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I N T R O D U C T I O N  

This paper introduces an abstract  entity, the binary search tree, and exhibits 
some of its properties. The properties exhibited are relevant to  processes occur- 
ring in stored program computers-- in  particular, to search processes. The dis- 
cussion of this relevance is deferred until Section 2. 

Section 1 constitutes the body of the paper. Section 1.1 consists of some mathe- 
matical formulations which arise in a natural  way from the somewhat less formal 
considerations of Section 2.1. The main results are Theorem 1 (Section 1.2) and 
Theorem 2 (Section 1.3). 

The  initial motivat ion of the paper was an actual computer  programming 
problem. This problem was the need for a list which could be searched efficiently 
and also changed efficiently. Section 2.1 contains a description of this problem 
and explains the relevance to its solution of the results of Section 1. 

Section 2.2 contains an application to sorting. 
The  reader who is interested in the programming applications of the results 

but  not in their mathematical  content  can profit by  reading Section 2 and making 
only those few references to Section 1 which he finds necessary. 

i. COMBINATORIAL PROPERTIES OF BINARY SEARCH 
TREES 

1.1 Preliminary Definitions 

The  central notion of this paper is tha t  of a certain type of directed graph 
undergoing " r andom"  operations. The present section is given to defining the 
graph and certain quantities associated with the graph. "Expec ted"  values of 
these quantities will be defined combinatorially in Section 1.2; these "expected"  
values will then be calculated assuming " random insertions" (Section 1.2) and 
" random deletions" (Section 1.3). 

DEFINITION. A binary search tree is a directed graph 1 having the following 
properties. 

* Received March, 1961; revised July, 1961. 
1 A directed graph is a set of points together with a set of ordered pairs of these points. 

The points are called nodes and the pairs are called links. A path in a directed graph is a 
sequence (p~, p2, "'" , p,,) of nodes such that, for 1 =< i < n, (pi, pi+l) is a link belonging 
to the directed graph. (Thus each link is a path of length 2.) Any path (p, .-. , q) is said 
to begin with p and end with q. 
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(i) There is one and only one node, called the root, such (:hat for any node 
p there exists one and only one path  which begins with the root and 
ends with p. 

(ii) For  each node p, the number of links beginning with p is either two or 
zero. If the number  is two, then p is said t:o be a proper node. If the 
mlmber is zero, then p is said to be a bla~zk node. 

(iii) The  set of links is part i t ioned into two sets L and t~,. Each liuk belonging 
to L is called a l@ link. Each link belonging to [~. is called a right link. 

(iv) For  each proper node p, there is exactly one left link beginning with p 
and exactly one right link beginning with p. 

For  brevity,  a search tree will here be defined as a binary search tree. 
The following notational  devices will be emptoyed for search trees. 
The length of a path is the number  of proper nodes in the path. 
To each node of any search tree we ~ttach a label p~, where ~ is a sequence 

of t% and 0's uniquely defined by  the following. Let  the root be Balled PA (where 
/k denotes the null sequence).2 If, for any ~, p~ is a proper  node, then p~0 and 
p~, are such that  (p~, p~0) is a left link and (p~, p~) is a right link. 

For a search tree T, the search ~ubtree T~ is defined for each ~ as follows. 
Every  node of T~ belongs to T. A node q of T belongs to T~ if and only if q belongs 
to a path in T beginning with p~. Eve ry  left (right) link of T~ is a left (r ight)  
link of T. A left (fight) link (q, r) of T is a left (r ight)  link of T~ if and only 
if both q and r belong to T~. (Hence, if (r is such tha t  T contains no node p~, 
then T¢ is defined to be empty. )  

Throughout  this paper, the symbols o-, p, and r will denote sequences of 1% 
and 0%. Further ,  any symbol having ~, p, or r as a subscript, is to be understood 
to be a function of ¢, p, or ~. 

in  the following definitions, let T be a search tree of n proper nodes and let 
S be a set of n numbers. 

The list function fsr  is a one-one mapping of the proper nodes of T onto the 
elements of S, with the following property.  If  q is a proper node of T¢0 then 
f sr(q)  < fsr(P¢), and if q is a proper  node of T¢~ then f s r (q)  > fsr(p¢).  (Thus,  
given any two of (T,  S, f s r ) ,  the third is uniquely defined.) When S and T are 
understood, f will be used to denote f sr  • 

For each ¢, the subset S¢ of S is defined as follows, y is in S¢ if and only if 
there exists a node q of T¢ such tha t  y = f sr (q) .  

A path in T~ which begins with pC is said to be a search path in T¢. I f  a search 
path ends with a proper node then it is said to be an internal search path.  If  a 
search path  ends with a blank node then it is said to be an open search path. 
(Note tha t  if any search tree T has n proper  nodes then there exist nq-1 open 
search paths in T, one for each blank node. This is easily shown by an induction 
on n.) The  lengths of the search paths in TA are the subject of the next two 
sections. 

The expressions p/,, and p are equivalent. While the use Of/k is never essential, it some- 
times increases clarity. Both notations will be used here. 
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J .2 i%que~cc I~inary ,%arch Trees 

We will now formalize, in combinatorial Germs, the notion of a "randomly 
cons{;rueted" search tree and of" the "expected length" of a search path in such 
~% search tree. 

Notation. Throughout  this and the following sections, the following notation 
will be applicable to any sequence Ie. For each ~, a unique subsequenee R, of 
t~ is defined as follows. For each non-null R~, let z~ be the first term of R~. 
If ~ is null then Ie~ = R, Given R~ for any ~, then R.0 and R~, are subsequenees 
of ]~ and are obtained as follows. Each term of R~, with the exception of x~, 
belongs either to tg~0 or to tg~j. Every  term of t~0 is less than  z~, and every term 
of te,j is greater than x~. 

