INFORMATION TO USERS

This dissertation was produced from a microfilm copy of the original document.
While the mcst advanced tc-':=ological means to photograph and reproduce this
document have been used, the quality is heavily dependent upon the quality of
the original submitted.

The following explanation of techniques is provided to help you understand
markings or patterns which may appear on this reproduction.

1. The sign or ‘‘target” for pages apparently lacking from the document
photographed is ““Missing Page(s)”. If it was possible to obtain the
missing page(s) or section, they are spliced into the film along with
adjacent pages. This may have necessitated cutting thru an image and
duplicating adjacent pages to insure you complete continuity.

2. When an image on the film is obliterated with a large round black
mark, it is an indication that the photographer suspected that the
copy may have moved during exposure and thus cause a blurred
image. You will find a good image of the page in the adjacent frame.

3. When a map, drawing or chart, etc., was part of the material being
photographed the photcgrapher followed a definite method in
“sectioning’’ the material. It is customary to begin photoing at the
upper left hand corner of a large sheet and to continue photoing from
left to right in equal sections with a small overlap. If necessary,
sectioning is continued again — beginning below the first row .and
continuing on until complete.

4, The majority of users indicate that the textual content is of greatest
value, however, a somewhat higher quality reproduction could be
made from ‘‘photographs’ if essential to the understanding of the
dissertation. Silver prints of ‘‘photographs” may be ordered at
additional charge by writing the Order Department, giving the catalog
number, title, author and specific pages you wish reproduced.

University Microfilms

300 North Zeeb Foad
Ann Arber, Michigan 48106

A Xerox Education Company

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72-20,697

CRANE, Clark Allan, 1942-
LINEAR LISTS AND PRIORITY QUEUES AS BALANCED
BINARY TREES.

Stanford University, Ph.D., 1972
Computer Science

University Microfilms, A XEROX Company , Ann Arbor, Michigan

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LINEAR LISTS AND PRIORITY QUEUES AS BALANCED BINARY TREES

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTTAL FULFILIMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By
Clark Allan Crane

March 1972

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy.

Principal Adviser

I certifly that I have read this thesis and that in my
opinion it is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy.

fard (5 ot

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy.

bt 25
rd

Approved for the University Committee
on Graduate Studies:

Z{;w.cfe“ ?%aw’

Dean of Graduate Studies

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PLEASE NOTE:

Some pages may have
indistinct print.

Filmed as received.

University Microfilms, A Xerox Education Company

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PREFACE

In the Spring of 1970 I approached Professor Knuth about becoming
his advisee. Adopting a pragmatic attitude, I enumerated my criteria
for a thesis topic: its results should be potentially useful to a
reasonably broad body of computer users; thc work should be completable
in a year or so; and the subject should be currently under investigation
elsewhere by preferably no one. Would he please suggest a few? What T
got was one, along with an admonition to the effect that good thesis
topics are on the same endangered species list as the golden-egg-laying
goose.

Chapters One and Three present two related but distinct data
structures, one for lists and the other for priority queues. They both
are based on triply-linked binary trees; but while a perfectly balanced
tree presents the best case for lists, it is the absolute worst for
priority queues. Chapter Four contains ALGOL W implementations of the
algorithms for both data structures, plus a routine for displaying trees
on the line printer.

Chapter Two is partly a tutorial on measures of the amount of effort
required to search or enlarge trees, and how many trees of various kinds
there are. Then, using some new terminology, Section 2.5 discusses
local search-order-preserving transformations and their relative ability
to change the shape of binary trees.

A1l definitions have been collected by chapter, arranged by their
semantic relations, and offered as Chapter Zero. This approach presumes
that a thorough study of the paper consists of several passes through it,
the first a fast scan and each succeeding one a more detailed and critical
investigation. The material hopefully flows more smoothly without the
interruptions of parenthetical definitions.

No solutions for the problems of Chapters One, Two, and Three have
been provided, not even for the odd-numbered ones. The difficulty
rating, a mime of Knuth's successful scheme, loosely classifies the
problems: 0-25, the student can verify his own solution; 26-35, I
haven't worked the problem myself; 36-50, the problem is a suitable
term project or is included in lieu of a statement to the effect, "The

proof is beyond the scope of this author."

