTioN. Let I be a set of storage locations. Let ¢ be a number which
is not a storage location. A doubly linked list is a number F together with a
set L = {(a:, l;, r)| 7 in I} of triples, having the following properties.

(1) Each triple (z:, I, ;) is in location 1.

(2) If L is empty, then / = ¢; otherwise, F is in [.

(3) If E 5 ¢, then x5 together with the successors of zx is equal to {z; |7 in I}.

(4) For each 7 in I, if I; 5 ¢ then z; is greater than z;, and every successor

of Zy; -

(5) Foreach ¢in I,if ; 5 ¢ then @, is less than z,, and every successor of z,,.
An example of a doubly linked list is given in Table IT1. The same list is shown

TABLE III
A Doubly Linked List
4 {location) ’ _ R I; ri
5 600 28 ¢
10 300 @ @
14 ' 500 ¢ ¢
17 200 . - 23 5
23 : 100, .. ¢ ¢
28 400 10 14

&y
I

17

SOME COMBINATORIAL PROPERTIES OF CERTAIN TREES 23

Trg. 1. The binary search tree corresponding to the list of Table IIL. Circles denote
proper nodes, rectangles denote blank nodes. The numbers are the fs7(p,). The tree is
the sequence search tree for the sequence (200, 600, 400, 100, 500, 300).

schematically in Figure 1. Observe that Figure 1 is also a schematic diagram
of a search tree. The set of proper nodes of the tree is the set I of locations. The
location E is the root. For two locations (i.e. nodes) ¢ and 7, if j = I; (respec-
tively 7;) then (4, 7) is a left (respectively right) link of the tree. Let T denote
the tree and let S = {x, |7 in I}. Then the list function is given by fsr(¢) = &
for each ¢ in 7. The root p of the tree is p = E. For any node p, = 4, if l; % ¢
then peo = I; and if r; 5 ¢ then ps = r;. If I; (respectively r;) = ¢ then pe
(respectively p.1) is a blank node.

Let E be denoted by 7, . A doubly linked list ex1sts in storage in the form of
three arrays, one array for each of the sets {x;|¢ in I}, {l;]¢ in I}, {r;|7 in
7 U {¢}}. The order within these arrays is unimportant.

Consider the following search algorithm. (The notation used in this and in
the algorithms which follow it, is that of Arcor 60 [8].)

procedure search (y) doubly linked list: (x,£,r) main output: (z) secondary outputs: (i,j,w);

real array x; integer array £, r; realy;

boolean z; integer w, i, j;

comment z is “true’’ if and only if y is in x. The secondary outputs are for the use of
the “insert’” and ‘‘delete’’ procedures defined below;

begini = r3; w:=1; j:= ¢;

S81: ifi = ¢ then z := false

else if y = x; then z := true

24 THOMAS N. HIBBARD

i

else begin j i; if y > x; then begini := r{; w:= 1end
else begini := {; ; w := (end;

go to S1 end

end search

i

A measure of the length of a search process is the number of comparisons per-
formed. In the above algorithm, v is compared with each number in a sequence
2; - -+ @4,. The sequence 7y - - - 2, is a search path in the search trec associated
with the list. If y is found by the search, the path is an internal one, otherwise it
is open. The number of comparisons in a search is equal to the length of the
associated search path. The expected value of this quantity depends upon how
the list is constructed. Consider the following “‘insert” algorithm, which uses
the search algorithm as a subroutine.

procedure insert (y) doubly linked list: (x, £, r) next available location: (k);
comment the array r contains not only the right links but a pushdown list of available
storage beginning with ry ;
begin integer i, j, w; boolean z;
search (v,x,4,r,2,i,j w);
if — z then
begin if w = 1 then r; := k else fi=1k; j:=k; k:=r; xj:=7y;
£ :=r;:= ¢ end
end insert

Note that if the arrays @, [, r constitute a doubly linked list at the beginning
of the execution of “insert’”’ then they will do so at the end. Observe that the
insertion is accomplished by changing four numbers in the list proper and one
in the available storage list. Thus the only portion of the process which depends
on the size of the list is that performed by the search algorithm.

