
6.2.1 SEARCHING AN ORDERED TABLE 409

6.2. SEARCHING BY COMPARISON OF KEYS

IN THIS SECTION we shall discuss search methods that are based on a linear
ordering of the keys, such as alphabetic order or numeric order. After comparing
the given argument K to a key Ki in the table, the search continues in three
different ways, depending on whether K < Ki, K = Ki, or K > Ki. The
sequential search methods of Section 6.1 were essentially limited to a two-way
decision (K = Ki versus K -=f. Ki), but if we free ourselves from the restriction
of sequential access we are able to make effective use of an order relation.

6.2.1. Searching an Ordered Table

What would you do if someone handed you a large telephone directory and
told you to find the name of the person whose number is 795-6841? There is
no better way to tackle this problem than to use the sequential methods of
Section 6.1. (Well, you might try to dial the number and talk to the person who
answers; or you might know how to obtain a special directory that is sorted by
number instead of by name.) The point is that it is much easier to find an entry
by the party's name, instead of by number, although the telephone directory
contains all the information necessary in both cases. When a large file must
be searched, sequential scanning is almost out of the question, but an ordering
relation simplifies the job enormously.

With so many sorting methods at our disposal (Chapter 5), we will have little
difficulty rearranging a file into order so that it may be searched conveniently.
Of course, if we need to search the table only once, a sequential search would
be faster than to do a complete sort of the file; but if we need to make repeated
searches in the same file, we are better off having it in order. Therefore in this
section we shall concentrate on methods that are appropriate for searching a
table whose keys satisfy

Ki< K2 < ... <KN,

assuming that we can easily access the key in any given position. After comparing
K to Ki in such a table, we have either

• K <Ki
or • K =Ki
or • K >Ki

Ri+1 , ... , RN are eliminated from consideration];

[the search is done];

[R1 , R2, ... , Ri are eliminated from consideration].

In each of these three cases, substantial progress has been made, unless i is
near one of the ends of the table; this is why the ordering leads to an efficient
algorithm.

Binary search. Perhaps the first such method that suggests itself is to start by
comparing K to the middle key in the table; the result of this probe tells which
half of the table should be searched next, and the same procedure can be used
again, comparing K to the middle key of the selected half, etc. After at most
about lg N comparisons, we will have found the key or we will have established

410 SEARCHING 6.2.1

Bl. Initialize

____ ..,., B2. Get midpoint

B4. Adjust u B5. Adjust l

B3. Compare < >

SUCCESS

Fig. 3. Binary search.

that it is not present. This procedure is sometimes known as "logarithmic search"
or "bisection," but it is most commonly called binary search.

Although the basic idea of binary search is comparatively straightforward,
the details can be surprisingly tricky, and many good programmers have done it
wrong the first few times they tried. One of the most popular correct forms of
the algorithm makes use of two pointers, l and u, that indicate the current lower
and upper limits for the search, as follows:

Algorithm B (Binary search). Given a table of records RiR2 ... RN whose
keys are in increasing order Ki < K2 < · · · < KN, this algorithm searches for a
given argument K.

Bl. [Initialize.) Set l +-- 1, u +-- N.

B2. [Get midpoint.) (At this point we know that if K is in the table, it satisfies
K1 K Ku. A more precise statement of the situation appears in exer-
cise 1 below.) If u < l, the algorithm terminates unsuccessfully. Otherwise,
set i +-- l(l + u)/2 J, the approximate midpoint of the relevant table area.

B3. [Compare.) If K < Ki, go to B4; if K > Ki, go to B5; and if K =Ki, the
algorithm terminates successfully.

B4. [Adjust u.] Set u +-- i - 1 and return to B2.

B5. [Adjust l.] Set l +-- i + 1 and return to B2. I

Figure 4 illustrates two cases of this binary search algorithm: first to search
for the argument 653, which is present in the table, and then to search for 400,
which is absent. The brackets indicate l and u, and the underlined key repre-
sents Ki. In both examples the search terminates after making four comparisons.

6.2.1 SEARCHING AN ORDERED TABLE

a) Searching for 653:

[061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908]
061 087 154 170 275 426 503 509 [512 612 653 677 703 765 897 908]
061 087 154 170 275 426 503 509 [512 612 653] 677 703 765 897 908
061 087 154 170 275 426 503 509 512 612 [653] 677 703 765 897 908

b) Searching for 400:

[061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908]
[061 087 154 170 275 426 503] 509 512 612 653 677 703 765 897 908
061 087 154 170 [275 426 503] 509 512 612 653 677 703 765 897 908
061 087 154 170 [275] 426 503 509 512 612 653 677 703 765 897 908
061 087 154 170 503 509 512 612 653 677 703 765 897 908

Fig. 4. Examples of binary search.

411

Program B (Binary search). As in the programs of Section 6.1, we assume
here that Ki is a full-word key appearing in location KEY+ i. The following code
uses rll l, rl2 u, rl3 i.
01 START ENT! 1 1 Bl. Initialize. l +--- 1.
02 ENT2 N 1 u t-N.
03 JMP 2F 1 To B2.
04 SH JE SUCCESS Cl Jump if K =Ki.
05 ENT! 1,3 Cl-S B5. Adiust l. l +--- i + 1.
06 2H ENTA 0,1 C+l-S B2. Get mid12oint.
01 INCA 0,2 C+l-S rA +--- l + u.
08 SRB 1 C+l-S rA +--- LrA/2J. (rX changes too.)
09 STA TEMP C+ l-S
10 CMP1 TEMP C+l-S
11 JG FAILURE C+l-S Jump if u < l.
12 LD3 TEMP c i +---midpoint.
13 3H LDA K c B3. Com12are.
14 CMPA KEY,3 c
15 JGE SB c Jump if K 2: Ki.
16 ENT2 -1,3 C2 B4. Adiust u. ut-i-1.
11 JMP 2B C2 To B2. I

This procedure doesn't blend with MIX quite as smoothly as the other
algorithms we have seen, because MIX does not allow much arithmetic in index
registers. The running time is (18C - IOS + 12)u, where C = Cl+ C2 is the
number of comparisons made (the number of times step B3 is performed), and
S = [outcome is successful]. The operation on line 08 of this program is "shift
right binary 1," which is legitimate only on binary versions of MIX; for general
byte size, this instruction should be replaced by "MUL ==1/ /2+1=", increasing the
running time to (26C - 18S + 20) u.