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

My sincere gratitude goes to Professor Donald E. Knuth, who
saved me a week's to a year's work with each consultation; to
Professor Edward J. McCluskey, who served as my course adviser for
two years; to Associate Professor Harold S. Stone and Professor
Robert W. Floyd, who completed my reading committee; to Provost
William F. Miller, who gave me my first programming job, at SLAC;
to Miss Eileen Kennedy at Hughes and Mrs. Phyllis Winkler at Stanford,
able secretaries who prepared the first and final drafts, respectively;
to Hughes Aircraft Company, for support and gainful summer employment;
to the people of the SPIRES/BALLOTS project, for experience, stimulating
contacts, and support; to the Fannie and. John Hertz Foundation and the
Veterans Administration for support; and to my wife, Valerie, who had
her own homework to do in addition to caring for me and keeping up the
house.,

This exercise in arboriculture is dedicated:
To Don Knuth and all my other teachers,
for the seeds and tools;

To HAC, the Hertz Foundation, SPIRES/BALLOTS, and
the VA, for the fertilizer;

And to Valerie, for the sunshine.

(I did the tilling.)

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

Chapter Page

0 Contextual GlOSSary « « o o o« s o o o o o o « s o o o s ¢ o« 1

0.0 General TermsS « o« o« « o « o o o o « o o o o o o o o o 1
0.1 Linear Lists and Balanced Trees . « o « o o o o o« o « U
0.2 Mathematical Aspects of Trees « « « « o v o « + o « o b6
0. Priority Queues and Tree€sS + « « + « ¢ ¢« ¢ « « « + o« « O
l - Linear Li S.t S . L] L] . [] L] L] - L] L] L] L] L o * L] . L] . L] L] L] L] lo

1.1 Introduction .+ « ¢« ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o 6 o o o ¢ . o 10
1.2 Operations on Lists « o ¢« ¢ o ¢ ¢ o o o o o o o « « o 11
1.3 Representing Lists . « ¢« ¢ ¢ ¢ ¢« s o o o o o o « .« . 12
1.h BackgrounNnd . « « « o« o + o o o ¢ o o o s o o o o o o 15
1.5 Extant Balanced Tree Algorithms . . ¢ ¢« ¢ ¢« ¢ ¢« « « « 19
1.6 General Approach to List Tree Operations 20
1.6.1 Example TTEES « « 4 o o o o « s « ¢ s« s o o o 20
1.6.2 Overview of Algorithms . . « « ¢« « ¢« &« « . . 2k

1.7 Details of Method « « ¢ v ¢ ¢ ¢ ¢ o o o o ¢ o o o » o« 32
1.7.1 Header and Node Format . « « « o o o » o & o 22
1.7.2 Informal List Tree Algorithms « « « « o« « o « 36

1.7.52 Performance Characteristics « « « « ¢« « &« « + 50
1.7.4 Further Considerations . . o o+ « o « « « « « 55
1.7.4.1 Non-recursSion . « « ¢ ¢« o« s« « « « « 55

1.7.4.2 Merging Ordered List Trees 56

1.7.4.3 Threads « « « « v o v v o o s o o « 58

1.8 Problems .+ v ¢« v o o o s 0 s s 0 0 s s 0 e e e s e s 60

2 Mathematical Aspects of Trees + « « « o v o o o o o o o o o 62
2.1 INtroduction .« ¢ s 4 ¢ 4 4 e 6 e 0 8 s e e s 0 0 . . B2
2.2 Height v v v o 4 o o 6 o 0 s o o o o o o o s o s o . B2
2.3 Path Length « ¢ ¢« ¢ « ¢ ¢ ¢ ¢ ¢ « o s o o« o« o s o o & 65
2.4 Enumeration of TreeS =« « « « « o o o s o o o « « « & 71
2.5 ROLALIONS « v ¢ ¢ ¢ + ¢ « o o o o o o o o o o o o o o Th
2.6 Problems .« « « « s s s s s s s s s s e s e e s e T9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter

