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Abstract 

A new class of binary search trees, called 
trees of bounded balance~ is introduced. These 
trees are easy to maintain in their form despite 
insertions and deletions of nodes, and the search 
time is only moderately longer than in completely 
balanced trees. Trees of bounded balance differ 
from other classes of binary search trees in that 
they contain a parameter which can be varied so 
the compromise between short search time and 
infrequent restructuring can be chosen 
arbitrarily. 

Introduction 

Binary search trees are an important 
technique for organizing large files, because 
they are efficient for both random and sequential 
access of records in a file. Two main problems 
have received attention in the recent literature, 
each concerned with the search time in such tree& 

The first has to do with trees on a fixed 
set of names (or keys) and associated probabil- 
ities. Knuth [KnTO] and Hu and Tucker [NUT1] 
have given algorithms for constructing optimal 
trees. Bruno and Coffman [Br71], and Walker 
and Gotlieb [WaT1] have given fast algorithms 
for constructing near-optimal trees. Nievergelt 
and Wong [NIT1] have shown that asymptotically, 
both optimal and balanced trees have the same 
average search time. With these investigations, 
the problem of trees on a fixed set of names 
appears to be settled, at least temporarily. 

The second problem, which we consider to be 
of greater practical importance because of its 
more realistic assumptions, has to do with trees 
over a set of names which is dynamic, one which 
changes in time through insertions and deletions. 
Hibbard [Hi62] determined how the average search 
time behaves if trees are left to grow at random. 
To improve the search time over that of trees 
which have grown at random, one looks for trees 
which satisfy three conflicting requirements: 
they must be close to being balanced, so that the 
search time is short; one must be able to 
restructure them easily when they have become 
too unbalanced; and this restructuring should be 
required only rarely. Adel'son-Vel'skii and 
Landis [Ad62] (see also [Fo65]) described a class 
of trees, now known as AVL trees, which strike an 
elegant compromise between these conflicting 
requirements. 
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This paper is intended as a contribution to 
the second topic. A new class of binary search 
trees, called trees of bounded balance~ or BB 
trees for short, is described. BB trees share 
with the AVL trees of lad62] the property that 
they are easy to maintain in their form despite 
insertions and deletions of nodes, and that search 
time is only moderately longer than in balanced 
trees. They differ from AVL trees in two 
important respects: 

• they contain a parameter which can 
be varied so the compromise between 
short search time and frequency of 
restructuring can be chosen arbitrarily 

• the insertion and deletion algorithms 
do not require a pushdown store. 

Trees of bounded balance 

Definition The empty tree, TO, of zero nodes 
is a binary tree. A binary tree T n of n ~ i nodes 
is an ordered triple (T~, v, Tr) , where TEl T r are 
binary trees of ~, r nodes respectively, ~ a O, 
r ~ O, ~+r=n-1, and v is a single node called the 
root of T n. 

Definition The height of a binary tree T u is 
zero if n = O and one if n = l, otherwise it is 
given by max(height of Tr, height of T~) + 1. 

Definition The internal path length ITnl of 
a binary tree T~ islzero if n ~ l, otherwise it 
is given by ITnl = TEl + ITrl + n - i. 

Definition The root-balance P(Tn) of a 
binary tree T n = (T~, v, Tr) of n ~ 1 nodes is 

~+i 
P(Tn) = n+l " 

Definition A binary tree T n is said to be 
of boun~b~nce 5, or in BB[G], for 0 ~ G ~ 1/2~ 
if and only if either n : 1 or, for n>l and 
T n = (T~, v, Tr) , the following hold: 

i. G ~ O(Tn) ~ i - G , and 

2. both T~ and T r are of bounded balance ~. 

The notion of root-balance is taken, with 
slight modification, from Nievergelt and Wong 
[NIT0]. It is always in the range O< P(Tn)<l, 
and it indicates the relative number of nodes in 
the left and right subtrees of T n. Thus the 
completely balanced trees T n of n =2k-1 nodes are 
in BB[1/2], while the Fibonacci trees defined by 

F 0 = F I = • , Fi+ 2 = Fi~i+l 

are in BB[1/3]. 
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It is interesting to note that there is a 
"gap" in the balances of trees: 

Theorem i For all c~ in the range 1/3 <c~<~2, 
BB[~] = BB[1/2]. 

