
f
BINARY SEARCH TREES OF BOUNDED BALANCE

J. Nievergelt and E. M. Reingold
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

Abstract

A new class of binary search trees, called
trees of bounded balance~ is introduced. These
trees are easy to maintain in their form despite
insertions and deletions of nodes, and the search
time is only moderately longer than in completely
balanced trees. Trees of bounded balance differ
from other classes of binary search trees in that
they contain a parameter which can be varied so
the compromise between short search time and
infrequent restructuring can be chosen
arbitrarily.

Introduction

Binary search trees are an important
technique for organizing large files, because
they are efficient for both random and sequential
access of records in a file. Two main problems
have received attention in the recent literature,
each concerned with the search time in such tree&

The first has to do with trees on a fixed
set of names (or keys) and associated probabil-
ities. Knuth [KnTO] and Hu and Tucker [NUT1]
have given algorithms for constructing optimal
trees. Bruno and Coffman [Br71], and Walker
and Gotlieb [WaT1] have given fast algorithms
for constructing near-optimal trees. Nievergelt
and Wong [NIT1] have shown that asymptotically,
both optimal and balanced trees have the same
average search time. With these investigations,
the problem of trees on a fixed set of names
appears to be settled, at least temporarily.

The second problem, which we consider to be
of greater practical importance because of its
more realistic assumptions, has to do with trees
over a set of names which is dynamic, one which
changes in time through insertions and deletions.
Hibbard [Hi62] determined how the average search
time behaves if trees are left to grow at random.
To improve the search time over that of trees
which have grown at random, one looks for trees
which satisfy three conflicting requirements:
they must be close to being balanced, so that the
search time is short; one must be able to
restructure them easily when they have become
too unbalanced; and this restructuring should be
required only rarely. Adel'son-Vel'skii and
Landis [Ad62] (see also [Fo65]) described a class
of trees, now known as AVL trees, which strike an
elegant compromise between these conflicting
requirements.

%This work was supported in part by the National
Science Foundation (Grant GJ-31222).

On leave at Computer -Wissenschaften, Federal
Institute of Technology, 8006 Zurich,
Switzerland.

This paper is intended as a contribution to
the second topic. A new class of binary search
trees, called trees of bounded balance~ or BB
trees for short, is described. BB trees share
with the AVL trees of lad62] the property that
they are easy to maintain in their form despite
insertions and deletions of nodes, and that search
time is only moderately longer than in balanced
trees. They differ from AVL trees in two
important respects:

• they contain a parameter which can
be varied so the compromise between
short search time and frequency of
restructuring can be chosen arbitrarily

• the insertion and deletion algorithms
do not require a pushdown store.

Trees of bounded balance

Definition The empty tree, TO, of zero nodes
is a binary tree. A binary tree T n of n ~ i nodes
is an ordered triple (T~, v, Tr) , where TEl T r are
binary trees of ~, r nodes respectively, ~ a O,
r ~ O, ~+r=n-1, and v is a single node called the
root of T n.

Definition The height of a binary tree T u is
zero if n = O and one if n = l, otherwise it is
given by max(height of Tr, height of T~) + 1.

Definition The internal path length ITnl of
a binary tree T~ islzero if n ~ l, otherwise it
is given by ITnl = TEl + ITrl + n - i.

Definition The root-balance P(Tn) of a
binary tree T n = (T~, v, Tr) of n ~ 1 nodes is

~+i
P(Tn) = n+l "

Definition A binary tree T n is said to be
of boun~b~nce 5, or in BB[G], for 0 ~ G ~ 1/2~
if and only if either n : 1 or, for n>l and
T n = (T~, v, Tr) , the following hold:

i. G ~ O(Tn) ~ i - G , and

2. both T~ and T r are of bounded balance ~.