Dx¢>',xrrxox. Let  ig be a sequence of distinct numbers. Let S be the set of 
numbers in re. For  each non-null R~, let z~ denote the first term of R~. The 
sequence (binary)  search tree for R is the search tree T such that  f s r ( N )  = x~. 

Observe tha t  ~q~ is the set of numbers in R , ,  and tha t  T~ is the sequence 
search tree for R~. 

Now the notion of a "randomly constructed" search tree is tha t  of the se- 
quence search tree for a " random"  sequence. The notion will be formalized 
eombinatorially by means of the family of sequence search trees associated 
with the ~,t permutat ions of a given set of n numbers. 

Notation. For  each sequence R the sequence of ranks for R, writ ten r ( R ) ,  is 
defined as follows. Let R = g , ,  y2, " '" , y~. For each i, 1 < i < n, let r~ be 
the number  of integers }6 1 -</c -< n, such tha t  y~ =< y~. Now r ( R )  = r , ,  r,e, - - - , 
r~. Also, r~ is said to be the rank of y; in R. 

Clearly, for any two sequences P and Q such tha t  r ( P )  = r (Q) ,  P and Q 
have the same sequence search tree. 

For  a search tree T having n proper nodes, let {s~[ i = 1, 2, . . .  , n + 1} be 
the set of n + l  distinct open search paths in T. Let  l~ denote the length of s~. 
The function l ( T )  is now defined by 

n + l  

Z(T) = Ez . 
i= l  

Next  let { s . / I i  = 1, 2, . . .  , n} be the set of n distinct internal search paths 
in T, and let l / b e  the length of s/ .  Le t  I ' (T)  be defined by  

l ' ( T )  = k 1'  
i=1 

For a s e t  S o f n n u m b e r s ,  l e t ~  = {R~]i = 1 , 2 , . . .  , n!} be t h e s e t  of n! 
sequences such that  each sequenee has length n and contains every member of 
S. Fox' each ig ~ in ~, let T ~ be the sequence search tree for R ~. Let, 

rd 

U ( S )  = E / ( T ~ ) ;  
i=1 

n! 

u'(s )  = E 
i ~ l  
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Since the sequence search tree for the sequence of ranks r ( R  ~) is identical to 
the sequence search tree :for R ~, it is clear that, U ( S )  and U ' ( S )  depend only 
on n. Hence, let S = {1, 2, . . .  , n} and let 

V(n)  = g ( s ) ;  

V'(n) = U'(S). 

Let  the mean open search length [( n ) and the mean internal search length ['( n ) 
now be defined as follows. 

i (n)  - y ( n )  
(n -1- 1)!" 

i ' (n )  - V ' ( n )  
n . n [  

THEOREM 1. It  is true for each n that 

7 ( n ) = 2  + g + . . . + ~  (~) 

and 

Z'(n) - ~ + 1 i (n)  - 1. (2) 
n 

PROOF OF (1).  Let  each tree T ~ have search subtrees T~ ~. For  each integer 
t, 0 < t < n, let as~ be the set of all sequences R ~ such tha t  Ro t has length t. For  
each sequence R ~ in (Pt, the first element of R ~ is t + l ;  and the set of elements 
• ~ . . . .  ¢" T m R0 ~s the set of the first t positive integers. Therefore, Ro is one of t. sequer~ces. 
Let  P and Q be any two of these sequences. Let  mp and me denote the number  
of R ~ in ~ such tha t  R0 ~ = P and R0 ~ = Q, respectively• I t  is clear tha t  me = 
me .  Since qh has ( n - l ) !  members, it follows tha t  me -- (n -- 1)! / t ! .  Now 
To ~ is the sequence search tree for Ro ~. Hence, 

Z(To~) _ (n - 1)! V ( t ) .  

Hence, 

~-1 (n -- 1)1 
l(To ~) = ~ " V ( t ) .  

~=1 e=o t!  

Symmet ry  requires tha t  

For  each T ¢, 

n! n! 

~ Z ( T o  ~) = ~ Z(T?). 
i=1  i=1  

l( T ~) = l( To ~) + l( T1 ~) + n + 1• 

I t  now follows tha t  

'~-~ V(t) 
V(n)  = (n + 1)! + 2 ( n -  1 ) ! Z  

t=-o t[ 
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Writing V(n- -1) ,  solving for ~t~-o 2 (V ( t ) / t ! ) ,  substituting in V(n)  and col- 
lecting terms gives 

V(n)  = 2n! q-(n  q- 1)V(n -- 1). 

Since l(n) = V ( n ) / ( n  -~ 1)! and i(n - 1) = V(n  - 1)/n!,  this gives 

l ( n ) -  2 q - l ( n - - 1 ) ,  
n - t - 1  

from which (1) is easily obtained• 
PROOF OF (2). To prove this, we need only note that  if a proper node of 

7 '~ beIongs to m open search paths in T ~, then it belongs to m - 1  internal search 
paths of T i. Hence, for all i, l ' (T  ~) = l (T  ~) -- n. From this (2) is easily oh- 
gained. Q.E.D. 