A tree representation. In order to really understand what is happening in
Algorithm B, our best bet is to think of the procedure as a binary decision tree,
as shown in Fig. 5 for the case N = 16.

412 SEARCHING 6.2.1

Fig. 5. A comparison tree that corresponds to binary search when N = 16.

When N is 16, the first comparison made by the algorithm is K: Ks; this is
represented by the root node ® in the figure. Then if K < Ks, the algorithm
follows the left subtree, comparing K to K4; similarly if K > Ks, the right
subtree is used. An unsuccessful search will lead to one of the external square
nodes numbered @] through [El; for example, we reach node [I] if and only if
K5 < K < K1.

The binary tree corresponding to a binary search on N records can be
constructed as follows: If N = 0, the tree is simply @]. Otherwise the root
node is

(IN/21),
the left subtree is the corresponding binary tree with I N/21 - 1 nodes, and the
right subtree is the corresponding binary tree with lN /2 J nodes and with all
node numbers increased by IN /21.

In an analogous fashion, any algorithm for searching an ordered table of
length N by means of comparisons can be represented as an N-node binary tree
in which the nodes are labeled with the numbers 1 to N (unless the algorithm
makes redundant comparisons). Conversely, any binary tree corresponds to a
valid method for searching an ordered table; we simply label the nodes

@] CD ITJ ® IN-11 ® [El (1)

in symmetric order, from left to right.
If the search argument input to Algorithm Bis K10, the algorithm makes the

comparisons K >Ks, K < K12, K = K10. This corresponds to the path from
the root to @ in Fig. 5. Similarly, the behavior of Algorithm B on other keys
corresponds to the other paths leading from the root of the tree. The method of
constructing the binary trees corresponding to Algorithm B therefore makes it
easy to prove the following result by induction on N:

Theorem B. I£2k-I :::; N < 2k, a successful search using Algorithm B requires
(min 1, max k) comparisons. If N = 2k - 1, an unsuccessful search requires

6.2.l SEARCHING AN ORDERED TABLE 413

k comparisons; and if 2k-l :::; N < 2k - 1, an unsuccessful search requires either
k - 1 or k comparisons. I

Further analysis of binary search. (N onmathematical readers should skip
to Eq. (4).) The tree representation shows us also how to compute the average
number of comparisons in a simple way. Let CN be the average number of
comparisons in a successful search, assuming that each of the N keys is an
equally likely argument; and let be the average number of comparisons in
an unsuccessful search, assuming that each of the N + 1 intervals between and
outside the extreme values of the keys is equally likely. Then we have

C _ 1 internal path length of tree C' _ external path length of tree
N- + N) N- N+l)

by the definition of internal and external path length. We saw in Eq. 2.3.4.5-(3)
that the external path length is always 2N more than the internal path length.
Hence there is a rather unexpected relationship between C N and

CN = (1 + - 1.

This formula, which is due to T. N. Hibbard [JACM 9 (1962), 16-17), holds
for all search methods that correspond to binary trees; in other words, it holds
for all methods that are based on nonredundant comparisons. The variance of
successful-search comparisons can also be expressed in terms of the corresponding
variance for unsuccessful searches (see exercise 25).

From the formulas above we can see that the "best" way to search by
comparisons is one whose tree has minimum external path length, over all binary
trees with N internal nodes. Fortunately it can be proved that Algorithm Bis
optimum in this sense, for all N; for we have seen (exercise 5.3.1-20) that a
binary tree has minimum path length if and only if its external nodes all occur
on at most two adjacent levels. It follows that the external path length of the
tree corresponding to Algorithm B is

(N + 1) (l lg NJ + 2) - 2 L lg NJ + 1 . (3)
(See Eq. 5.3.1-(34).) From this formula and (2) we can compute the exact
average number of comparisons, assuming that all search arguments are equally
probable.

N= 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
CN= 1 11 2 1£ 3 2 21 5 2£ 6 7 2.§. 8 21 9 2190 3 3112 3123 3134 3 i66

= 1 1£ 3 2 2£ 5 6 2§. 7 3 3£ 9 3 i61 3182 310 13 312 14 314 15 4 4127

In general, if k = l lg NJ , we have

CN = k + 1 - (2k+l - k - 2)/N =lgN-l+E+(k+2)/N,
(4)

= k + 2 - 2k+ 1j(N + 1) = lg(N + 1) + E
1

where 0 :SE, E1 < 0.0861; see Eq. 5.3.1-(35).

414 SEARCHING 6.2.l

To summarize: Algorithm B never makes more than llg NJ+ 1 comparisons,
and it makes about lg N - 1 comparisons in an average successful search. No
search method based on comparisons can do better than this. The average
running time of Program B is approximately

(18 lg N - 16) u for a successful search, .
(18 lg N + 12)u for an unsuccessful search,

if we assume that all outcomes of the search are equally likely.