3 Priority QUEUES « « ¢ ¢« o 4 « ¢ ¢ 4 4 o s s e 4 o o
5.1 Introduction . . « « ¢ ¢« v ¢ ¢t 4 s 0 0 0 e e
3.2 General Approach to Priority Queue
Tree Operations . « ¢ ¢« o o o o o o s o o &
3.3 Header and Node Format .+ « « « o o« o « + o « &
3.l TInformal Priority Queue Tree Algorithms
3.5 Performance Characteristics . . « ¢« v ¢+ ¢« ¢« &« &
3.6 NON-TECUTSION « ¢ o v ¢ o o o « o o « o o o o &

3 07 PI‘OblemS - * o o e o o ¢ e e e ® ©* e e a o e o

b Formal ALgorithms « « « o o o o o o o o o o o o o o &«
Lol Introduction .+ ¢ ¢ v ¢ ¢ 4 0 4 0 b e e 0 0 ..
4,2 Linear List Tree Algorithms . . « « &« « o« « « &
4.3 Priority Queue Tree Algorithms . « « o« « « . .

L.t A Procedure for Printing Trees « « « « o o «

ReferenCes . « o ¢ o o o o o ¢ s ¢« o o o o s o o o o o o s

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page

84
8L

86
87
90
95

7

97

99
99

99
116

123

128

List of Tables

Table

1.7.1.1. List tree field requirements

2.2.1. Size of balanced trees vs. height o

2.2.2. Height of balanced trees vs. size

2.h.1. Number of balanced trees, Qi e e e e e

2.5.8. Tree k-neighborhood (count, relative frequency)

3.5.1. Priority queue tree field regquirements
vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pzge

35
66
66

73
78
89

Figure

1.6.1.1.
1.6.1.2.
1.6.1.3.
1.6.2.1.
1.6.2.2.
1.6.2.3.
1.6.2.4,
1.6.2.5.
1.6.2.6.
1.6.2.7.
1.6.2.8.

1.6.2.9.
1.6.2.10.
1.7.k.1.
1.7.4.3.1.
2.5.9.
2.5.11.
2.5.12,
2.5.13.
3.2.1.
3.6.1.
h.h,1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Illustrations

Binary subtrees

Fibonacci (balanced) subtrees « « + « o« « & &

Balanced tree showing selected field contents

Search by value (keys shown)

Search by position (left-subtree sizes shown)

Rebalancing, Case I .

Rebalancing, Case IT . . « «

Rebalancing, Case III .

Rebalancing, Case IV . « « « &

Insertion with Case III rebalancing

Example worst-case deletion (showing node

positions prior to deletion)

Concatenation with Case III rebalancing

Split . .

Linear list algorithm calls

Threaded tree . « « .
Pair of 7-neighbors . .
Degree 5 rotation . . .

Degree 4 rotation . . .

¢ o

. L]

s ® & e e s+ s e s & =

Degree 4 rotation « +

Merger of priority queue trees

Priciity queue algorithm calls

Tree Plot ¢ ¢ ¢ ¢ ¢ v o o o o &

viii

s

.

.

Page

21
22
23
ok
25
26
a7
27
28
30

33
3L
22
29

17
80

81
82
88

97
124

Abstract

Any representation of a list in high speed computer memory is a
comprcmise among competing measures of efficlency: compactness; speed
of the desired list operations; and simplicity of algorithm. Most
representations optimize the speed of a few operations at the expense
of others. A linked data structure given here, an cutgrowth of the
balanced trees of Adel!son-Velskii and Landis, allows the following
common linear list operations to be performed in worst-case times which
grow only as the logarithm of list size: insertion, retrieval, and
deletion of an item by position in the list or by key value; concatenation
of two lists; splitting a list in two at a certain position or after a
certain key value; and finding the predecessor or successor of a given
item. The construction, traversal, copying, and merger operations
require times which grow linearly with list size. The logarithmic
pounds result from making local changes, when necessary, to assure that
no two sibling subtrees differ in height by more than one level. Items
may be either atoms or lists.