Note tha t  with the use of j (dx/x) ,  bounds can be put  on l(n) thus: 

2 1 o g , ( 2 - 1 - 1 )  < Z ( n )  < 2 1 o g , ( n + l ) ~ l . 4 1 o g , ( n - ] - l ) .  (3) 

1.3 Deletion Trees 

In this section the notion of a "random deletion" will be considered. 
DEFINITION. Let T be a search tree of n proper nodes, S a set of n numbers, 

and y a member of S. The deletion search tree D ( T ,  8, y) is defined as follows. 
Let r be such tha t  fsr(p,)  = y. Let S' -- S - {y}. Let the nodes of D(T ,  S, y) 
be denoted by p~'. For each a, let D~ denote the search subtree of D(T ,  S, y) 
having p D as its root. Now D ( T ,  S, y) is given by (i) and (ii) below, viz: 

(i) I f  S~1 is empty,  then: 
D, = T~0 ; 
for each node p~ not belonging to T~, p D = p , .  

(ii) I f  ~,1 is not  empty, then let p be such tha t  fsr(pp) is the smallest member 
of S,1. (Observe that  So0 must then be empty.)  Now: 

Dp = T01 ; 
D 

for each node p~ not belonging to T , ,  p~ = p~ • 
Note the following. In case (i), for every proper node q of T such that  q ~ p , ,  

it is true that  q belongs to D ( T ,  S, y) and fs, D(q) = fsr(q) .  In case (ii): for 
every proper node q of T such that  q ~ pp, q belongs to D ( T ,  S, y); and for 
every proper node q of D(T ,  S, y) such that  q ~ p , ,  it is.true that  fs,D(q) = 
fsr (q) ;  finally, f s , , (P , )  = fsr(Pp). 

For the trees T ¢ of the previous section, let D ~y denote, for each R ~ in cb and 
for each y in S, the deletion tree D ( T  ~, S, y). 

Before considering the search properties of the trees D 'y, we consider briefly 
the nature of the search paths t ¢~, where t i~ is defined as follows. Let r and p be 
as in the definition of D. For case (i) of this definition (where P~I is a blank 
node of T~), t Cy is the search path pC . . .  p ~ .  For case (ii) (P~I a proper node), 

{.  
t ¢~ is p; - -" P~o • Let So ¢ be an open search path, defined for each R m 4~ as follows. 
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i If so : q ~ , q s , ' "  ,q,~then (qj,qj+~) is a left link of f/"~for ] < j < 7~l. Now 
it can be easily verified that the search paths t '~ are all the open search paths 
in the trees f['~ excepting the search paths so ~. Let V0(n) denote the sum of the 
search lengths of the paths So ~, Let [j(n) be defined by 

Z~(%) = V(n)  - V ~ ( n )  
n-n [ 

Since we are considering n.n! deletion trees, lj(n) represents the mean search 
length of t ~. V0(n) is found by a method exactly similar to that used for V(n) 
in the previous section. The result is Vo(n) = n!(1 + ½ + . . . .  t- ( l / n ) ) .  
(Thus Vo(n) /n t ,  which represents the mean search length of s0, is only about 
half as large as Z(n).) Hence, 

1 ( l  t 1 - - 1  + ~ _ ~ )  (4) 
L0z) = i(~) + ~,5 2 + 5 + "'" + '~-~ 

Hence, Z~('n) is approximately equal to l(n). 

We now consider the search properties of the search trees D ~'. 
There are n.n! pairs iy, and each corresponding D ~ has n open search paths 

and n - ]  internal search paths. Hence, for the trees D '~ we define the mean 
open search length 7~(n) and the mean internal search length l~(n)  as follows. 

n! 

%2"~n,[ i ~ l  yin8 

and 
n! 

7~,(n) - (n -- 1 )n .n!  ~=1 ~ins 

Obse~-e that., as before, the assertion that these quantities depend only on 
n is iustified because two sequences having the same sequence of ranks have 
the same sequence search tree. Therefore, we take S to be the set of the first 
n positive integers. 

THEOREM 2. I t  i8 true for each n that 

~ . ( n )  = ~(n - 1) (5)  

and 

Z~,(n) = Z ' ( n -  1). (6) 

To show this, we will construct for each pair iy  a sequence R ~. PROOF. 
~Y will be such that D ~y is the sequence search tree for R ~y. Then, letting Q 
be any sequence equal to at least one of these sequences R ~y, we will show that 
there are exactly n 2 distinct pairs iN such that R ~' = Q. It will then follow that 
the set of pairs iy can be partitioned into n 2 sets such that Theorem I is directly 
applicable to each set. That is, if A is any one of these sets, then 

Z Z(D'D = n!7(~ - 1) ,  
iyirLA 

l ' (D ~) = ( n -  1 ) ( n -  1 ) ! Y ( n -  1). 
iyinA 
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I t  will also follow that 

n !  

Z(D = X: z(J)') ,  
iy inA i = 1  yvS 

n [  

z'(z/") = 2 z ' ( D " ) .  
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Subs~itiution of these values into the defining equations for 1D(n) and [D'(n) 
will then yield (5) and (6). 

Therefore,  to prove the theorem, it only remains to find tile sequences R ~. 
Let  f be any sequence of length m, m > 0, and containing m distinct numbers.  

Let  y be any  t e rm  of P.  For  each such pair  (P,  y) we define the sequences 
d(P, y) and g(P, y) as follows. 

Let. P = w~, w2, . . .  , w~.  Let  y = wj where 1 _-= j __< m. I f  there exists a 
number  in P which is greater  than  y, let wk be equal to the smallest  such number .  
Le t  d(P, y) be a sequence of length m - 1  defined as follows. 
(i) If  y is the greatest  number  in P, or if y is not  the greatest  number  in P and 

j > It, then  d(P, y) is a subsequence of P and contains every te rm of 
P except w j .  