An important variation. Instead of using three pointers l, i and u in the
search, it is tempting to use only two, namely the current position i and its rate
of change, J; after each unequal comparison, we could then set i +-- i ± J and
J +-- J /2 (approximately). It is possible to do this, but only if extreme care
is paid to the details, as in the following algorithm. Simpler approaches are
doomed to failure!

Algorithm U (Uniform binary search). Given a table of records R 1 , R 2 , • .• , RN
whose keys are in increasing order Ki < K2 < · · · < KN, this algorithm searches
for a given argument K. If N is even, the algorithm will sometimes refer to a
dummy key K 0 that should be set to - oo (or any value less than K). We assume
that N > 1.

Ul. [Initialize.) Seti+-- IN/21, m +-- lN/2J.
U2. [Compare.) If K <Ki, go to U3; if K >Ki, go to U4; and if K =Ki, the

algorithm terminates successfully.
U3. [Decrease i.) (We have pinpointed the search to an interval that contains

either m or m-1 records; i points just to the right of this interval.) If m = 0,
the algorithm terminates unsuccessfully. Otherwise set i +-- i - I m/21; then
set m +-- lm/2J and return to U2.

U4. [Increase i.) (We have pinpointed the search to an interval that contains
either m or m - 1 records; i points just to the left of this interval.) If m = 0,
the algorithm terminates unsuccessfully. Otherwise set i +-- i + I m/21; then
set m +-- lm/2J and return to U2. I
Figure 6 shows the corresponding binary tree for the search, when N = 10.

In an unsuccessful search, the algorithm may make a redundant comparison just
before termination; those nodes are shaded in the figure. We may call the search
process uniform because the difference between the number of a node on level l
and the number of its ancestor on level l - 1 has a constant value J for all nodes
on level l.

The theory underlying Algorithm U can be understood as follows: Suppose
that we have an interval of length n - 1 to search; a comparison with the middle
element (for n even) or with one of the two middle elements (for n odd) leaves us
with two intervals oflengths l n/2 J -1 and I n/21- L After repeating this process
k times, we obtain 2k intervals, of which the smallest has length ln/2kJ - 1 and
the largest has length I n/2kl - 1. Hence the lengths of two intervals at the same

6.2.1 SEARCHING AN ORDERED TABLE 415

8=3

8=1

Fig. 6. The comparison tree for a "uniform" binary search, when N = 10.

level differ by at most unity; this makes it possible to choose an appropriate
"middle" element, without keeping track of the exact lengths.

The principal advantage of Algorithm U is that we need not maintain the
value of m at all; we need only refer to a short table of the various c5 to use at
each level of the tree. Thus the algorithm reduces to the following procedure,
which is equally good on binary or decimal computers:

Algorithm C (Uniform binary search). This algorithm is just like Algorithm U,
but it uses an auxiliary table in place of the calculations involving m. The table
entries are

lN + 2J- 1J DELTA [j] = 2j , for 1:Sj:SllgNJ+2. (6)

Cl. (Initialize.) Set i +--DELTA [1], j +-- 2.
C2. (Compare.) If K < Ki, go to C3; if K >Ki, go to C4; and if K =Ki, the

algorithm terminates successfully.
C3. (Decrease i.) If DELTA [j] = 0, the algorithm terminates unsuccessfully.

Otherwise, set i +-- i - DELTA [j], j +-- j + 1, and go to C2.
C4. (Increase i.) If DELTA [j] = 0, the algorithm terminates unsuccessfully.

Otherwise, set i +-- i +DELTA [j], j +-- j + 1, and go to C2. I
Exercise 8 proves that this algorithm refers to the artificial key K 0 = -oo

only when N is even.

Program C (Uniform binary search). This program does the same job as
Program B, using Algorithm C with rA K, rll i, rl2 j, rl3 DELTA [j].
01 START ENT! N+1/2 1 Cl. Initialize. i +--- l(N + l)/2J.
02 ENT2 2 1 j +--- 2.
03 LDA K 1
04 JMP 2F 1
05 3H JE SUCCESS Cl Jump if K =Ki.
06 J3Z FAILURE Cl-S Jump if DELTA [j] = 0.
01 DEC! 0,3 Cl- S-A C3. Decrease i.

416 SEARCHING 6.2.1

8 9 10

Fig. 7. The comparison tree for Shar's almost uniform search, when N = 10.

08 SH INC2 1 C-1 j+-j+l.
09 2H LD3 DELTA,2 c C2. Compare.
10 CMPA KEY,1 c
11 JLE 3B c Jump if K::; Ki.
12 INC! 0,3 C2 C4. Increase i.
13 J3NZ SB C2 Jump if DELTA[j] f 0.
14 FAILURE EQU * l-S Exit if not in table. I

In a successful search, this algorithm corresponds to a binary tree with the
same internal path length as the tree of Algorithm B, so the average number of
comparisons C N is the same as before. In an unsuccessful search, Algorithm C
always makes exactly l lg NJ + 1 comparisons. The total running time of Pro-
gram C is not quite symmetrical between left and right branches, since Cl is
weighted more heavily than C2, but exercise 11 shows that we have K < Ki
roughly as often as K > Ki; hence Program C takes approximately

(8.5 lg N - 6)u for a successful search,

(8. 5 l lg NJ + 12) u for an unsuccessful search.

This is more than twice as fast as Program B, without using any special prop-
erties of binary computers, even though the running times (5) for Program B
assume that MIX has a "shift right binary" instruction.