Local transformations which involve only two pivotal nodes suffice
to change any binary tree of n nodes into any other in no more than
2n-2 steps. Transformations of no more than five pivotal nodes suffice
to change the balance of a node in a balanced tree from positive to
non-positive while preserving tree balance.

A (non-preemptive) priority queue obeys a best-in-first-out discipline.
Stacks and simple queues are special cases of a priority queue. By
representing priority queues as linked binary trees which impose only
a partial ordering on the items, the item with the earliest priority in
each subtree appearing at the root of the subtree, it is possible to
exploit the restriction that only the best item need be accessible.
Maintaining in each node a field which indicates the distance to the
nearest empty subtree provides the basis for algorithms which require
worst-case times which grow as the logarithm of priority queue size for
the following operations: enqueuing an item by its priority; the merger
of two queues; removing the next item from & queue; and purging a given

arbitrary item from a queue.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The paper presents detailed non-recursive algorithms for the
linear list and priority queue operations, both informally and as
implemented in AIGOL W. Historical background of the theory and use
of binary trees for lists and priority queues supplements the present
contribution. Numerous exercises, rated by difficulty, confirm the

reader's grasp of the material and suggest areas for further research.

Key words and phrases:

balanced tree
binary tree
content-addressable memory
data structure
heap

linear list
list processing
priority queue
queue

searching
sorting

stack

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LINEAR LISTS AND PRIORITY QUEUES AS BATLANCED BINARY TREES
by

Clark A. Crane

Corrigenda

Negative line numbers are counted from the bottom of the page.

Pagel

ii Line -3, The support citation refers to the costs of final typing
and reproduction of the report. The research itself was supported
by Hughes Aircraft Company, the SPIRES/BALLOTS Project, the Fannie

- and John Hertz Foundation, and the Veterans Administration.

10 Lines -7,-6. Replace with the reverse order:
choice: (0.19%-Riemer, 1.39%-Chaffin, 5.9%-Debs, 23.15%-Taft,
27.42% _Roosevelt, 41.85%-Wilson)

36 Line -2. A comme should follow "ALGOL W".

54 Line -6, "(cl¥*il+i2)" should read "(cl*il+c2)".

56 Line -6. The equality should read "O(2¥m-1) = O(m)".

63 Line 6. The "X should appear centered to the right of the
summation sign, not as a superscript.

68 Line 8. The "t-l" should appear centered to the right of the
summation sigh, not as a superscript.

a7 Figure 3.6.1. There should be an additional arrow from "purge"
to "submerge".

104 Line -16. "Wourld" should read "would".

126 Some copies have ink blcots obscuring parts of three lines.
Line 4 starts out "STR:=INTBASE1O(SIDE(T));"
Line 5 starts out "L3(J+9]1):=sTR(1|1);"
Line 8 is "IM(I|1):="|" "

129 Line -11. Underline "SIAM J. Appl. Math.": Line -7. Underline
"Proc. IRE".

130 Line 12. "Jaunuary" should read "January".

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter Zero
CONTEXTUAL GLOSSARY

It is convenient for reference and review purposes to assemble all
the special vocabulary used in this paper. Although the reader need
not dwell on this chapter during the first reading, he should peruse
Section 0.0 and sections pertaining to chapters of interest to him.

No illustrations are found here; they appear in the appropriate
positive-numbered chapters with their descriptions.

This terminology for trees has been selected without regard to

race, creed, sex, age, or national origin.

0.0 General Terms

The following GENERAIL, TERMS apply throughout the paper.

A node is an entity comprised of a finite number k > 1 of named
fields (f1,...,fk) , each of which can hold a fixed amount of informa-
tion. A class is a set of nodes which have the same fields arranged in
the same spatial relationship, i.e., the same format. A class may be
implemented in such a way that each node occupies a block of contiguous
memory locations; in this case a template, e.g., a dummy control section,
specifies the locations of the various fields in relation to an addressable
reference point in the node. Alternatively, each field name of a class
may define a block of contiguous cells, with an integral number of cells
forming the field for each node; then the k-th field of node i is
simply the i-th element of array fk . The choice of representation
depends on: the addressability and other access characteristics of the
storage medium; storage and execution time constraints; the method of
storage allocation and deallocation; the instruction set or programming
language used; and programmer preference.