Let y: - - y. be a sequence of n distinet numbers chosen and ordered ran-
domly. Let 74 = ¢ initially (that is, let the list be essentially empty), and let
“insert {y:, z,1, r, k)" be performed for i = 1, 2, ---, n. The resulting list
will have associated with it the sequence search tree for y - - - y» . Therefore,
Theorem 1 gives the expected number of comparisons in a search. That is, the
expected number ¢ of comparisons when y is not found is ¢ = I(n), and the ex-
pected number ¢’ when y is found is ¢ = ’(n). The overall expected number of
comparisons depends on the probability that y will be found.

Consider now the following deletion algorithm.

procedure delete (y) doubly linked list: (x,f,r) next available location: (k);
begin integer h, i, j, w; boolean z;
seareh (v,x,£,r,2,i,j,w);
if z then
begin if r;
begin h := j; j:

¢ then

i

i; ifw=1thenr, := {; else £, := £; end else

begin j := r;; if £; = ¢ then
begin x; 1= xj; r;:=r;; go to C end;
B: h:=j; ji=4£;; if £; % ¢ thengotoB; xi:=x;; &=,
end;
C: r;:= k; comment see ‘“‘insert’”’ comment; k :=]
end

end delete

SOME COMBINATORIAL PROPERTIES OF CERTAIN TREES 25

It is directly verifiable that the list resulting from “delete” has associated
with it the tree D(T, S, y) of Section 1.3. Therefore, if y is selected at random
from among the z; then Theorem 2 is applicable. That is, the functional rela-
tionship between the expected search lengths ¢, ' and the number n of entries
in the list, is preserved.

In general, therefore, we assert that, starting with an empty list and per-
forming m; random insertions and i, random deletions in any order, if m; — my =
n then

1,1 1
= 2= - —_— } 1.
¢ <2+3+ +n 1) 14 logsn

and

i = {— 1t — 1.

n 41

n
The first approximation is by (3), Section 1.2.

Consider the efficiency of the deletion algorithm. The algorithm first locates
the number y in the list. It then finds the smallest successor of y. These two
processes together correspond to the paths ¢ discussed in Section 1.3. The ex-
pected number of list elements handled is the average length la(n) of t*¥ given
in (4). Thus, the searching portion of the deletion algorithm has an expected
length only slightly larger than ¢.

The deletion process modifies three to five numbers in the list, regardless of
the size of the list.

The storage required is, in a typical application, about double the required
storage of a sequenced list and about half again that of a singly linked list.

In return for this moderate amount of storage, both search time and insertion/
deletion time are proportional to log n.

2.1.4 An Unsolved Problem

1t is a consequence of the results of {1] that the condition for optimal searching
in a binary search tree T is as follows. We assume random choice of the search
operand. Let m, denote the number of proper nodes in T, . Let 7, denote the
integral power of 2 such that 7, £ max (M., Ma) < 2r, . The condition for
optimal searching is that, for each o, min (e, M) = 7, — L.

Now if the numbers m, are adjoined to the doubly linked list of the previous
section, then an insertion algorithm which ensures the above condition can be
designed. While such an algorithm would tend generally to be inefficient, 1t
would clearly be more efficient than the insertion algorithm for the sequence
list (Section 2.1.1). Note that the complexity of the list transformation would
depend on the proximity of m, to a power of 2. A quantitative analysis of this

insertion algorithm is still being sought.

2.2 A Sorting Algorithm

Constructing the list of Section 2.1.3 is, in a sense, a sorting operation. How-
ever, it is slower than other known sorting methods which use a comparable

20 THOMAS N. HIBBARD

amount of storage. But when sorting is to be done with a minimum of storage,
the results of Section 1.2 suggest a method which does have some advantages.
The method turns out to be very similar to Hoare’s “Quicksort” [9] but with
two important differences which are discussed below. The advantages are
(i) an expected number of comparisons approximately equal to 1.4 n log, n
(in close agreement with Hoare’s veported average of 2n log, n);
(ii) auxiliary storage proportional to log, n;

(iii) insensitivity to distribution.

Any pair of these properties can be obtained, or improved upon, in other sorting
schemes: but the scheme defined below is the only one known by the author to
have all three properties. Quicksort has properties (i) and (ili) but not (ii),
as is shown below.