Proof Clearly BB[c~] o BB[i/2]. Suppose 
there ~ ~ tree in BB[c~] - BB[i/2]. This tree is 
not completely balanced so it clearly cannot have 
height one. The only trees of height two are 

~, /and A 

which have root-balances 1/3 , 2/3 , and i/2, 
respectively. The proof continues by induction. 
Suppose that the shortest tree T in BB[~] - BB[I/2] 
has height k > 2. Then, by definition, its left 
and right subtrees must be in BB[~] and by 
induction they cannot be in BB[~] - BB[i/2], hence 
they must be in BB[i/2]. Let them have 2s-i and 
2t-i nodes, respectively. The root-balance of T 
is then given by 

2S_l+l 2 s 

p(T) 2S_l+2t i+i+ I 2s+2 t 

Now, since T is not in BB ~/2], s % t and without 
loss of generality we can assume that s < t (since 
we can consider the mirror image of the tree). 
Thus 

p(T) : _i_. ~_L 
i+2 t-s - 3 

so that ~ Z 1/3 , which is a contradiction, m 

Search time in BB trees 

The height of T n is the worst case time to 
search T n. Since the internal path length T n can 
be expressed as the sum, over all nodes, of the 
length of the (unique) path from the root of T n to 
each node, it is clear that ~ITnl is the average 
time to search Tn. 

The following theorem is due to Nievergelt 
and Wong [Ni70]: 

Theorem 2 If T n is in BB[~] then 

ITn I ~ H~ (n+l)~(n+l)- 2n 

where 

H(~) =-~ - (1-~)%(1-~). t 

It is not difficult to show 

Theorem 3 If T n is in BB[~] then the height 

of T n is at most 
~(n+l) 

Proof: By induction on n. | 

tThroughout this paper, all logarithms are taken 
base 2. 

The bounds in both of these theorems are sharp 
since they are exact for ~ = 1~2, i.e. the 
completely balanced trees of 2 ~ -1 nodes. 

From these theorems we can easily deduce the 
average and worst ease search times for trees in 
BB[~], for any~. For example, trees in BB[1/3] 
look "sparse," but their internal path length is 
at most 9% longer than it is for completely 
balanced trees with the same number of nodes; this 
follows immediately from Theorem 2 since 
i/H(i/3 ) ~ 1.09. Hence, searching a tree in 
BB[i/3 ] will take, on the average, at most 9% 
longer than searching a completely balanced tree 
with the same number of nodes. Similarly, it 
follows from Theorem 3 that searching a tree in 
BB[i/3] will take, in the worst case, at most 70~ 
longer. 

Rebalancing BB Trees 

If upon the addition or deletion of a node to 
a tree in BB[~] the tree becomes unbalanced 
relative to ~, that is, some subtree of Tn has root 
balance outside the range [~, 1-~], then that 
subtree can be rebalanced by certain tree 
transformations which are of two types~gnoring 
symmetrical variants): 

~ 2  Rotation ~~)B 2 

. Split tation 

~i+(i-~i)~ ~ 2~3 

In the above diagram we have used squares to 
represent nodes and triangles to represent 
subtrees; the root-balance is given beside each 
node. 

J2 
Theorem 4 If ~ ~ 1 and the insertion 

or deletion of a node in a tree in BB[~] causes a 
subtree of that tree to have root-balance less 
than ~, and if 02 is the balance of the right 
subtree of the unbalanced subtree after the 
insertion or deletion of the node, then the unbal- 
anced subtree can be rebalanced by performing a 

i-2~ 
rotation if ~ ~ 02 <-~ and performing a split- 

rotation if 02 is outside of this range. 

Proof Under the various hypotheses, it is 
not difficult to show that after the transformation 
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has been applied, the new balances are all in the 
range [a, i-~]. • 

If the balance of a subtree goes above l-a, 
then we use the mirror images of these transfor- 
mations, and a corresponding theorem. Introducing 
additional transformations, say split-split- 
rotations, will probably increase^the allowable 

range of a. However, since i - -~-~ .2928 and 

BB[a] - BB[i/2] is empty for 1/2 > a > 1/3, 

a = i - ~ is a reasonable choice. By Theorems 2 

and 3 we know that the average search time will be 

no worse than 15~ longer for a BB[i -~] tree than 

for a completely balanced tree with the same 
number of nodes, while the worst case search time 
will be at most twice as long. Considering the 
ease with which nodes can be added and deleted 
from BB trees, this moderate increase in search 
time is justifiable. 

Insertion and deletion in BB trees 

form 
Assume that each node N of the tree has the 

[ LLINK I DATA I SIZE ] RLINK 1 

and that the DATA field of every node in the left 
subtree of N is lexicographically before DATA(N), 
while the DATA field of every node in the right 
subtree is lexicographically after DATA(N); thus 
the tree is a search tree relative to the 
lexicographic ordering. SIZE(N) is the number 
of nodes in the subtree whose root is the node N. 