The notion of root-balance is taken, with
slight modification, from Nievergelt and Wong
[NIT0]. It is always in the range O< P(Tn)<l,
and it indicates the relative number of nodes in
the left and right subtrees of T n. Thus the
completely balanced trees T n of n =2k-1 nodes are
in BB[1/2], while the Fibonacci trees defined by

F 0 = F I = • , Fi+ 2 = Fi~i+l

are in BB[1/3].

-137-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800152.804906&domain=pdf&date_stamp=1972-05-01

It is interesting to note that there is a
"gap" in the balances of trees:

Theorem i For all c~ in the range 1/3 <c~<~2,
BB[~] = BB[1/2].

Proof Clearly BB[c~] o BB[i/2]. Suppose
there ~ ~ tree in BB[c~] - BB[i/2]. This tree is
not completely balanced so it clearly cannot have
height one. The only trees of height two are

~, /and A

which have root-balances 1/3 , 2/3 , and i/2,
respectively. The proof continues by induction.
Suppose that the shortest tree T in BB[~] - BB[I/2]
has height k > 2. Then, by definition, its left
and right subtrees must be in BB[~] and by
induction they cannot be in BB[~] - BB[i/2], hence
they must be in BB[i/2]. Let them have 2s-i and
2t-i nodes, respectively. The root-balance of T
is then given by

2S_l+l 2 s

p(T) 2S_l+2t i+i+ I 2s+2 t

Now, since T is not in BB ~/2], s % t and without
loss of generality we can assume that s < t (since
we can consider the mirror image of the tree).
Thus

p(T) : _i_. ~_L
i+2 t-s - 3

so that ~ Z 1/3 , which is a contradiction, m

Search time in BB trees

The height of T n is the worst case time to
search T n. Since the internal path length T n can
be expressed as the sum, over all nodes, of the
length of the (unique) path from the root of T n to
each node, it is clear that ~ITnl is the average
time to search Tn.

The following theorem is due to Nievergelt
and Wong [Ni70]:

Theorem 2 If T n is in BB[~] then

ITn I ~ H~ (n+l)~(n+l)- 2n

where

H(~) =-~ - (1-~)%(1-~). t

It is not difficult to show

Theorem 3 If T n is in BB[~] then the height

of T n is at most
~(n+l)

Proof: By induction on n. |

tThroughout this paper, all logarithms are taken
base 2.

The bounds in both of these theorems are sharp
since they are exact for ~ = 1~2, i.e. the
completely balanced trees of 2 ~ -1 nodes.

From these theorems we can easily deduce the
average and worst ease search times for trees in
BB[~], for any~. For example, trees in BB[1/3]
look "sparse," but their internal path length is
at most 9% longer than it is for completely
balanced trees with the same number of nodes; this
follows immediately from Theorem 2 since
i/H(i/3) ~ 1.09. Hence, searching a tree in
BB[i/3] will take, on the average, at most 9%
longer than searching a completely balanced tree
with the same number of nodes. Similarly, it
follows from Theorem 3 that searching a tree in
BB[i/3] will take, in the worst case, at most 70~
longer.

Rebalancing BB Trees

If upon the addition or deletion of a node to
a tree in BB[~] the tree becomes unbalanced
relative to ~, that is, some subtree of Tn has root
balance outside the range [~, 1-~], then that
subtree can be rebalanced by certain tree
transformations which are of two types~gnoring
symmetrical variants):

~ 2 Rotation ~~)B 2

. Split tation

~i+(i-~i)~ ~ 2~3

In the above diagram we have used squares to
represent nodes and triangles to represent
subtrees; the root-balance is given beside each
node.

J2
Theorem 4 If ~ ~ 1 and the insertion

or deletion of a node in a tree in BB[~] causes a
subtree of that tree to have root-balance less
than ~, and if 02 is the balance of the right
subtree of the unbalanced subtree after the
insertion or deletion of the node, then the unbal-
anced subtree can be rebalanced by performing a

i-2~
rotation if ~ ~ 02 <-~ and performing a split-

rotation if 02 is outside of this range.