The expected number of comparisons required to construct the sequence
search tree for a given sequence is calculated as follows. Let {1/ | ¢ = 1,2, - .- , n}
be the lengths of the internal search paths, as in Section 3. Then Y1y (I/ — 1)
is the number of comparisons required to construct the tree. Hence the expected
number ¢ of comparisons to construct a sequence search tree is [V/(n) — n-n!]/n!
Since V'(n)/n! = nl'(n), we have

¢ =nl'(n) —na14(n+ 1) logsn — 2n. (7)

Note that the derivation of (7) requires the assumption that the sequence con-
tains n distinet numbers.

The sorting algorithm which we wish to consider, while it does not construct
an explicit search tree,* performs a sequence of comparisons which is equivalent
to constructing a search tree. The method first compares a; with each of as,

-, @n , thus calculating the rank of a,. @, is then stored in the location cor-
responding to its rank. In the process, all numbers less than a; get stored in
locations below that of a;, and the rest of the numbers get stored above. As
will be seen in the algorithm, this is accomplished with just one extra storage
location. At this point, the task is reduced to that of sorting two sequences: the
sequence stored below a;, and the sequence stored above a; . Each of the se-
quences is sorted by a recursive application of the algorithm, one of the two
sequences remaining untouched until the other is completely sorted. It is neces-
sary to store the terminal locations of the sequence which is not sorted first;
thus there will be a table of such locations. By sorting first the smaller of the two
sequences flanking a; , the length of the table is forced not to exceed log, n.

The method bears a strong resemblance to the radix exchange method [7],
the principal difference being that the present method employs a comparison,
instead of a digit inspection, as its basic operation.

Quicksort, instead of ecalculating the rank of a;, calculates the rank of a
“randomly” chosen member of the sequence. Quicksort appears at first glance
to have no table like the one mentioned above. These differences are evaluated

4 (Added in proof). It has been brought to my attention that Windley [WinpLuy, P. F.
Trees, forests and rearranging, Comput. J. 8 (1960), 84-88] has examined the explicit con-
struction of the tree as a sorting technique and has derived an expression equivalent to (7).
Windley has also caleulated a mean deviation associated with (7).

SOME COMBINATORIAL PROPERTIES OF CERTAIN TREES 27

below. Iirst let us define the present algorithm more precisely by means of
Avgou 60 as follows.

procedure P(a, n); value n; array a; integer n;
begin integer eh,i,j k; integer array f,g(1: log n); real d;
e:=1; hi=n; k=1,
B: ifezhthengotoC; d:i=a,; i:=e; j:=h;
it ifa; < d then
begina; 1= a;; i:=1i+1; ifi=j then go to D end
else begin j := j — 1; ifi =] then go to D; go to E end;"
I if a; > d then
begina; :=a;; j:=]j —1; ifi=j then go to D; goto E end
else begini:= i+ 1; ifi = j then go to D; go to F end;.
D oay = d;
ifi— e < h —1ithen
beginfy ;=14 1; ge:=h; h:=1i~ 1end
else begin fx :=e; gu:=1—1; e:=1i-4 1end;
k:= k4 1; go to B; ‘ ‘
C: k:=k~—1; if k> 0then begine :=f,; h,:=g ; gotoB end
end

From the following considerations, it can easily be verified that each execu-
tion of this algorithm has a search tree associated with it. Let the execution of
the algorithm start at time 0. Let A(¢) = a1(¢), - - - , @.(¢) denote the value of
A at any time t. Let o denote the time of the completion of the first execution of
statement D. At time «, a;(0) has been compared with every other number in
4, and a;(a) = a;(0). Moreover, an(a) < a,(0) for all m < %, and am(a) >
@ (0) for all m > 4. That is, a,(0) occupies its proper position in the sequence at
time «, and therefore undergoes no more comparisons. Clearly, a;(0) thus cor-
responds to the root of the search tree. The algorithm is then applied recursively
to the sequences ai(a), -+ -, @;i(e) and (), -~ -, gule) (nOt necessarily
in that order). a;{«) will therefore correspond to the node p, of the search tree
and a;41(e) will correspond to the node p;. Or, in terms of the list function f
for the search tree and the set of elements in 4, we have f(p) = @:1(0), f(po) =
a(e) and f(p1) = a:a(a). Continuing in this way will, clearly, define a list
function, and therefore a search tree.