The following algorithm, given in detail in 
the Appendix, inserts the name NEW to the tree, 
preserving both the balance and the ordering: 
Follow links down through the tree going left if 
NEW is less than the node and right otherwise. 
If NEW is found to be equal to a name in the tree, 
then carry out the procedure described in the next 
paragraph. At each stage of the search, check to 
see whether the addition of a node to the subtree 
will unbalance the tree; if nots add one to the 
size field and continue down the tree. If the 
subtree does become unbalanced, then perform the 
appropriate transformation before continuing down 
the tree. 

Notice that we may be modifying the tree for 
nothing in the event that we discover that NEW is 
already in the tree after modifications have been 
made. In that case we retrace the path down the 
tree correcting the SIZE fields, but not 
restructuring the tree: the restructuring which " 
has been done, albeit unnecessarily has improved 
the balance of the tree. 

Deletion of a node is similar: Follow links 
down through the tree as before, subtracting one 
from each SIZE field. If a subtree thus becomes 
unbalanced, perform the appropriate transformation 
and continue down the tree. When we arrive at the 
node to be deleted and it is not a leaf or a 
semileaf (a node whose only son is a leaf), find 
its postorder successor (or predecessor, depending 
which most improves the balance) and promote it to 

the place of the node to be deleted, taking care 
to adjust the appropriate SIZE fields and links. 
If the node to be deleted is a semileaf~ promote 
its son to take its place. If the node to be 
deleted is a leaf, simply delete it. Again, if 
transformations have been made and we find that 
the node to be deleted is not in the tree, we 
correct the size fields in a second top down pass, 
but do not restructure the tree. 

The time required by the insertion and dele- 
tion algorithms is clearly proportional to the 
search time; thus Theorems 2 and 3 demonstrate 
that insertion and deletion require O(~n) time. 
Of obvious interest is the coefficient of the ~n. 
This coefficient will be the same for insertion 
and deletion as it is for searching, plus whatever 
time is required to do the rebalancings. Hence it 
is important to know the expected number of trans- 
formations which must be performed during insertion 
or deletion. 

In order to proceed with such an analysis, we 
must assume some sort of distribution of root- 
balances in trees of n nodes. Given a tree in 
BB[a], insertions and deletions have the effect of 
shifting the root-balance around in the interval 
[a, l-a]. The behavior of the root-balance under 
insertions and deletions is quite similar to a 
discrete, one dimensional random walk with 
reflecting barriers -- when a step would take the 
root-balance outside the interval, a transformation 
is applied and the root-balance moves closer to 
1/2. According to probability theory (see Feller 
[Fe68, p. 391]), the distribution of positions for 
such a random walk is uniform over the interval 
and hence this is the assumption we will make. 
This assumption is weak, however, since the 
barriers of the random walk corresponding to the 
shifting of the root-balance are what might be 
called "repulsing;" they don't just reflect the 
particle back the same distance that it tried to 
go forward, but rather they repulse the particle 
(quite strongly) to send it closer to 1/2. It is 
thus likely that a more accurate assumption would 
be a truncated normal distribution centered at 1/2. 

Theorem 4 Under the (weak) assumption that 
distribution of root-balances in a BB[a] tree is 
uniform over [a, l-a], the expected number of tree 
transformations required for insertion or deletion 

2 
of a node is less than l-2a " 

Proof If T n is a tree of n nodes in BB[a] 
with ~ and r nodes in its left and right subtrees, 
respectively, then ~ 

a(n+l) - 1 ~ ~, r ~ (l-a)(n+l) - 1 . 

For simplicity, we will approximate these .lower 
and upper bounds by an and (l-a)n, respectively. 
Since the root-balances are uniformly distributed 
in [a, 1-5], each of the (l-a)n -an = (l-2a)n 
possible values for ~ and r is equally likely to 
occur as the number of nodes in the left and right 
subtrees, respectively, of T n. Of all the (l-2a)n 
possible values, only two are critical for inser- 
tion or deletion, the largest and the smallest; 
only for these balances can insertion or deletion 
cause the tree to go out of BB[a]. Thus the 
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probability, p~, of causing the root-balance of 
T n to go out o~ the interval [~, l-a] is 

t 
i 

Pn = ~ - ~  

and this is also the probability of having to 
apply a transformation during insertion or 
deletion. 