Proof Under the various hypotheses, it is
not difficult to show that after the transformation

-138-

has been applied, the new balances are all in the
range [a, i-~]. •

If the balance of a subtree goes above l-a,
then we use the mirror images of these transfor-
mations, and a corresponding theorem. Introducing
additional transformations, say split-split-
rotations, will probably increase^the allowable

range of a. However, since i - -~-~ .2928 and

BB[a] - BB[i/2] is empty for 1/2 > a > 1/3,

a = i - ~ is a reasonable choice. By Theorems 2

and 3 we know that the average search time will be

no worse than 15~ longer for a BB[i -~] tree than

for a completely balanced tree with the same
number of nodes, while the worst case search time
will be at most twice as long. Considering the
ease with which nodes can be added and deleted
from BB trees, this moderate increase in search
time is justifiable.

Insertion and deletion in BB trees

form
Assume that each node N of the tree has the

[LLINK I DATA I SIZE] RLINK 1

and that the DATA field of every node in the left
subtree of N is lexicographically before DATA(N),
while the DATA field of every node in the right
subtree is lexicographically after DATA(N); thus
the tree is a search tree relative to the
lexicographic ordering. SIZE(N) is the number
of nodes in the subtree whose root is the node N.

The following algorithm, given in detail in
the Appendix, inserts the name NEW to the tree,
preserving both the balance and the ordering:
Follow links down through the tree going left if
NEW is less than the node and right otherwise.
If NEW is found to be equal to a name in the tree,
then carry out the procedure described in the next
paragraph. At each stage of the search, check to
see whether the addition of a node to the subtree
will unbalance the tree; if nots add one to the
size field and continue down the tree. If the
subtree does become unbalanced, then perform the
appropriate transformation before continuing down
the tree.

Notice that we may be modifying the tree for
nothing in the event that we discover that NEW is
already in the tree after modifications have been
made. In that case we retrace the path down the
tree correcting the SIZE fields, but not
restructuring the tree: the restructuring which "
has been done, albeit unnecessarily has improved
the balance of the tree.

Deletion of a node is similar: Follow links
down through the tree as before, subtracting one
from each SIZE field. If a subtree thus becomes
unbalanced, perform the appropriate transformation
and continue down the tree. When we arrive at the
node to be deleted and it is not a leaf or a
semileaf (a node whose only son is a leaf), find
its postorder successor (or predecessor, depending
which most improves the balance) and promote it to

the place of the node to be deleted, taking care
to adjust the appropriate SIZE fields and links.
If the node to be deleted is a semileaf~ promote
its son to take its place. If the node to be
deleted is a leaf, simply delete it. Again, if
transformations have been made and we find that
the node to be deleted is not in the tree, we
correct the size fields in a second top down pass,
but do not restructure the tree.

The time required by the insertion and dele-
tion algorithms is clearly proportional to the
search time; thus Theorems 2 and 3 demonstrate
that insertion and deletion require O(~n) time.
Of obvious interest is the coefficient of the ~n.
This coefficient will be the same for insertion
and deletion as it is for searching, plus whatever
time is required to do the rebalancings. Hence it
is important to know the expected number of trans-
formations which must be performed during insertion
or deletion.

In order to proceed with such an analysis, we
must assume some sort of distribution of root-
balances in trees of n nodes. Given a tree in
BB[a], insertions and deletions have the effect of
shifting the root-balance around in the interval
[a, l-a]. The behavior of the root-balance under
insertions and deletions is quite similar to a
discrete, one dimensional random walk with
reflecting barriers -- when a step would take the
root-balance outside the interval, a transformation
is applied and the root-balance moves closer to
1/2. According to probability theory (see Feller
[Fe68, p. 391]), the distribution of positions for
such a random walk is uniform over the interval
and hence this is the assumption we will make.
This assumption is weak, however, since the
barriers of the random walk corresponding to the
shifting of the root-balance are what might be
called "repulsing;" they don't just reflect the
particle back the same distance that it tried to
go forward, but rather they repulse the particle
(quite strongly) to send it closer to 1/2. It is
thus likely that a more accurate assumption would
be a truncated normal distribution centered at 1/2.