It can also be verified that if 4 is a sequence of the first n integers, then the
n! possible values of 4(0) correspond in a 1-to-1 way with the sequences R*
of Section 1.3. That is, if T is the search tree corresponding to-the execution of
the algorithm for 4(0), then the sequence R’ corresponding to A(0) is such that
T is the sequence search tree for R'.

It follows that (7) gives the expected number of comparisons in an execution:
of the algorithm for a randomly chosen A(0).

Similar considerations show that (7) is also applicable to Qtucksort thus
verifying Hoare’s reported average of 2n log, n comparisons.

The only storage requirement, beyond that necessary for the program itself
and for the sequence A4, is the storage necessary for the numbers f, g. . The
maximum value of &k during the algorithm does not exceed log; n. This is en-
sured because, at each completion of statement D, the algorithm chooses the
smaller of the two subsequences open to it.

28 THOMAS N. HIBBARD

The numbers fi , g+ do not appear in Quicksort because of the recursive way
in which that algorithm is defined. But it is clear that at each new level of recur-
sion some information about the previous level must be retained; that is, the
fie, gr are needed by Quicksort too. Moreover, k is there allowed to attain the
value n; thus Quicksort does not have property (i) above. It can, of course, be
given that property by the same means used in the present algorithm.

Equation (7) holds for the present algorithm if the sequence of ranks is
random. Since this implies nothing about the distribution of the numbers in
the sequence, property (iii) holds. If the sequence of ranks is not random then
the algorithm might be slowed down considerably. The worst case, n(n — 1)/2
comparisons, oceurs with either an ascending or a descending sequence.

“Quicksort’s” worst case is also n(n — 1)/2 comparisons, but the question
of which sequence gives rise to it depends on the nature of the “random” choice
of an element from the subsequence a, , - - , @, . Although this choice requires
an amount of extra work proportional to n, it has an advantage if the sequence
of ranks is biased. For, even though it is possible for a bias toward Quicksort’s
worst case to exist (since nothing is really random on a computer), this kind of
bias seems much less likely to exist than a bias toward ascending or descending
order.

If the present algorithm were preceded by a “random” scrambling of the se-
quence {a process with duration proportional to n) it would be equivalent to
Quicksort.’

A search of the literature shows that Shell’s method [5, 6] is the fastest sorting
algorithm having the property of being insensitive to distribution and having a
storage requirement comparable to that of the present algorithm. The expected
pumber of comparisons for Shell’s method, given a randomly ordered sequence,
is given approximately’ by n(.194(log: n)* — .77 log; n + 8.4). Hence the
present algorithm is, for large enough n, superior to Shell’s method. It will be
superior to the radix exchange method (7] only in cases of uneven distribution.

REFERENCES

1. HurrmaN, D. A. A method for the construction of minimum redundancy codes. Proc.
L.R.E. 0 (1952), 1098-1101.

2. Burce, W. H. Sorting, trees and measures of order. Informat. Contr. 1 (1958), 181-197.

3. Carg, Joun W, III. Recursive subscripting compilers and list-type memories. Comm.
ACM 2 (1959), 4-6.

4. NEWELL, A., AND Sgaw, J. C. Programming the logic theory machine. Proc. Western
Joint Comput. Conf. (1957), 230-240.

5. SurLL, D. L. A high speed sorting procedure. Comm. ACM 2, No. 7 (1959), 30-32.

6. Frank, R. M., anp Lazarus, R. B. A high speed sorting procedure. Comm. ACM 3
(1960), 20-22.

7. HrpeBRANDT, P., aND IsBiTz, H. Radix exchange—an internal sorting method for
digital computers. J. ACM 6 (1959), 156-163.

8. NavEr, P. (ed.); Backus, J. W., ET AL. Report on the algorithmic language ALGOL
60. Comm. ACM 3 (1960), 299-314.

9. Hoagrg, C. A. R. Algorithms 63 and 64. Comm. ACM 4 (1961), 321.

s Except when equal elements are allowed, in which case a slight modification of the

present algorithm is desirable.
¢ Experimentally determined by the author on an IBM 709 computer; holds for » 2 200.