A node itself has no name, and its physical location is irrelevant.
It is known by its contents or by the relationships it has with other
nodes in the data structure in which it appears.

A pointer, or link, is a value which designates (points to) a

particular node. Together with knowledge of the node's class, a pointer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to a node suffices to inspect or modify the contents of any field of
the node. A pointer designating no node, or an empty structure, equals
the distinguished value null. Pointers may be consistently encoded in
any desired way: as absolute addresses, array subscript values;
base-displacement pairs, etc. If a pointer variable p points to a
node which has a field info then that field is referenced by the

" info(p) ". In this paper the name of a pointer variable

expression
may variously refer to its value (as in comparisons for equality),

a node to which it points, or to the entire data structure emanating
from the node to which it points. The meaning in each instance should

be clear from the context. A linked data structure is empty, or is a

non-empty finite collection of nodes connected by appropriate link
fields in the nodes, such that from some node in the collection there
are link-node sequences leading to all other nodes in the collection.
In other words, if a node cannot be accessed it does not belong to the
data structure.

A binary subtree, or subtree, is a linked data structure which is

empty, or consists of a subtree node p called the root and two disjoint
subtrees linked to p by link fields left(p) and right(p) . If p

has a non-empty subtree then p is non-terminal; otherwise p 1is

terminal. Let q = left(p) and r = right(p) be non-empty. The
integer field side is defined for subtree nodes by side(q) = -1 and
side(r) =+1 . If p is part of no other subtree then side(p) =0,

P is called the principal root, and is the root of the principal subtree.

Nodes gq and r are siblings, the children of p ; p is their parent.
The root of a subtree is an ancestor of all other nodes in the subtree;
a node is a descendant of its ancestors. Link field up is defined for
subtree nodes by up(q) = up(r) =p . Note that up eand side carry
redundant information about a subtree.

A binary tree, or tres, consists of a distinguished node t called

the header, and a principal subtree p linked to t by link field
up(t) . Fields right(t) and left(t) are not defined. If p is
non-empty then up(p) =t . Hereaftir, subtree nodes will be simply
called nodes, and header nodes will be called headers; phrases such as
"number of nodes" will implicitly exclude headers. The header is the
ancestor of all nodes in the tree and the descendant of none.

2

Reproducéd with permission of the copyright owner. Further reproduction prohibited without permission.

A binary tree is depicted with the header at the top, the principal
root immediately below it, etc. Hence, higher means nearer to the
header; down and lower mean toward a terminal node. The height h of
a subtree p is O if p 1is empty; otherwise,

h(p) = 1+ max(h(left(p)),h(right(p))) . The height of a tree is the
height of its principal subtree. The size of a tree is the number of
nodes in the tree.

To allow shortening the statement of algorithms by taking advantage
of symmetry, some equivalences are defined for node p in terms cf
link: link(p,-1) = left(p) , link(p,0) = up(p) , and
link(p,+1) = right(p) . If t is a header then caly
link(t,0) = up(t) is defimed. Note that for node P , if the absolute
value abs(e) =1 and link(p,c) # null then side(link(p,c)) =c .
Further, link{up(p),side(p)) = p , illustrating the redundancy of the
fields up and side. The side of a header is undefined.

The (internal unweighted) path length is the number of ancestors
of each node, summed over all nodes in the tree.

If t is a (sub)tree each of whose nodes has two subtrees of the
same size, then t 1is a perfect (sub)tree, and size(t)+1 is a power
of 2, i.e., size(t) =2th(t)-1 .

The distance to null is a recursively defined attribute dist

of & tree or subtree t . If t is an empty subtree then dist(t) = -1 .
If t is a node (non-empty subtree) then
dist(t) = 1+min(dist(left(t)),dist(right(t))) . If t is a header
(tree) then dist(t) = 1+ dist(up(t)) . For example, dist of an
empty tree is 0 , dist of a subtree of size 1 or 2 is 0, and
dist of a subtree of size 3 is either O or 1. o

If t 1is a subtree which is empty or which satisfies__
h(t) -dist(t) <1 then t is a complete subtree, or ininimum path

length subtree. If t is a tree whose principal. cubtree is complete

then t 1is a complete tree, or minimum path length tree.