Theorem 4 Under the (weak) assumption that
distribution of root-balances in a BB[a] tree is
uniform over [a, l-a], the expected number of tree
transformations required for insertion or deletion

2
of a node is less than l-2a "

Proof If T n is a tree of n nodes in BB[a]
with ~ and r nodes in its left and right subtrees,
respectively, then ~

a(n+l) - 1 ~ ~, r ~ (l-a)(n+l) - 1 .

For simplicity, we will approximate these .lower
and upper bounds by an and (l-a)n, respectively.
Since the root-balances are uniformly distributed
in [a, 1-5], each of the (l-a)n -an = (l-2a)n
possible values for ~ and r is equally likely to
occur as the number of nodes in the left and right
subtrees, respectively, of T n. Of all the (l-2a)n
possible values, only two are critical for inser-
tion or deletion, the largest and the smallest;
only for these balances can insertion or deletion
cause the tree to go out of BB[a]. Thus the

-139-

probability, p~, of causing the root-balance of
T n to go out o~ the interval [~, l-a] is

t
i

Pn = ~ - ~

and this is also the probability of having to
apply a transformation during insertion or
deletion.

Now the expected number of nodes in the two
subtrees of a tree in BB[~] with m nodes is m/2
since the average root-balance is i/2 by the
uniform distribution assumption. Hence the
expected number of nodes whose root-balances will
go out of [~, l-s] and will thus need rebalancing
is, assuming for simplicity that n is a power of
two,

Pn + Pn + Pn + "'" + Pn

= i~O I i 2 i
= (i-2c~)n/2 i ~ - ~ =0

2n-i 2
< 1_2----~. •

It is remarkable that the expected number of
rebalancings is independent of the size of the
tree. For example, we find that on the average
only 4.85 rebalancings will be necessary tot insert
or delete a node when the tree is in BB[i-~2/2].

Comparison with AVL trees

AVL trees are characterized by the fact that
the difference between the heights of the left
and right subtrees of any node is at most one~
for example, the Fibonacci trees described earlier
are a special case of AVL trees. The same two
transformations serve to restructure an AVL tree
which has been upset by an insertion or deletion,
and, as in Theorem 4, the expected number of
transformations which must be applied to rebalance
an AVL tree during insertion or deletion is a
constant.

AVL trees cannot be described as BB[~] for
any~:

Theorem 5 For all ~ > 0 there is an AVL
tree with root-balance less than c~ and there are
trees in BB[i/3] which are not AVL.

Proof The first part is shown considering
a tree whose left subtree is the Fibonacci tree
of height n and whose right subtree is the
completely balanced tree of height n. As n~
the balance of such a tree, which is AVL, goes to
zero. The second part of the theorem is shown
by considering trees such as

tThis tacitly assumes that the node is inserted
(deleted) in the heavier subtree (from the
lighter subtree) with probability 1/2.

which is in BB[i/3] but which is not AVL. •

The search time for AVL trees is somewhat
better than for BB trees. The worst case search
time for AVL trees is about 1.44~n comparisons.
The average search time can be as bad as l. O5~n
comparisons; this is the average search time for
Fibonacci trees, the exact bound is unknown. In
contrast, the search times for a tree in BB[~] are
given by~heorems 2 and 3- For example, when

= i - • , we found the worst case search time

is about 2~n and the average search time is less
than 1.15~n.