Another modification of binary search, suggested in 1971 by L. E. Shar, will
be still faster on some computers, because it is uniform after the first step, and
it requires no table. The first step is to compare K with Ki, where i = 2k,

k = llg NJ. If K < Ki, we use a uniform search with the J's equal to 2k-l,

2k- 2, ... , 1, 0. On the other hand, if K > Ki we reset i to i' = N + 1 - 21,

where l = pg(N - 2k + l)l, and pretend that the first comparison was actually
K > Ki', using a uniform search with the J's equal to 21- 1, 21- 2, ••• , 1, O.

Shar's method is illustrated for N = 10 in Fig. 7. Like the previous
algorithms, it never makes more than llg NJ + 1 comparisons; hence it makes
at most one more than the minimum possible average number of comparisons,
in spite of the fact that it occasionally goes through several redundant steps in
succession (see exercise 12).

6.2.1 SEARCHING AN ORDERED TABLE 417

7 10

Fig. 8. The Fibonacci tree of order 6.

Still another modification of binary search, which increases the speed of all
the methods above when N is extremely large, is discussed in exercise 23. See
also exercise 24, for a method that is faster yet.

*Fibonaccian search. In the polyphase merge we have seen that the Fibonacci
numbers can play a role analogous to the powers of 2. A similar phenomenon
occurs in searching, where Fibonacci numbers provide us with an alternative to
binary search. The resulting method is preferable on some computers, because it
involves only addition and subtraction, not division by 2. The procedure we are
about to discuss should be distinguished from an important numerical procedure
called "Fibonacci search," which is used to locate the maximum of a unimodal
function [see Fibonacci Quarterly 4 (1966), 265-269); the similarity of names
has led to some confusion.

The Fibonaccian search technique looks very mysterious at first glance, if
we simply take the program and try to explain what is happening; it seems to
work by magic. But the mystery disappears as soon as the corresponding search
tree is displayed. Therefore we shall begin our study of the method by looking
at Fibonacci trees.

Figure 8 shows the Fibonacci tree of order 6. It looks somewhat more like
a real-life shrub than the other trees we have been considering, perhaps because
many natural processes satisfy a Fibonacci law. In general, the Fibonacci tree of
order k has Fk+l - 1 internal (circular) nodes and Fk+l external (square) nodes,
and it is constructed as follows:

If k = 0 or k = 1, the tree is simply [QJ.
If k 2, the root is Fk; the left subtree is the Fibonacci tree of order k - 1;
and the right subtree is the Fibonacci tree of order k - 2 with all numbers
increased by Fk.

Except for the external nodes, the numbers on the two children of each internal
node differ from their parent's number by the same amount, and this amount

418 SEARCHING 6.2.l

is a Fibonacci number. For example, 5 = 8 - F4 and 11 = 8 + F4 in Fig. 8.
When the difference is FJ, the corresponding Fibonacci difference for the next
branch on the left is Fj-1, while on the right it skips down to Fj-2· For example,
3 = 5 - F3 while 10 = 11 - F2.

If we combine these observations with an appropriate mechanism for recog-
nizing the external nodes,. we arrive at the following method:

Algorithm F (Fibonaccian search). Given a table of records Ri R2 ... RN whose
keys are in increasing order K 1 < K2 < · · · < KN, this algorithm searches for a
given argument K.

For convenience in description, we assume that N + 1 is a perfect Fibonacci
number, Fk+l · It is not difficult to make the method work for arbitrary N, if a
suitable initialization is provided (see exercise 14).
Fl. [Initialize.) Seti+-- Fk, p +-- Fk-1, q +-- Fk-2· (Throughout the algorithm,

p and q will be consecutive Fibonacci numbers.)
F2. [Compare.] If K < Ki, go to step F3; if K >Ki, go to F4; and if K =Ki,

the algorithm terminates successfully.
F3. [Decrease i.] If q = 0, the algorithm terminates unsuccessfully. Otherwise

set i +-- i - q, and set (p, q) +-- (q, p-q); then return to F2.
F4. [Increase i.) If p = 1, the algorithm terminates unsuccessfully. Otherwise

set i +-- i + q, p +-- p - q, then q +-- q - p, and return to F2. I
The following MIX implementation gains speed by making two copies of the

inner loop, one in which pis in rl2 and q in rl3, and one in which the registers are
reversed; this simplifies step F3. In fact, the program actually keeps p - 1 and
q - 1 in the registers, instead of p and q, in order to simplify the test "p = 1 ?"
in step F4.

Program F (Fibonaccian search). We follow the previous conventions, with
rA K, rll i, (rl2 or rl3) p - 1, (rl3 or rl2) q - 1.
01 START LDA K 1 Fl. Initialize.
02 ENT! Fk 1 i +--- Fk.
03 ENT2 Fk-1-1 1 p +--- Fk-1·
04 ENT3 Fk-2-1 1 q +--- Fk-2·
05 JMP F2A 1 To step F2.
06 F4A INC! 1,3 C2-S-A F 4. Increase i. i +--- i + q.
01 DEC2 1,3 C2-S-A p +--- p - q.
08 DEC3 1,2 C2-S-A q +--- q - p.
09 F2A CMPA KEY,1 c F2. Com12are.
10 JL F3A c To F3 if K < Ki.
11 JE SUCCESS C2 Exit if K =Ki.
12 J2NZ F4A C2-S To F 4 if p -f: 1.
13 JMP FAILURE A Exit if not in table.
14 F3A DEC! 1,3 Cl F3. Decrease i. i +--- i - q.
15 DEC2 1,3 Cl p +--- p - q.
16 J3NN F2B Cl Swap registers if q > 0.
11 JMP FAILURE l-S-A Exit if not in table.