If two (sub)trees tl and t2 can be exactly superimposed on
one another {disregarding node contents), after suitable nodes of +t1
have had their subtrees interchanged left for right, then t1 is

homeomorphic to t2 . Homeomorphism is an equivalence relation.

A perfect (sub)tree is homecmorphic only to itself.
| 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A (sub)tree which has no non-empty right (left) subtree is
right-(left-)degenerate. If every node of a (sub)tree has an empty

subtree then the (sub)tree is degenerate. .

To say f(n) = 0{g(n)) , read " f of n is order of g of n ,"
means that there are positive constants ¢l and c2 such that the
relation |f(n)| <cl* |g(n)| holds for all n >c2 . To say that an
algorithm is O(f(n)) means that the num‘t;er of steps required to
execute it is O(f(n)) , and each of these steps takes O0(l) units of
time to complete on a conventional camputer; thus, the total time

required is O0(f(n)) units.

0.1 TIinear Lists and Balanced Trees

The following are TERMS APPLYING TO BALANCED TREE REPRESENTATION
OF LINEAR LISTS.

A linear list is a finite set of k >0 items arranged in such a
way that it is possible to identify and access uniquely the i-th item
for 1 <i<k . Examples are: a vector, a one-dimensional array,

a string of characters, a LISP list (ignoring the presence of structure

in any non-atomic 1list elements). An ordered linear list is a linear

list in which each item is associated with a value called its key, and
the items are arranged in strictly increasing order of their keys.

(We require all keys to be distinct, in order to simplify discussion of
the algorithms.) In the sequel, "linear list" and "ordered linear list"
will be abbreviated "list" and "ordered list'", respectively.

The symmetric order of nodes in a subtree s is the order in which

the nodes are visited in postorder traversal, described recursively:
if s = null then do nothing; otherwise traverse left(s) , visit s ,
and traverse right(s) . The first node thus visited is called the
leftmost and the last node visited is called the rightmost. The
symmetric order of a tree t of size k 1is circular:
1st,2nd, ..., tth,1st,... , etc. The successor of node p in tree t ,
denoted p$, is the next node or header in symmetric order; the
predecessor, $p , is the previous node or header. If tree t is

empty then successor(t) = predecessor(t) =t . The cessor relationship

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is defined by the equivalences cessor(p,-1l) = $p and
cessor(p,+1l) = p$. The extended cessor relationship allows

equivalences such as cessor(p,0) =p, cessor(p,-2) = $$p , etc.

To insert an item p in a linear list after positio: i,
0 <i<k, is to increase by 1 the ordinal numbers of the (it+l)-st
through k-th items and to make p the (itl)-st item. To delete the
i-th item is to remove it from the list and decrease by 1 the ordinal
numbers of items i+l +through k ; the list is shortened, and no

vacancy is introduced. Searching a list tl of size k1 on position i

means setting a pointer to the i-th item unless i <1 or i>kl,

in which case the pointer is set to null. Searching an ordered list

by value on key k means setting a pointer to the item whose key is k
and zetting a real variable to the item's position in the list. If no
item's key is k then the pointer is set to null and the real variable
is set to a fractional value irdicating where the item would lie, e.g.,
0.5 for "before the first item", or 2.5 for "after the second item".
Concatenating list tl1 +to the left of list t2 to produce list t3 is
the same as appending t2 to t1 , calling the result %3 , and setting
tl and t2 to empty. If tl1 and %2 had k1 and k2 items,
respectively, then the first (leftmost) k1 items of t3 are from t1
and the last k2 items are from t2 . Splitting a list t1 of Kkl
nodes into lists t2 and t3 on position i is making t2 the list

composed of the first 1 items of tl , making t3 +the list composed

of the last kl-i items of t1 , and setting tl1 empty. Merging ordered
lists t1 and t2 to produce ordered list t3 means interleaving the
items of t1 and t2 in such a way as to result in a single ordered

list t3 , and setting t1 and t2 to empty.