Insertion and deletion of nodes in AVL trees
require a top-down pass over the path from the
root to the node to be inserted or deleted,
followed by a bottom-up pass over that same path.
Typically, this is accomplished by the use of a
pushdown stack, yielding algorithms which require
0(~n) time. The use of a stack can be eliminated,
but the resulting algorithms are O((~n)2). In
most cases, insertion and deletion of nodes in BB
trees is accomplished by a single top-down pass
over the path. In the event of a redundant
insertion or deletion, a second top-downpass is
necessary. Unlike a bottom-up pass, an additional
top-down pass does not require the use of a
pushdown stack.

The table at the top of the following page
summarizes the comparison of random trees (BB[O]),

AVL trees, BB[i -4] trees, and completely

balanced trees (BB[i/2] if we ignore semileaves).

One important advantage BB trees have over
AVL trees is that the trade off between search
time and insertion/deletion time can be specified
by the appropriate choice of ~, the bound on the
balance. Thus when insertions and deletions are

rare, ~ could be chosen close to i -~ while if

insertions and deletions are very frequent,
could be chosen closer to zero.

Appendix: The insertion algorithm

The algorithm presented in this appendix is
given in sufficient detail to make its implemen-
tation fairly easy; we have implemented and tested
it in SNOBOL. The purpose of giving a detailed
version of it here is to display its relative
simplicity.

Assume that each node of the tree has the
form

with the four fields as previously described. To
simplify notation, if T is a pointer to a tree

-140-

Worst possible Expected average Restructuring
search time search time algorithms

%
Random trees 1.39~n Very easy, but in the
of n nodes worst case the time can
(BB[O]) be as bad as O(n) .

AVL trees 1.44~n O(~n) with a pushdown
of n nodes stack; O((~n) 2) without

the stack.

BB~i-~ 2] trees 2~n ?<l. l15~n ~ O(~n) without a
of n nodesa pushdown stack.

Completely
balanced trees
of n nodes
(~ [1/2],
ignoring
semileaves)

~n ~n Difficult, and it can
take as long as O(n).

whose root is such a node then

0 if T is empty

IITIf : | S ~ (T)
o t h e r w i s e

The name NEW is to be added to the BB[~] tree
pointed to by the header node

Ts

0

~tree

R is a pointer which will be used in the search
through the tree to find out where N should be
added. RP is always one step behind R in the
tree; that is, RP will point to the father of
the node pointed to by R. S is a variable whose
value is either "L" or "R" and S. LINK is either
LLINKor RLINK according to the value of S. For
example

S = "L"

S'LINK(P)~P

h a s t h e same e f f e c t a s

LLINK(P)~P .

The v a l u e o f S t o g e t h e r w i t h t h e v a l u e o f RP t e l l
u s which p o i n t e r h a s t o be m o d i f i e d when we
r e b a l a n c e a s u b t r e e .

S t e p 1 (I n i t i a l i z e) S e t Ri~-T and S~"L".
Now t h e p o i n t e r which i s one s t e p b e h i n d p o i n t s
t o t h e h e a d e r node o f t h e t r e e .

%
T h i s i s due t o H i b b a r d [Hi62].

E x p e r i m e n t a l e v i d e n c e s u g g e s t s t h a t t h i s i s l e s s
than 1.05~n.

Step 2 Small tree?) Set R = S. LINK(RP);
this moves us down one level in the tree. If

1
~-~ ~ ~ then insert NEW in the subtree pointed

to by R using the obvious methods i.e. without any
rebalancing; we can do this if the tree is small
enough. If in doing this insertion we discover
that NEW is already in the tree~ then go to Step 9.

Step ~ (Compare) Compare NEW to DATA(R).
If NEW = DATA(R) then the name is already in the
tree, so we go to Step 9. If NEW< DATA(R), go to
Step 7.

Step 4 (Rotation no help?) If IIRII = 2,
RLINK~7-~ not null, and DATA(RLINK(R)) > NEW.
Then set S.LINK(PR) to point to the structure

/ \

and stop. When c~ < i/4 this keeps the insertion
algorithm from going into an infinite loop on a
subtree of two nodes when the name to be inserted
lies between them, e.g.