(ii) I f  y is not the  greatest  number  in P a n d j  < k, then let Q' be a subsequenee 
of P containing every t e rm of P except wk. Replace the j t h  te rm of 
Q' with w~. The sequence so obtained is d(P, y). 

I t  can be verified easily tha t  if S is the set of numbers  in P,  and if T is the  
sequence search tree for P,  then D(T, S, y) is the sequence search tree for 
d(P, y). 

g(P, y) is defined to be the sequence of ranks for d(P, y). T h a t  is, g(P, y) = 
r[d(P, y)]. Clearly, D(T, S, y) is the sequenee search tree for g(P, y). 

Now, let R ~y = g(R ¢, y). I t  follows f rom the foregoing tha t  D ~y is the  sequence 
search tree for R ~v. 

Now,  let Q be any  sequence equal to at  least one of the sequences R% T h a t  
is, Q is any  sequence of the first n - 1 positive integers. T h a t  Q = R ~y for n 2 
distinct pairs iy will be proved by  induction on n. The  ease n = 1 is trivial.  
The  ease n = 3 shows the na ture  of the problem and is exhibited in Table I.  

TABLE I 

Sequences R ¢~ for n = 3 

R i Ril Ri2 Ri3 

1 
2 
3 
4 
5 
6 

123 
132 
213 
231 
312 
321 

12 
12 
12 
12 
21 
21 

12 
12 
21 
21 
21 
21 

12 
12 
21 
21 
12 
21 
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Consider a rb i t ra ry  n. Le t  Q = r l ,  r2, --" , r~-i • We define and consider in 
turn  the subsets A1, A2,  A3 of the set of pairs iy. 
Set At • iy is in A1 if and only if y = n is the first t e rm  of R i. I t  is clear tha t  
there is exact ly  one pair  iy in A1 such tha t  R ~ = Q. 
Set A2. A2 is tha t  set of pairs iy such tha t  y = r~. This condition implies 
y ~ n, thus excluding members  of A~. I t  also implies tha t  the first element of 
R; is either y or y + l .  For  each j ,  2 =< j =< n, there are exact ly two pairs iy be- 
longing to A2 and satisfying both  of the following. 

(i) The  j t h  element of R * is y or y ÷ l .  
(ii) R ~ = Q. Thus,  A2 contains 2n--2 pairs iy for which R ~' = Q. 

Set A3. A3 is the  set of all pairs iy which are not in A~ or Ag. and for which 
the  first, t e r m  of R ~ is r l .  Clearly, each pair  iy which we have  yet  to count be- 
longs to A3. A necessary and sufficient condition for a pair  iy to belong to A3 is 
given by  the following (i) and (ii).  

(i) Nei ther  y nor y + l  is the first element of R ~ (or else iy belongs to A1 or 
A2). 

(ii) Let  x ~ be the first element of R ~. I f  x ~ > y then x ~ = rl -t- 1. I f  :c ~ < y, 
then x ~ = rl • 

Therefore,  there are n - - 1  allowable values of y in A3. These are all of the 
integers 1 , 2 , . . .  , n e x c e p t i n g r ~ .  y < rl if and only if x ~ = r~-t- 1. y > r~ 
if and only if x ~ = r l .  

Now for each i let P~ be defined by  R ~ = x~P ~. T h a t  is, P~ is the subsequence 
of R ~ containing all but  the  first term. I t  can be verified tha t  for iy in A.~, R '~ can 
be constructed as follows. Let  t~ be the rank  of y in P~. Denote  by  w~ .'J the j t h  
t e rm  of the sequence g[r(P~), t~]. Denote  by  vj .~ the j t h  t e rm of R ~. By the 
defmition of A~, v~ ~ = r~. v~ .y for 1 < j =< n - - 1  is as follows. I f  w~ .y < r~ then 
v5 ~y = w~-~Y. I f  wj~Y => rl then  v} ~ = w~ .~ + 1. Thus  the sequence g[r(P~), t~] uniquely 
defines R ~ for iy in A~. Thus  also if iy and /cz are in A, and R ~ = R ~ then 
g[r( P~), t~] = g[r( P~), t,]. 

The induction assumption can be applied to the sequence g[r(P~), t~]. For, 
let Q' be a n y  sequence of length n - 1  containing each of the first n - 1  positive 
integers. For  each y it is true t ha t  there is exactly one pair  iy in A.~ such tha t  
r (P  ~) = Q'. This is verified as follows. I t  is clear t ha t  for each z, 1 <= z <= n, 
there is one and only one pair  iy such tha t  x ~ = z and r (P ~) = Q'. But ,  as ob- 
served above,  y uniquely defines x ~ when iy is in Aa.  Also, if y < r~ then  x ~ = 
r~ ~- 1 and hence t~ = y; and if y > r~ then x ~ = r~ and hence t~ = y - -  1. y 
r~ for any  iy in Aa.  I t  follows that .  t~ uniquely defines x ~ for iy in A,~. Hence 
for  a given t~ there is exact ly  one pair  iy in A~ such tha t  r (P ~) --- Qq The in- 
duction assumpt ion therefore applies to the sequences g[r(P~), t~]. 