Now the expected number of nodes in the two 
subtrees of a tree in BB[~] with m nodes is m/2 
since the average root-balance is i/2 by the 
uniform distribution assumption. Hence the 
expected number of nodes whose root-balances will 
go out of [~, l-s] and will thus need rebalancing 
is, assuming for simplicity that n is a power of 
two, 

Pn + Pn + Pn + "'" + Pn 

= i~O I i 2 i 
= (i-2c~)n/2 i ~ - ~  =0 

2n-i 2 
< 1_2----~. • 

It is remarkable that the expected number of 
rebalancings is independent of the size of the 
tree. For example, we find that on the average 
only 4.85 rebalancings will be necessary tot insert 
or delete a node when the tree is in BB[i-~2/2]. 

Comparison with AVL trees 

AVL trees are characterized by the fact that 
the difference between the heights of the left 
and right subtrees of any node is at most one~ 
for example, the Fibonacci trees described earlier 
are a special case of AVL trees. The same two 
transformations serve to restructure an AVL tree 
which has been upset by an insertion or deletion, 
and, as in Theorem 4, the expected number of 
transformations which must be applied to rebalance 
an AVL tree during insertion or deletion is a 
constant. 

AVL trees cannot be described as BB[~] for 
any~: 

Theorem 5 For all ~ > 0 there is an AVL 
tree with root-balance less than c~ and there are 
trees in BB[i/3] which are not AVL. 

Proof The first part is shown considering 
a tree whose left subtree is the Fibonacci tree 
of height n and whose right subtree is the 
completely balanced tree of height n. As n~ 
the balance of such a tree, which is AVL, goes to 
zero. The second part of the theorem is shown 
by considering trees such as 

tThis tacitly assumes that the node is inserted 
(deleted) in the heavier subtree (from the 
lighter subtree) with probability 1/2. 

which is in BB[i/3] but which is not AVL. • 

The search time for AVL trees is somewhat 
better than for BB trees. The worst case search 
time for AVL trees is about 1.44~n comparisons. 
The average search time can be as bad as l. O5~n 
comparisons; this is the average search time for 
Fibonacci trees, the exact bound is unknown. In 
contrast, the search times for a tree in BB[~] are 
given by~heorems 2 and 3- For example, when 

= i - • , we found the worst case search time 

is about 2~n and the average search time is less 
than 1.15~n. 

Insertion and deletion of nodes in AVL trees 
require a top-down pass over the path from the 
root to the node to be inserted or deleted, 
followed by a bottom-up pass over that same path. 
Typically, this is accomplished by the use of a 
pushdown stack, yielding algorithms which require 
0(~n) time. The use of a stack can be eliminated, 
but the resulting algorithms are O((~n)2). In 
most cases, insertion and deletion of nodes in BB 
trees is accomplished by a single top-down pass 
over the path. In the event of a redundant 
insertion or deletion, a second top-downpass is 
necessary. Unlike a bottom-up pass, an additional 
top-down pass does not require the use of a 
pushdown stack. 

The table at the top of the following page 
summarizes the comparison of random trees (BB[O]), 

AVL trees, BB[i -4] trees, and completely 

balanced trees (BB[i/2] if we ignore semileaves). 

One important advantage BB trees have over 
AVL trees is that the trade off between search 
time and insertion/deletion time can be specified 
by the appropriate choice of ~, the bound on the 
balance. Thus when insertions and deletions are 

rare, ~ could be chosen close to i -~ while if 

insertions and deletions are very frequent, 
could be chosen closer to zero. 

Appendix: The insertion algorithm 

The algorithm presented in this appendix is 
given in sufficient detail to make its implemen- 
tation fairly easy; we have implemented and tested 
it in SNOBOL. The purpose of giving a detailed 
version of it here is to display its relative 
simplicity. 

Assume that each node of the tree has the 
form 

with the four fields as previously described. To 
simplify notation, if T is a pointer to a tree 
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Worst possible Expected average Restructuring 
search time search time algorithms 

% 
Random trees 1.39~n Very easy, but in the 
of n nodes worst case the time can 
(BB[O]) be as  bad as  O(n) .  

AVL trees 1.44~n O(~n) with a pushdown 
of n nodes stack; O((~n) 2) without 

the stack. 

BB~i-~ 2 ] trees 2~n ?<l. l15~n ~ O(~n) without a 
of n nodesa pushdown stack. 