.iT ,~.

when we try to insert "B".

Step 5 (Add to right subtree) Compute what
the new balance of R will be after insertion:

ffZE,FT(R) +l
v : !rR]l+2

- 1 4 1 -

If ~ ~ v ~ i - ~ then no rebalancing is needed at
this level, so set

SIZE(R) * SIZE(R) + 1

S ~ "R"

PR ~ R

R ~ RLIm~(R)

and go to Step 2.

Step 6 (Rebalance from right to left)
Rebalance, using the transformations given in the
figure, before adding the name. If llRll = 2 then
use rotation. Otherwise, compute the value 82
will have after the insertion of NEW. If

i-2~
Z ~2 <-7 then use rotation, otherwise use

split-rotation. Set S.LINK(PR) to point to the
rebalanced subtree and go to Step 2.

Step 7 (Add to left subtree) Compute what
the new balance of R will be after insertion:

= h E F T (R) " + 2
,R,+2

If ~ ~ V ~ i - ~ then no rebalancing is needed
at this level, so set

SIZE(R) ~ SIZE(R) + i

S ~ "L"

P R ~ R

R ~ LLINK(R)

and go to Step 2.

Step 8 (Rebalance from left to right)
Rebalance, using the mirror images of the trans-
formations in the figure, before adding the name.
If 11RII = 2 then use rotatioN. Otherwise oompute

the value ~2 will have after the insertion of NEW.
_ < i-2~

If ~ ~ 1 - ~2 -~_~ then use rotation, otherwise

use split-rotation. Set S.LINK(PR) to point to
the rebalanced subtree and go to Step 2.

Step 9 (Duplicate name) We have found that
NEW is already in the tree, so a second top-down
pass is needed to correct the size fields. Set
R ~ LLINK(T) so it points to the top of the tree.

Step i0 (Correct size field) Compare NEW
to DATA~. If NEW = DATA(R) we are done. Other-
wise set SIZE(R) ~ SIZE(R) - 1. Then, if
NEW> DATA(R) set R ~ RIGHT(R), otherwise set
R ~ LEFT(R). Repeat Step i0.

lAd62]

[mrTm]

[Fe68]

[Fo65]

[Hi62]

[Hu71]

[KnTO]

[Ni70]

[Ni71]

[Wa71]

R e f e r e n c e s

Adel'son-Vel'skii, G. M. and Landis, Ye. M.
An algorithm for the organization of
information, Dokl. Akad. Nauk SSSR 146
(1962), 263-296 (Russian). English trans-
lation in Soviet Math. Dokl. 3 (1962),
1259-1262.

Bruno, J. and Coffman, E. G. Nearly
optimal binary search trees, Proc. IFIP
Congress 71 (1971).

Feller, W. An Introduction to Probability
Theory and Its Applications Volume ~ 3rd
edition, Wiley, New York, 1968.

Foster, C. C. Information storage and
retrieval using AVL trees, Proc. of ACM
20th National Conf. (1965), 192-205.

Hibbard, T. Some combinatorial properties
of certain trees, J. ACM 9 (1962), 13-28.

Hu, T. C. and Tucker, A. C. Optimal
computer search trees and variable-length
alphabetical codes, SIAM J. Appl. Math. 21
(1971), 514-532.

Knuth, D. E. 0ptimumbinary search trees,
Acta Informatica i (1971), 14-25.

Nievergelt, J. and Wong, C. K. Upper
bounds for the total path length of binary
trees, IBM T. J. Watson Research Center
Report Number RC3075 (1970).

, and . On binary search
trees, Proc. IFIP Congress 71 (1971).

Walker, W. A. and Gotlieb, C. C. A top
down algorithm for constructing nearly-
optimal lexicographic trees, University
of Toronto, Department of Computer Science
Technical Report Number 26 (1971).

-14Z -