A linear list of k > O items can be represented in a tree t of
size k by putting the first item in the leftmost node t$, the second
item in t$$ » etc. They key becomes an integer or real field containing
the key of the item in the node; key(t) is not defined.

The key space is totally ordered. Examples of key spaces are:
the non-negative integers less than 2118 ; all ANSI character strings
of length 1 through 10 ; all short-precision floating-point numbers;
and payroll numbers of all current employees.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The balance factor of a node p 1is an integer field bal whose
value is h(left(p))-h(right(p)) . If t is a header then bal(t)

© is defined to be O .

The left-subtree size of node p is an integer field less,

containing the number of nodes in left(p) ; less(t) = "minus infinity"

for header t .

A (sub)tree t is balanced if, for every node p in t ,
|bal(p) | <2 . A (sub)tree t is well-balanced if it is balanced and,
for every node p in t , bal(p) =0 or p has an cmpty subtree.
A (sub)tree t is perfectly-balanced if bal(p)
in t . It follows that a well-balanced tree is a complete tree, and

0 Tfor every node p

a perfectly-balanced tree is a perfect tree. If bal(p) = -1 for

every non-terminal node p in tree t then t 1is a Fibonacci tree.

Trees homeomorphic to a Fibonacci tree achieve the greatest height
attainable by balanced trees whose size is less than that of the next
larger Fibonacci tree. A perfectly-balanced tree has a size greater
than any other tree of the same height. A degenerate tree has a height
equal to its size, the height greater than all non-degenerate trees of

the same size. A threaded tree is a tree whose nodes are augmented

with two logical fields ltag and rtag , used as follows. For each
node p , if the left subtree is empty then ltag = true and

left(p) = $p is a thread. Otherwise, ltag = false and left(p)
points to the left subtree of p as in an unthreaded tree. If the
right subtree is empty then rtag = true and right(p) =p$ is a
thread. Otherwise, rtag = false and right(p) points to the right
subtree of p . If t is a header of a threaded tree then left(t)

is defined to be t$, and right(t) is $t , making it very easy to
locate the 1l-st and k-th nodes. Threads improve tree traversal speed
by utilizing otherwise empty links, at the expense of two bits per node

storage and a bit comparison per level on search.

0.2 Mathematical Aspects of Trees

The following are TERMS DEALING WITH TRANSFORMATIONS ON BALANCED
TREES.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A set of m nodes in a tree t are adjacent if the cutting of
all links (arcs) not connecting two of the m nodes results in a
(connected) subtree containing exactly the m nodes.

A rotation oi degree m is a transformation of a tree Tl into a

tree T2 satisfying the following conditions.

1. ©No nodes are added to or deleted from Tl .

2. There is a node, called the founder, whose parent, if the
founder is not the header, does not change in the transfor-
mation. The founder has a subtree S which is the smallest
subtree containing the set M of m adjacent nodes called

the participants. Subtree S becomes subtree S' as a result

of the transformation.

5. Neither subtree of any node of S may change in the transfor-
mation unless the node is a participant; the change in any
subtree of a participant is limited to the upward link of the

“root of the subtree, unless the subtree itself contains nodes

of M . The sibling subtree of S , R, does not change.

L. The symmetric traversal order (postorder) of S' is the same
as that of S .

A rotation of degree m is of strict degree m if each of the m

adjacent nodes has its parent and one or both of its subtrees changed.

The only rotation of degree 1 is the identity rotation. Since
only the subtrees of one node may change, the only possibility is to
interchange them; this interchange preserves symmetric order only if both
down-links are null. There is no rotation of strict degree 1 . The
identity rotation does not involve the change of any parerts, violating
the definition of strict order.

The root r of S 1in a rotation belongs to M . Suppose r does
not belong to M . Then either M is divided between the left and right
subtrees of r or M is entirely contained in one of the subtrees of r .
The former contradicts adjacency of M and the latter contradicts the

requirement that S is the smallest subtree containing M .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Two trees T and § of size n are neighbors (1 -neighbors)
if a single rotation of degree 2 suffices to transform one intc the
other. Trees T and § are k-neighbors if the minimum number of
degree 2 rotations required to transform one into the other is
exactly k .