Now, let Q~ be the sequence such t ha t  if g[r(P~), t~] = Q~ then  R ~'~ = Q. 
The  induction assumption asserts tha t  there are (n --  1) ~ pairs iy in A3 such 
tha t  g[r(P~), t~] = Q~. This  would imply  exactly (n --  1) ~ pairs iy in A.~ such 
t h a t  R ~ = Q. These, together  with the  one found in A1 and the 2 n - 2  found 

in A~, complete the induction. Q.E.D.  
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2. A P P L I C A T I O N S  

2.1 Searching 

Computer  programmers are familiar with the fact that  lists which can be 
searched efficiently tend to be difficult to change efficiently, and vice versa. 
Some lists are never changed, and some are never searched. If  a list needs to be 
both searched and changed, the conflict can often be resolved by  devoting more 
storage to the list. But  when not  enough storage is available to resolve the con- 
flicL a problem arises. This problem is to effect with the limited storage, a 
workable compromise between a search-oriented list design and change-oriented 
list design. In the next two sections we consider two well-known kinds of lists 
which illustrate this conflict. In  Section 2.1.3 we consider a list which offers, at  
a reasonable cost in storage, a compromise between searching and changing; 
and we apply to this list the main results of Section 1. 

2.1.1 Sequence Lists 
The classic example of a search-oriented list is the following. Let  z l ,  z~, . . .  , 

z~ be an ascending sequence of length n. For  each i, 1 =< i _-< n, let z~ occupy 
location A+b~ in a computer.  The well-known binary search algorithm is ap- 
plicable to the list. This algorithm makes its first comparison with the number  
in location A +bin~2] (or thereabouts) ,  thus eliminating from the search one of 
the sequences {Zi}, b -<_ i < bin~2], or {Zi}, b[n/2] < i <= b~. The algorithm 
then applies itself recursively to the remaining sequence. 

The search length, defined as the number of comparisons in a search, has an 
expected value of approximately log~ n. However,  to make an insertion or a 
deletion in the list entails a lot of work. For, on the average, assuming random 
choice of the number  to be inserted or deleted, n/2 numbers must  be given new 
memory locations. 

Hence, a sequence list is search-oriented but  is not  change-oriented. 
Note that  there is a binary search tree associated with the binary search 

algorithm. Each location corresponds to a proper node of the search tree. The  
tree has the proper ty  that  it is balanced. T h a t  is, letting m, denote for each 

the number of nodes in T , ,  it is true for all ¢ tha t  ] m,0 - m,11 =< 1. 

2.1.2 Singly Linked Lists 
The leading example of a change-oriented list is the singly linked or "push- 

down" list [3, 4]. Let  z l ,  z~, • • • , z~ be a sequence. Let  a singly linked list consist 
of a number  l0 together with a set {d~ t 1 =< i == n} of ordered pairs d~ = (z~, ll). 
l~, 0 ~ i < n, is the location 3 of d~+1. l~ is any number not  belonging to the 

set of possible locations. 
Clearly, an insertion or deletion is accomplished in a singly linked list simply 

by  changing one of the l~ and, for an insertion, adding a new pair to the set of 
pairs. Note,  however, tha t  searching in a singly linked list is a long process. 
Expected search time is proportional to the number  n of entries in the list. 

The term location as used here is applicable to any set of memory components to which 
the program has ready access. Thus z~ and l~, as well as d~ have locations. 
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TABLE II 
A Singly Linked List 

i Locatio:: s i  l{ 

5 
10 
14 
17 
23 
28 

200 
600 
100 
400 
500 
300 

6 
28 
10 
23 
5 

17 

lo = 14 

2.1.3 A Doubly Linked List 

The results of Section 1 imply tha t  a doubly linked list can be designed to 
give, under  random conditions, expeceed search t ime and expected insert ion/  
deletion time both proport ional  to log n. 

Notation. Let  I be a set of integers and let L = { (x~, l i ,  re) [ i in I} be a 
set  of triples. The  ~uceessor relation is defined among the numbers x,i by  the 
following two statements.  

(1) If Zi (respectively r i) is in [,  then x~ (respectively Xr~) is a successor 
of x~. 

(2) If  xj is a successor of x i ,  then every successor of x~. is a successor of x i .  
DEFINITION. Let  I be a set of storage locations. Let  ¢ be a number  which 

is not a storage location. A doubly linked list is a number  E together  with a 
set  L = { (x<, l~, r<)l i in I} of triples, having the following properties. 

(1) Each triple (x~, Z<, r~) is in location i. 
(2) If  L is empty,  then E = ¢; otherwise, E is in I .  
(3) If  E ¢ ¢, then xE together with the successors of xE is equal to {x< I i in [}. 
(4) For  each i in I, if l< ¢ ¢ then x~ is greater than  xl~ and every successor 

of x~ . 
(5) For  each i in I,  if r~ N ¢ then x~ is less than x~ and every successor of x~. 

An example of a doubly linked list is given in Table I I I .  The same list is shown 

TABLE III 
A Doubly Linked List 

i (location) ] x l  li  ri 
I 

5 
10 
14 
17 
23 
28 

600 
300 
500 
2QO.i 
10% : 
4O0 

28 
¢ 
¢ 
23 
¢ 
10 

¢ 
¢ 
¢ 
5 

4 
t4 

: E =  17 
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/ \ 
/ X 

L 
FIG. 1. The binary search tree corresponding to the list of Table  I I I .  Circles denote 

proper nodes, rectangles denote blank nodes. The numbers ar e the faz(P~). The tre e i s 
the sequence search tree for the sequence (200, 600, 400, 100, 500, 300). 

s chemat ica l ly  in F igure  1. Observe  t h a t  F igure  1 is also a schemat ic  d i ag ram 
of a search t ree.  Ti le  set  of p roper  nodes of t he  t ree  is the  se t  I of locations, T h e  
tocat ion E is the  root.  For  two  locations (i.e. nodes)  i and  j ,  if j = li ( respec-  
t ive ly  r~) then  (i, j )  is a left  ( respec t ive ly  r i g h t ) l i n k  of the  tree.  Le t  T deno te  
the  t ree  and let  ~ = {z~ ] i  in I}. Then  the  list funct ion  is g iven b y  f s r ( i )  = X~ 
for  e~ch i in I .  T h e  root  p of the  t ree is p = E .  For  a n y  node  p~ = i, if l~ # ¢ 
then  p,0 = l~ and  if ri # ~ t hen  p,~ = r~. I f  l~ ( respec t ive ly  r~) = ¢ then  p,0 
( respec t ive ly  p.~) is a b l ank  node. 