Completely 
balanced trees 
of n nodes 
(~ [1/2 ], 
ignoring 
semileaves) 

~n ~n Difficult, and it can 
take as long as O(n). 

whose root is such a node then 

0 if T is empty 

IITIf : | S ~ ( T )  
o t h e r w i s e  

The name NEW is to be added to the BB[~] tree 
pointed to by the header node 

Ts 

0 

~tree 

R is a pointer which will be used in the search 
through the tree to find out where N should be 
added. RP is always one step behind R in the 
tree; that is, RP will point to the father of 
the node pointed to by R. S is a variable whose 
value is either "L" or "R" and S. LINK is either 
LLINKor RLINK according to the value of S. For 
example 

S = "L" 

S'LINK(P)~P 

h a s  t h e  same e f f e c t  a s  

LLINK(P)~P . 

The v a l u e  o f  S t o g e t h e r  w i t h  t h e  v a l u e  o f  RP t e l l  
u s  which  p o i n t e r  h a s  t o  be  m o d i f i e d  when we 
r e b a l a n c e  a s u b t r e e .  

S t e p  1 ( I n i t i a l i z e )  S e t  Ri~-T and S~"L". 
Now t h e  p o i n t e r  which  i s  one s t e p  b e h i n d  p o i n t s  
t o  t h e  h e a d e r  node o f  t h e  t r e e .  

% 
T h i s  i s  due t o  H i b b a r d  [Hi62].  

E x p e r i m e n t a l  e v i d e n c e  s u g g e s t s  t h a t  t h i s  i s  l e s s  
than 1.05~n. 

Step 2 Small tree?) Set R = S. LINK(RP); 
this moves us down one level in the tree. If 

1 
~-~ ~ ~ then insert NEW in the subtree pointed 

to by R using the obvious methods i.e. without any 
rebalancing; we can do this if the tree is small 
enough. If in doing this insertion we discover 
that NEW is already in the tree~ then go to Step 9. 

Step ~ (Compare) Compare NEW to DATA(R). 
If NEW = DATA(R) then the name is already in the 
tree, so we go to Step 9. If NEW< DATA(R), go to 
Step 7. 

Step 4 (Rotation no help?) If IIRII = 2, 
RLINK~7-~ not null, and DATA(RLINK(R)) > NEW. 
Then set S.LINK(PR) to point to the structure 

/ \ 

and stop. When c~ < i/4 this keeps the insertion 
algorithm from going into an infinite loop on a 
subtree of two nodes when the name to be inserted 
lies between them, e.g. 

.iT ,~. 

when we try to insert "B". 

Step 5 (Add to right subtree) Compute what 
the new balance of R will be after insertion: 

ffZE,FT(R) +l 
v : !rR]l+2 

- 1 4 1 -  



If ~ ~ v ~ i - ~ then no rebalancing is needed at 
this level, so set 

SIZE(R) * SIZE(R) + 1 

S ~ "R" 

PR ~ R 

R ~ RLIm~(R) 

and go to Step 2. 

Step 6 (Rebalance from right to left) 
Rebalance, using the transformations given in the 
figure, before adding the name. If llRll = 2 then 
use rotation. Otherwise, compute the value 82 
will have after the insertion of NEW. If 

i-2~ 
Z ~2 <-7 then use rotation, otherwise use 

split-rotation. Set S.LINK(PR) to point to the 
rebalanced subtree and go to Step 2. 

Step 7 (Add to left subtree) Compute what 
the new balance of R will be after insertion: 

= h E F T ( R ) " + 2  
,R,+2 

If ~ ~ V ~ i - ~ then no rebalancing is needed 
at this level, so set 

SIZE(R) ~ SIZE(R) + i 

S ~ "L" 

P R ~  R 

R ~ LLINK(R) 

and go to Step 2. 

Step 8 (Rebalance from left to right) 
Rebalance, using the mirror images of the trans- 
formations in the figure, before adding the name. 
If 11RII = 2 then use rotatioN. Otherwise oompute 

the value ~2 will have after the insertion of NEW. 
_ < i-2~ 

If ~ ~ 1 - ~2 -~_~ then use rotation, otherwise 

use split-rotation. Set S.LINK(PR) to point to 
the rebalanced subtree and go to Step 2. 

Step 9 (Duplicate name) We have found that 
NEW is already in the tree, so a second top-down 
pass is needed to correct the size fields. Set 
R ~ LLINK(T) so it points to the top of the tree. 

Step i0 (Correct size field) Compare NEW 
to DATA~. If NEW = DATA(R) we are done. Other- 
wise set SIZE(R) ~ SIZE(R) - 1. Then, if 
NEW> DATA(R) set R ~ RIGHT(R), otherwise set 
R ~ LEFT(R). Repeat Step i0. 
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