6.2.1 SEARCHING AN ORDERED TABLE 419

18 F4B INC! 1,2 (Lines 18-29 are parallel to 06-17.)
19 DEC3 1,2
20 DEC2 1,3
21 F2B CMPA KEY,1
22 JL F3B
23 JE SUCCESS
24 J3NZ F4B
25 JMP FAILURE
26 F3B DEC! 1,2
21 DEC3 1,2
28 J2NN F2A
29 JMP FAILURE I

The running time of this program is analyzed in exercise 18. Figure 8 shows,
and the analysis proves, that a left branch is taken somewhat more often than a
right branch. Let C, Cl, and (C2 - S) be the respective number of times steps
F2, F3, and F4 are performed. Then we have

C =(ave <f>k/J5 + 0(1), max k - 1),
Cl= (ave k/J5 + 0(1), max k - 1), (8)

C2 - S =(ave ¢-1k/J5 + 0(1), max lk/2J).

Thus the left branch is taken about </> 1.618 times as often as the right branch
(a fact that we might have guessed, since each probe divides the remaining
interval into two parts, with the left part about </> times as large as the right).
The total average running time of Program F therefore comes to approximately

i ((18 + 4</>)k + 31 - 26¢) u (7.050 lg N + 1.08)u (g)

for a successful search, plus (9 - 3¢)u 4.15u for an unsuccessful search. This is
faster than Program C, although the worst case running time (roughly 8.6 lg N)
is slightly slower.

Interpolation search. Let's forget computers for a moment, and consider how
people actually carry out a search. Sometimes everyday life provides us with
clues that lead to good algorithms.

Imagine yourself looking up a word in a dictionary. You probably don't
begin by looking first at the middle page, then looking at the 1/ 4 or 3/ 4 point,
etc., as in a binary search. It's even less likely that you use a Fibonaccian search!

If the word you want starts with the letter A, you probably begin near the
front of the dictionary. In fact, many dictionaries have thumb indexes that show
the starting page or the middle page for the words beginning with a fixed letter.
This thumb-index technique can readily be adapted to computers, and it will
speed up the search; such algorithms are explored in Section 6.3.

Yet even after the initial point of search has been found, your actions still
are not much like the methods we have discussed. If you notice that the desired
word is alphabetically much greater than the words on the page being examined,
you will turn over a fairly large chunk of pages before making the next reference.

420 SEARCHING 6.2.l

This is quite different from the algorithms above, which make no distinction
between "much greater" and "slightly greater."

Such considerations suggest an algorithm that might be called interpolation
search: When we know that K lies between K1 and Ku, we can choose the next
probe to be about (K - K 1)/(Ku - K 1) of the way between l and u, assuming
that the keys are numeric "and that they increase in a roughly constant manner
throughout the interval.

Interpolation search is asymptotically superior to binary search. One step of
binary search essentially reduces the amount of uncertainty from n to n, while
one step of interpolation search essentially reduces it to fa, when the keys in the
table are randomly distributed. Hence interpolation search takes about lg lg N
steps, on the average, to reduce the uncertainty from N to 2. (See exercise 22.)

However, computer simulation experiments show that interpolation search
does not decrease the number of comparisons enough to compensate for the
extra computing time involved, unless the table is rather large. Typical files
aren't sufficiently random, and the difference between lg lg N and lg N is not
substantial unless N exceeds, say, 216 = 65,536. Interpolation is most successful
in the early stages of searching a large possibly external file; after the range has
been narrowed down, binary search finishes things off more quickly. (Note that
dictionary lookup by hand is essentially an external, not an internal, search. We
shall discuss external searching later.)

History and bibliography. The earliest known example of a long list of items
that was sorted into order to facilitate searching is the remarkable Babylonian
reciprocal table of Inakibit-Anu, dating from about 200 B.C. This clay tablet
contains more than 100 pairs of values, which appear to be the beginning of
a list of approximately 500 multiple-precision sexagesimal numbers and their
reciprocals, sorted into lexicographic order. For example, the list included the
following sequence of entries:

01 13 09 34 29 08 08 53 20
01 13 14 31 52 30
01 13 43 40 48
01 13 48 40 30
01 14 04 26 40

49 12 27
49 09 07 12
48 49 41 15
48 46 22 59 25 25 55 33 20
48 36

The task of sorting 500 entries like this, given the technology available at that
time, must have been phenomenal. [See D. E. Knuth, Selected Papers on Com-
puter Science (Cambridge Univ. Press, 1996), Chapter 11, for further details.]

It is fairly natural to sort numerical values into order, but an order relation
between letters or words does not suggest itself so readily. Yet a collating
sequence for individual letters was present already in the most ancient alpha-
bets. For example, many of the Biblical psalms have verses that follow a strict
alphabetic sequence, the first verse starting with aleph, the second with beth,
etc.; this was an aid to memory. Eventually the standard sequence of letters
was used by Semitic and Greek peoples to denote numerals; for example, a, {3, 'Y
stood for 1, 2, 3, respectively.

6.2.l SEARCHING AN ORDERED TABLE 421

The use of alphabetic order for entire words seems to be a much later
invention; it is something we might think is obvious, yet it has to be taught
to children, and at some point in history it was necessary to teach it to adults.
Several lists from about 300 B.C. have been found on the Aegean Islands, giving
the names of people in certain religious cults; these lists have been alphabetized,
but only by the first letter, thus representing only the first pass of a left-
to-right radix sort. Some Greek papyri from the years A.D. 134-135 contain
fragments of ledgers that show the names of taxpayers alphabetized by the first
two letters. Apollonius Sophista used alphabetic order on the first two letters,
and often on subsequent letters, in his lengthy concordance of Homer's poetry
(first century A.D.). A few examples of more perfect alphabetization are known,
notably Galen's Hippocratic Glosses (c. 200), but they are very rare. Words were
arranged by their first letter only in the Etymologiarum of St. Isidorus (c. 630,
Book x); and the Corpus Glossary (c. 725) used only the first two letters of each
word. The latter two works were perhaps the largest nonnumerical files of data
to be compiled during the Middle Ages.