Le t  E be deno ted  b y  r e .  A doub ly  l inked list exists in s to rage  in the  fo rm of 
th ree  a r rays ,  one a r r ay  for  each  of the  sets {xili  in I}, {l~li in I}, { r~ l i  in 
I U {¢}}. T h e  order  wi th in  these  a r rays  is u n i m p o r t a n t .  

Consider  the  following search a lgor i thm.  ( T h e  no ta t ion  used in this  and  in 
the  a lgor i thms  which follow it, is t h a t  of ALGOL 60 [8].) 

procedure search (y) doubly linked list: (x,C,r)main output: (z) secondary outputs: (i,j,w); 
real array x; integer array ~, r; real y; 
boolean z; integer w, i, j; 
comment z is " t rue"  if and only if y is in x. The secondary outputs are for the use of 

the "insert" and "delete" procedures defined below; 
begini  := ro; w := 1; ] := ¢; 
$1: if i = ¢ then z := false 
else if y = ×~ then z := true 
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e l s e  b e g i n j  :=  i; i f y  > x i t h e n b e g i n i  :=  r~;  w := l e n d  
e l se  b e g i n i  :=  C~ ; w :=  0 e n d ;  
go to $1 e n d  
e n d  s ea r c h  

A measure of the length of a search process is the number of comp~risons per- 
formed, tn  the above algorithm, y is compared with each number in ~ sequence 
x,:~ . - .  x~.~. Tile sequence i~ . . .  i~ is a search path  in the search tree associated 
with the list. If y is found by the search, the path  is an int, ernal one, otherwise it 
is open. The nulnber of comparisons in a search is equal to the length of the 
associated search path. The expected vMue of this quant i ty  depends upon how 
the list is constructed. Consider the following " inser t"  algorithm, which uses 
the search Mgorithm as a subroutine. 

p r o c e d u r e  i n s e r t  (y) d o u b l y  l i nked  l is t :  (x, ~, r) nex t  a v a i l a b l e  l oca t i on :  (k);  
c o m m e n t  t h e  a r r a y  r c o n t a i n s  no t  on ly  the  r i gh t  l inks  b u t  a p u s h d o w n  l is t  of  ava i l ab l e  

s t o r age  b e g i n n i n g  w i t h  rk ; 
b e g i n  i n t e g e r  i, j ,  w;  b o o l e a n  z; 
s ea r ch  (y,x,~,r,z,i,j ,w) ; 
if -~ z t h e n  

b e g i n  if  w = 1 t h e n r j  :=  k e l s e  ~j :=  k; j :=  k; k :=  rk ; xj :=  y;  
(~j := r~ := q~end  

e n d  i n se r t  

Note tha t  if the arrays x, l, r constitute a doubly linked list at, the beginning 
of the execution of " inser t"  then they  will do so at the end. Observe that  the 
insertion is accomplished by changing four numbers in the list proper and one 
in the available storage list. Thus the only portion of the process which depends 
on the size of the list is tha t  performed by the search algorithm. 

Let y~ . - .  y ,  be a sequence of n distinct numbers chosen and ordered ran- 
domly. Let r ,  = ¢ initially ( tha t  is, let the list be essentially empty) ,  and let 
"insert (y~, x, l, r, k ) "  be performed for i = 1, 2 , . . .  , n. The resulting list 
will have associated with it the sequence search tree for y~ . . .  y , .  Therefore, 
Theorem 1 gives the expected number of comparisons in a search. Tha t  is, the 
expected number t of comparisons when y is not found is t = l(n) ,  and the ex- 
pected number t' when y is found is t' = l ' (n) .  The overall expected number of 
comparisons depends on the probability that  y will be found. 

Consider now the following deletion algorithm. 

p r o c e d u r e  de l e t e  (y) d o u b l y  l i nked  l is t :  (x,~,r) n e x t  ava i l ab l e  loca t ion :  (k) ; 
b e g i n  i n t e g e r  h ,  i, j ,  w;  b o o l e a n  z;  
s ea r ch  (y,x,C,r,z,i,j ,w) ; 
if z t h e n  

beg in  if  r~ = ~ t h e n  
b e g i n h  :=  j ;  j :=  i; i f w  = 1 t h e n r t ,  :=  C i e l s e  ~h :=  C i e n d e l s e  
beg in  j :=  ri ; i f ~  = ~ t h e n  

b e g i n x ~  := xi  ; r~ :=  ri  ; go t o C e n d ;  
B: h := j ;  j :=  ~j ; if  Cj # ~ t h e n g o  t o B ;  xi := xj ; Ct, :=  ~j 
end  ; 
C: r j  :=  k;  c o m m e n t  see " i n s e r t "  c o m m e n t ;  k := j 

e n d  
e n d  dele te  
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It; is directly verifiable tha t  the list resulting from "delete" has associated 
with it the tree D(T, S, y) of Section 1.3. Therefore, if y is selected at random 
from among the xi then Theorem 2 is applicable. That  is, the functional rela- 
tionship between the expected search lengths t, t' and the number n of entries 
in the list, is preserved. 

lln general, therefore, we assert that ,  starting with an empty list and per- 
forming rn~ random insertions and m2 random deletions in any order, if mt - m~ = 
n then 

t = 2 + ~ +  . . .  -}- ~,~ 1 . 4 1 o g 2 n  

and 

t' - n - b  l t _  l ~ t - -  1. 