ARE YOU STILL THERE?

0.3 Priority Queues and Trees

The following are TERMS APPLYING TO TREE REPRESENTATION OF P:.uRITY
QUEUES .

A priority queue is a finite set of k > 0 items awaiting ser.ice,

each of which is associated with a distinet value called its priority.
Items are served (removed from the priority queue) in order of prec :dence;
low values of priority are served early and high values late. The order
in which the items are enqueued is irrelevant, unless the item of
earliest priority need be accessible. Thus, a priority quesue obeys a

"best-in-first-out" discipline. If items are enqueued in order of

strictly increasing priority value then the priority queue behave:
exactly as a queue (first-in-first-out); the reverse order result: in
stack behavior (last-in-first-out).

The distance of a header (node) is an integer field dist whose
value is the distance to null of the header (node).

The priority queue balance factor is an integer field balp which

indicates the path to the nearest empty subtree. If t is a header
then balp(t) = 0 , since either wup(t) is null or up(t) is part of
the path to the nearest null link. If p is a node with an empty
subtree (dist(p) = 0) , then balp(p) is -1 or +1 , meaning that
left(p) = null or right(p) = null , respectively. If p has no empty
subtree then balp(p) is -1 or +1 , depending on whether left(p)

or right(p) is nearer to an empty subtree; specifically,
dist(link(p,balp(p))) = dist(p)-1 . If both p's subtrees are empty
or dist(left(p)) = dist(right(p)) then balp(p) may be either +1

or -1, arbitrarily.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The priority of a node is integer or real field prio , which contains
the priority value of the item in the node. If t 1is a header then
prio(t) is "minus infinity".

Let t be a tree with a distinct value of prio in each node.
Further, for every pair of nodes p and ¢ in t assume that if p
is an ancestor of q then prio(p) < prio(q) . Then t is partially-

ordered on prio, and t satisfies the tree partial-order criterion.

(Equality is not achieved since we are assuming distinct priorities.)

A priority queue of k >0 items can be represented in a tree t
of size k by putting the items into the nodes of t , one item per
node, in such a way that % satisfies the tree partial-order criterion.
Thus, if k > O , the principal root of t contains the item with the
earliest priority (smallest prio value).

To remove any item from a priority queue is to purge that item
from the queue. Removing the item of earliest priority is serving that
item, and is servicing the queue. Enqueuing an item is placing it in
a priority queue to await service according to its priority. Merging
priority queues gl and g2 to form g3 1is combining the items into
a single valid priority queue g5 .

Thank you for your attention.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter One
LINEAR LISTS

1.1 Introduction

(At this point, please read Sections 0.0 and 0.1 of the Contextual
Glossary if you have not already done so.) A linear list is an abstract
entity which is considered to contain items of information arranged in
separate sequential positions so that one may speak of the first, i-th,
or last item without ambiguity. The term "linear" means that the items
are presumed to be atomic, or indivisible. Thus, any phenomena introduced
by nested lists (items which are themselves lists) or recursive lists
(lists which are nested within themselves) are at the same time permitted
and without consequence to linear list operations, which ignore list
substructure. An example of a list might be one called "journal", giving

a housewife's activities for the day.
journal: (washing, cookdinner, grocery, callmother)

The list has four items, but any of those items in fact may designate
other lists of activities.

An ordered linear list is a linear list each of whose items has an
attribute calied the key; the items are positioned in the list in order
of ascending keys, and no two items have the same key. For example, the
following list of 6 items, ordered on percentage, gives the result of

the 1912 U.S. presidential election:

choice: (41.85%-Wilson, 27.42% -Roosevelt, 23.154 - Taft,
5.99% - Debs, 1.39% -Chaffin, 0.19% - Riemer)

The concept of linear list is such a simple and widely applied scheme of
arranging information that it is difficult to say anything very scholarly
about it. As anycre who has been asked about his driving record by a
traffic judge can verify, even an empty list can have meaning. It is

nonetheless useful t~ list the more common linear list operations.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