It is not until Giovanni di Genoa's Catholicon (1286) that we find a specific
description of true alphabetical order. In his preface, Giovanni explained that

amo precedes bibo
abeo precedes adeo

amatus precedes am or
imprudens precedes impudens

iusticia precedes iustus
polisintheton precedes polissenus

(thereby giving examples of situations in which the ordering is determined by the
1st, 2nd, ... , 6th letters), "and so in like manner." He remarked that strenuous
effort was required to devise these rules. "I beg of you, therefore, good reader,
do not scorn this great labor of mine and this order as something worthless."

A detailed study of the development of alphabetic order, up to the time
printing was invented, has been made by Lloyd W. Daly [Collection Latomus
90 (1967), 100 pages]. He found some interesting old manuscripts that were
evidently used as worksheets while sorting words by their first letters (see pages
89-90 of his monograph).

The first dictionary of English, Robert Cawdrey's Table Alphabeticall (Lon-
don, 1604), contains the following instructions:

Nowe if the word, which thou art desirous to finde, beginne with (a) then
looke in the beginning of this Table, but if with (v) looke towards the end.
Againe, if thy word beginne with (ca) looke in the beginning of the letter
(c) but if with (cu) then looke toward the end of that letter. And so of all
the rest. &c.

Cawdrey seems to have been teaching himself how to alphabetize as he prepared
his dictionary; numerous misplaced words appear on the first few pages, but the
alphabetic order in the last part is not as bad.

422 SEARCHING 6.2.1

Binary search was first mentioned by John Mauchly, in what was perhaps the
first published discussion of nonnumerical programming methods [Theory and
Techniques for the Design of Electronic Digital Computers, edited by G. W. Pat-
terson, 1 (1946), 9.7-9.8; 3 (1946), 22.8-22.9]. The method became well known
to programmers, but nobody seems to have worked out the details of what should
be done when N does not ltave the special form 2n -1. [See A. D. Booth, Nature
176 (1955), 565; A. I. Durney, Computers and Automation 5 (December 1956), 7,
where binary search is called "Twenty Questions"; Daniel D. McCracken, Digital
Computer Programming (Wiley, 1957), 201-203; and M. Halpern, CACM 1, 1
(February 1958), 1-3.]

D. H. Lehmer [Proc. Symp. Appl. Math. 10 (1960), 180-181] was apparently
the first to publish a binary search algorithm that works for all N. The next
step was taken by H. Bottenbruch [JACM 9 (1962), 214], who presented an
interesting variation of Algorithm B that avoids a separate test for equality until
the very end: Using

i +- \(l + u)/21
instead of i +- L(l + u)/2J in step B2, he set l +- i whenever K 2 Ki; then
u - l decreases at every step. Eventually, when l = u, we have Kz K < K 1+1 ,

and we can test whether or not the search was successful by making one more
comparison. (He assumed that K 2 K 1 initially.) This idea speeds up the inner
loop slightly on many computers, and the same principle can be used with all
of the algorithms we have discussed in this section; but a successful search will
require about one more iteration, on the average, because of (2). Since the inner
loop is performed only about lg N times, this tradeoff between an extra iteration
and a faster loop does not save time unless n is extremely large. (See exercise 23.)
On the other hand Bottenbruch's algorithm will find the rightmost occurrence of
a given key when the table contains duplicates, and this property is occasionally
important.

K. E. Iverson [A Programming Language (Wiley, 1962), 141] gave the proce-
dure of Algorithm B, but without considering the possibility of an unsuccessful
search. D. E. Knuth [CACM 6 (1963), 556-558] presented Algorithm B as
an example used with an automated flowcharting system. The uniform binary
search, Algorithm C, was suggested to the author by A. K. Chandra of Stanford
University in 1971.

Fibonaccian searching was invented by David E. Ferguson [CACM 3 (1960),
648]. Binary trees similar to Fibonacci trees appeared in the pioneering work
of the Norwegian mathematician Axel Thue as early as 1910 (see exercise 28).
A Fibonacci tree without labels was also exhibited as a curiosity in the first
edition of Hugo Steinhaus's popular book Mathematical Snapshots (New York:
Stechert, 1938), page 28; he drew it upside down and made it look like a real
tree, with right branches twice as long as left branches so that all the leaves
would occur at the same level.

Interpolation searching was suggested by W. W. Peterson [IBM J. Res. &
Devel. 1 (1957), 131-132]. A correct analysis of its average behavior was not
discovered until many years later (see exercise 22).

6.2.1 SEARCHING AN ORDERED TABLE 423

EXERCISES
Ii>- 1. [21] Prove that if u < l in step B2 of the binary search, we have u = l - 1 and

Ku < K < K 1• (Assume by convention that Ko = -oo and KN+1 = +oo, although
these artificial keys are never really used by the algorithm so they need not be present
in the actual table.)

Ii>- 2. [22] Would Algorithm B still work properly when K is present in the table if we
(a) changed step B5 to "l i" instead of "l i + 1"? (b) changed step B4 to "u i"
instead of "u i -1"? (c) made both of these changes?

3. [15] What searching method corresponds to the tree ?

What is the average number of comparisons made in a successful search? m an
unsuccessful search?

4. [20] If a search using Program 6.lS (sequential search) takes exactly 638 units of
time, how long does it take with Program B (binary search)?