The first approximation is by (3), Section 1.2. 
Consider the efficiency of the deletion algorithm. The algorithm first locates 

the number y in the list. I t  then finds the smallest successor of y. These two 
processes together correspond to the paths t ~ discussed in Section 1.3. The ex- 
peered number of list elements handled is the average length ld(n) of t ~ given 
in (4). Thus, the searching portion of the deletion algorithm has an expected 
length only slightly larger than t. 

The deletion process modifies three to five numbers in the list, regardless of 
the size of the list• 

The storage required is, in a typical application, about double the required 
storage of a sequenced list and about half again that  of a singly linked list. 

In return for this moderate amount of storage, both search time and insertion/ 
deletion time are proportional to log n. 

2.1.4 An Unsolved Problem 
I t  is a consequence of the results of [1] tha t  the condition for optimal searching 

in a binary search tree 7' is as follows. We assume random choice of the search 
operand. Let, m~ denote the number of proper nodes in T~. Let r~ denote the 
integral power of 2 such tha t  r, _-_ max (m°0, m~) < 2r~. The condition for 
optimal searching is that ,  for each ~, rain (m~0, m~) _-> r, -- 1. 

Now if the numbers m, are adjoined to the doubly linked list of the previous 
section, then an insertion algorithm which ensures the above condition can be 
designed. While such an algorithm would tend generally to be inefficient, it 
would clearly be more efficient than the insertion algorithm for the sequence 
list (Section 2.1.1). Note tha t  the complexity of the list transformation would 
depend on the proximity of m A to a power of 2. A quantitative analysis of this 
insertion algorithm is still being sought. 

2.2 A Sorting Algorithm 

Constructing the list of Section 2.1.3 is, in a sense, a sorting operation. How- 
ever, it is slower than other known sorting methods which use a comparable 
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amount, of storage. But when sorting is to be done with a minimum of storage, 
the results of Section 1.2 suggest a method which does have some advantages. 
The method turns out to be very similar to Hoare's "Quieksort" [9] but with 
two important differences which are discussed below. The advantages are 

(i) an expected number of comparisons approximately equal to 1.4 n log~ n 
(in close agreement with Hoare's reported average of 2n log~ n); 

(ii) auxiliary storage proportional to log2 n; 
(iii) insensitivity to distribution. 

An)" pair of these properties can be obtained, or improved upon, in other sorting 
schemes: but the scheme defined below is the only one known by the author to 
have all three properties. Quicksort has properties (i) and (iii) but not (ii), 
as is shown below. 

The expected number of comparisons required to construct the sequence 
search tree for a given sequence is calculated as follows. Let { l J  I i = 1 ,  2 ,  • • • , n }  

be the lengths of the internal search paths, as in Section 3. Then ~'~=~ (l~' ~ 1) 
is the number of comparisons required to construct the tree. Hence the expected 
number 5 of comparisons to construct a sequence search tree is [ V ' ( n )  - n .  n ! ] / n !  

Since V ~ ( n ) / n !  = n l ' ( n ) ,  we have 

5 = n [ ' ( n )  - n ~ 1.4(n q- 1) log2 n - 2n. (7) 

Note that  the derivation of (7) requires the assumption that the sequence con- 
tains n distinct numbers. 

The sorting algorithm which we wish to consider, while it does not construct 
an explicit search tree, 4 performs a sequence of comparisons which is equivalent 
to constructing a search tree. The method first compares a~ with each of a2, 
• . .  , a , ~ ,  thus calculating the rank of a~. a~ is then stored in the location cor- 
responding to its rank. In the process, all numbers less than a~ get stored in 
locations below that of a~, and the rest of the numbers get stored above. As 
will be seen in the algorithm, this is accomplished with just one extra storage 
location. At this point, the task is reduced to that of sorting two sequences: the 
sequence stored below a~, and the sequence stored above a l .  Each of the se- 
quences is sorted by a recursive application of the algorithm, one of the two 
sequences remaining untouched until the other is completely sorted. I t  is neces- 
sary to store the terminal locations of the sequence which is not sorted first; 
thus there will be a table of such locations. By sorting first the smaller of the two 
sequences flanking a l ,  the length of the table is forced not to exceed log2 n. 

The method bears a strong resemblance to the radix exchange method [7], 
the principal difference being that the present method employs a comparison, 
instead of a digit inspection, as its basic operation. 