5. [M24] For what values of N is Program B actually slower than a sequential search
(Program 6. lQ') on the average, assuming that the search is successful?

6. [28] (K. E. Iverson.) Exercise 5 suggests that it would be best to have a hybrid
method, changing from binary search to sequential search when the remaining interval
has length less than some judiciously chosen value. Write an efficient MIX program for
such a search and determine the best changeover value.

Ii>- 7. [M22] Would Algorithm U still work properly if we changed step Ul so that
a) both i and m are set equal to L N /2 J?
b) both i and m are set equal to IN /21?

[Hint: Suppose the first step were 0, m N (or N + 1), go to U4."]

8. [M20] Let 8j = DELTA[j] be the jth increment in Algorithm C, as defined in (6).
a) What is the sum 8J?
b) What are the minimum and maximum values of i that can occur in step C2?

9. [20] Is there any value of N > 1 for which Algorithm B and C are exactly
equivalent, in the sense that they will both perform the same sequence of comparisons
for all search arguments?

10. [21] Explain how to write a MIX program for Algorithm C containing approx-
imately 7 lg N instructions and having a running time of about 4.5 lg N units.

11. [M26] Find exact formulas for the average values of Cl, C2, and A in the fre-
quency analysis of Program C, as a function of N and S.

12. [20] Draw the binary search tree corresponding to Shar's method when N = 12.

13. [M24] Tabulate the average number of comparisons made by Shar's method, for
1 ::; N ::; 16, considering both successful and unsuccessful searches.

14. [21] Explain how to extend Algorithm F so that it will apply for all N;:::: 1.

15. [M19] For what values of k does the Fibonacci tree of order k define an optimal
search procedure, in the sense that the fewest comparisons are made on the average?

424 SEARCHING 6.2.1

16. [21] Figure 9 shows the lineal chart of the rabbits in Fibonacci's original rabbit
problem (see Section 1.2.8). Is there a simple relationship between this and the
Fibonacci tree discussed in the text?

Initial
First month

Second month
Third month ___ __,.'-++----.----->r___..,-.....------

Fourth month ---J---t-+---+-+--..-----...,..-....c------

Fifth month ---+----+---4J--t----i-----.....----

Sixth month---------------------

Fig. 9. Pairs of rabbits breeding by Fibonacci's rule.

17. [M21] From exercise 1.2.8-34 (or exercise 5.4.2-10) we know that every positive
integer n has a unique representation as a sum of Fibonacci numbers

where r 2: 1, aj 2: aJ+ 1 + 2 for 1 :S j < r, and ar 2: 2. Prove that in the Fibonacci tree
of order k, the path from the root to node @ has length k + 1 - r - ar.

18. [M30] Find exact formulas for the average values of Cl, C2, and A in the fre-
quency analysis of Program F, as a function of k, Fk, Fk+1, and S.

19. [M42] Carry out a detailed analysis of the average running time of the algorithm
suggested in exercise 14.

20. [M22] The number of comparisons required in a binary search is approximately
log2 N, and in the Fibonaccian search it is roughly (</> / ./5") loge/> N. The purpose of this
exercise is to show that these formulas are special cases of a more general result.

Let p and q be positive numbers with p + q = 1. Consider a search algorithm that,
given a table of N numbers in increasing order, starts by comparing the argument with
the (pN)th key, and iterates this procedure on the smaller blocks. (The binary search
hasp= q = 1/2; the Fibonacci search hasp= 1/¢, q = 1/¢2

.)

If C (N) denotes the average number of comparisons required to search a table of
size N, it approximately satisfies the relations

C(l) = O; C(N) = 1 + pC(pN) + qC(qN) for N > 1.

This happens because there is probability p (roughly) that the search reduces to a
pN-element search, and probability q that it reduces to a qN-element search, after the
first comparison. When N is large, we may ignore the small-order effect caused by the
fact that pN and qN aren't exactly integers.

a) Show that C(N) = logb N satisfies these relations exactly, for a certain choice of b.
For binary and Fibonaccian search, this value of b agrees with the formulas derived
earlier.

b) Consider the following argument: "With probability p, the size of the interval
being scanned in this algorithm is divided by 1/p; with probability q, the interval
size is divided by 1/q. Therefore the interval is divided by p · (1/p) + q · (1/q) = 2
on the average, so the algorithm is exactly as good as the binary search, regardless
of p and q." Is there anything wrong with this reasoning?

-- -- ------ ------------

6.2.1 SEARCHING AN ORDERED TABLE 425

21. [20] Draw the binary tree corresponding to interpolation search when N = 10.

22. [M41] (A. C. Yao and F. F. Yao.) Show that an appropriate formulation of
interpolation search requires asymptotically lg lg N comparisons, on the average, when
applied to N independent uniform random keys that have been sorted. Furthermore
all search algorithms on such tables must make asymptotically lg lg N comparisons, on
the average .

.,. 23. [25] The binary search algorithm of H. Bottenbruch, mentioned at the close of
this section, avoids testing for equality until the very end of the search. (During the
algorithm we know that Kz :S K < Ku+1, and the case of equality is not examined
until l = u.) Such a trick would make Program B run a little bit faster for large N,
since the "JE" instruction could be removed from the inner loop. (However, the idea
wouldn't really be practical since lg N is always rather small; we would need N > 266

in order to compensate for the extra work necessary on a successful search, because the
running time (18lgN-16)u of (5) is "decreased" to (17.5lgN + 17)u!)

Show that every search algorithm corresponding to a binary tree can be adapted to
a search algorithm that uses two-way branching (< versus 2:) at the internal nodes of
the tree, in place of the three-way branching (<, =, or>) used in the text's discussion.
In particular, show how to modify Algorithm C in this way.