Quicksort, instead of calculating the rank of a , ,  calculates the rank of a 
"randomly" chosen member of the sequence. Quicksort appears at first glance 
to have no table like the one mentioned above. These differences are evaluated 

4 (Added in proof). I t  has been brought to my attention that Windley [WINDLEY, P. F. 
Trees, forests and rearranging, Comput. J. 8 (1960), 84-88] has examined the explicit coa- 
st, ruction of the tree as a sorting technique and has derived an expression equivalent to (7). 
Windley has also calculated a mean deviation associated with (7). 
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below. First let us define the present algorithm more precisely by means of 
AJX~OL 60 as follows. 

p r o c e d u r e  P (~ ,  n ) ;  v a l u e  n ;  a r r a y a ;  i n t e g e r  n ;  
b e g i n  i n t e g e r  e , h , i , j , k ;  i n t e g e r  a r r a y  f , g ( l :  log~ n ) ;  rea l  d ;  
e := 1; h := n; k := 1; 
B:  if  e ~ h t h e n  go to C;  d :=  a~. ; i : =  e; j : =  h ;  
]~;: i f a j  < d t h e n  

b e g i n  ai :=  a~ ; i : =  i -[- 1; i f i  = j t h e n g o  to D e n d  
e l se  b e g i n j  : =  j - 1; i f i  = j t h e n  go t o D ;  go t o e  e n d ;  

F :  if a~ > d t h e n  

b e g i n  a~ :=  a l  ; J : -  i - 1; i f i  = j t h e n  go to D ;  go to 1~ e n d  
e l s e  b e g i n  i :=  i -[- 1; i f i  = j t h e n  go to ]7); go to I,' e n d ;  

D :  ai : =  d;  
i f i  -- e < h --  i t h e n  
b e g i n f k  :=  i q- 1; gk : =  h ;  h : =  i -  1 e n d  
e l s e  b e g i n  fk : =  e; gk : =  i --  1; e : =  i -[- 1 e n d ;  
k :=  k -} -  1; go t o B ;  

C:  k :=  k - 1; i f  k > 0 t h e n  b e g i n  e : =  fk ; h : =  gk ; go to B e n d  
e n d  

From the following considerations, it can easily be verified that each execu- 
tion of this algorithm has a search tree associated with it. Let the execution of 
the algorithm start at time 0. Let A ( t )  = a l ( t ) ,  . . .  , a,,(t) denote the value of 
A at any time t. Let ~ denote the time of the completion of the first execution of 
statement D. At time a, a,(0) has been compared with every other number in 
A, and a~(a) = al(0). Moreover, a=(~z) < al(0) for all m < i, and a~(~) > 
a~(0) for all m > i. That is, a,(0) occupies its proper position in the sequence at 
time a, and therefore undergoes no more comparisons. Clearly, at(0) thus cor- 
responds to the root of the search tree. The algorithm is then applied recursively 
to the sequences a,(a),  . - . ,  a~-l(a) and a~+l(~) , - - - ,  a~(oe) (not necessarily 
in that order), a~(a) will therefore correspond to the :node p0 of the search tree 
and a~+~(a) will correspond to the node p~. Or, in terms of the list function f 
for the search tree and the set of elements inA,  we havef(p) = al(0), f (po )  = 

a,(a)  and f ( P O  = a~+~(ce). Continuing in this way will, clearly, define a list 
function, and therefore a search tree. 

I t  can also be verified that if A is a sequence of the first n integers, then the 
n! possible values of A(0) correspond in a 1,to-1 way with the sequences R ~ 
of Section 1.3. That is, if T is the search tree corresponding to the execution of 
the algorithm for A (0), then the sequence R ~ corresponding to A (0) is such that 
T is the sequence search tree for R ~. 

I t  follows that  (7) gives the expected number of comparisons in an execution: 
of the algorithm for a randomly chosen A (0). 

Similar considerations show that (7) is also applicable to Quieksort, thus 
verifying Hoare's reported average of 2n log~ n comparisons. 

The only storage requirement, beyond that necessa~T for the program itself 
and for the sequence A, is the storage necessary for the numbers fk, g, • The 
maximum value of h during the algorithm does not exceed log~ n. This is en- 
sured because, at each completion of statement D, the algorithm chooses the 
smaller of the two subsequences open to it. 
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The numbers .f~,, g~ do not, appear in Quieksort because of the reeursive way 
in which that algorithm is defined. Bu~ it is clear that at each new level of recur- 
sion some information about the previous level must be retained; that is, the 
fk,  g~ are needed by Qtficksort too. Moreover, k is there allowed to attain the 
value ~; thus Quieksort does not have property (ii) above. It  can, of course, be 
given that property by the same means used in the present algorithm. 

Equation (7) holds for the present algorithm if the sequence of ranks is 
random. Since this implies nothing about the distribution of the numbers in 
the sequence, property (iii) holds. If the sequence of ranks is not random then 
the algorithm might be slowed down considerably. The worst ease, n ( n  -- 1 ) / 2  

comparisons, occurs with either an ascending or a descending sequence. 
"Quicksort's" worst ease is also n ( n  - 1)/2 comparisons, but the question 

of which sequence gives rise to it depends on the nature of the "random" choice 
of an element from the subsequenee a~, - . .  , ah. Although this choice requires 
an amount of extra work proportional to n, it has an advantage if the sequence 
of ranks is biased. For, even though it is possible for a bias toward Quieksort's 
worst case to exist (since nothing is really random on a computer), this kind of 
bias seems much less likely to exist than a bias toward ascending or descending 
order. 

If the present algorithm were preceded by a "random" scrambling of the se- 
quence (a process with duration proportional to n) it would be equivalent to 
Quieksort. 5 

A search of the literature shows that Shell's method [5, 6] is the fastest sorting 
algorithm having the property of being insensitive to distribution and having a 
storage requirement comparable to that  of the present algorithm. The expected 
number of comparisons for Shell's method, given a randomly ordered sequence, 

• 6 is given approximately by n(.194(log2 n) ~ .77 log~ n + 8.4). Itenee the 
present algorithm is, for large enough n, superior to Shell's method. I t  will be 
superior to the radix exchange method [7] only in eases of uneven distribution. 
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