Ii>- 24. [23] We have seen in Sections 2.3.4.5 and 5.2.3 that the complete binary tree is
a convenient way to represent a minimum-path-length tree in consecutive locations.
Devise an efficient search method based on this representation. [Hint: Is it possible to
use multiplication by 2 instead of division by 2 in a binary search?]

Ii>- 25. [M25] Suppose that a binary tree has ak internal nodes and bk external nodes
on level k, for k = 0, 1,... . (The root is at level zero.) Thus in Fig. 8 we have
(ao,a1, ... ,a5) = (1,2,4,4,1,0) and (bo,b1, ... ,b5) = (0,0,0,4,7,2).

a) Show that a simple algebraic relationship holds between the generating functions
A(z) = L:k akzk and B(z) = L:k bkzk.

b) The probability distribution for a successful search in a binary tree has the gen-
erating function g(z) = zA(z) / N, and for an unsuccessful search the generating
function is h(z) = B(z)/(N + 1). (Thus in the text's notation we have CN =
mean(g), Cfv = mean(h), and Eq. (2) gives a relation between these quantities.)
Find a relation between var(g) and var(h).

26. [22] Show that Fibonacci trees are related to polyphase merge sorting on three
tapes.

27. [M30] (H. S. Stone and John Linn.) Consider a search process that uses k
processors simultaneously and that is based solely on comparisons of keys. Thus at
every step of the search, k indices ii, ... , ik are specified, and we perform k simultaneous
comparisons; if K = Kij for some j, the search terminates successfully, otherwise
the search proceeds to the next step based on the 2k possible outcomes K < Kij or
K > Ki1 , for 1 :S j :S; k.

Prove that such a process must always take at least approximately logk+I N steps
on the average, as N -+ oo, assuming that each key of the table is equally likely as a
search argument. (Hence the potential increase in speed over 1-processor binary search
is only a factor of lg(k + 1), not the factor of k we might expect. In this sense it is more
efficient to assign each processor to a different, independent search problem, instead of
making them cooperate on a single search.)

426 SEARCHING 6.2.1

28. [M23] Define Thue trees Tn by means of algebraic expressions in a binary opera-
tor* as follows: To(x) = x * x, T1(x) = x, Tn+2(x) = Tn+1(x) * Tn(x).

a) The number ofleaves of Tn is the number of occurrences of x when Tn(x) is written
out in full. Express this number in terms of Fibonacci numbers.

b) Prove that if the binary operator * satisfies the axiom

•((x*X)*x)*((x*X)*x) =x,

then T m(Tn(x)) = T m+n-I (x) for all m 2: 0 and n 2: 1.

.,. 29. [22] (Paul Feldman, 1975.) Instead of assuming that K1 < K2 < · · · < KN,

assume only that Kp(I) < Kp(2) < · · · < Kp(N) where the permutation p(l)p(2) ... p(N)
is an involution, and p(j) = j for all even values of j. Show that we can locate any given
key K, or determine that K is not present, by making at most 2LlgNJ+1 comparisons.

30. [27] (Involution coding.) Using the idea of the previous exercise, find a way to
arrange N distinct keys in such a way that their relative order implicitly encodes an
arbitrarily given array oft-bit numbers x1, x2, ... , Xm, when m :S N/4 + 1 - 2t.
With your arrangement it should be possible to determine the leading k bits of x1 by
making only k comparisons, for any given j, as well as to look up an arbitrary key with
:S 2 L lg NJ + 1 comparisons. (This result is used in theoretical studies of data structures
that are asymptotically efficient in both time and space.)

6.2.2. Binary Tree Searching
In the preceding section, we learned that an implicit binary tree structure makes
the behavior of binary search and Fibonaccian search easier to understand. For a
given value of N, the tree corresponding to binary search achieves ·the theoretical
minimum number of comparisons that are necessary to search a table by means
of key comparisons. But the methods of the preceding section are appropriate
mainly for fixed-size tables, since the sequential allocation of records makes
insertions and deletions rather expensive. If the table is changing dynamically,
we might spend more time maintaining it than we save in binary-searching it.

The use of an explicit binary tree structure makes it possible to insert and
delete records quickly, as well as to search the table efficiently. As a result, we
essentially have a method that is useful both for searching and for sorting. This
gain in flexibility is achieved by adding two link fields to each record of the table.

Techniques for searching a growing table are often called symbol table algo-
rithms, because assemblers and compilers and other system routines generally
use such methods to keep track of user-defined symbols. For example, the key of
each record within a compiler might be a symbolic identifier denoting a variable
in some FORTRAN or C program, and the rest of the record might contain
information about the type of that variable and its storage allocation. Or the key
might be a symbol in a MIXAL program, with the rest of the record containing the
equivalent of that symbol. The tree search and insertion routines to be described
in this section are quite efficient for use as symbol table algorithms, especially in
applications where it is desirable to print out a list of the symbols in alphabetic
order. Other symbol table algorithms are described in Sections 6.3 and 6.4.

Figure 10 shows a binary search tree containing the names of eleven signs of
the zodiac. If we now search for the twelfth name, SAGITTARIUS, starting at the

6.2.2 BINARY TREE SEARCHING 427

AQUARIUS

GEMINI

Fig. 10. A binary search tree.

root or apex of the tree, we find it is greater than CAPRICORN, so we move to the
right; it is greater than PISCES, so we move right again; it is less than TAURUS, so
we move left; and it is less than SCORPIO, so we arrive at external node !}:]. The
search was unsuccessful; we can now insert SAGITTARIUS at the place the search
ended, by linking it into the tree in place of the external node 11]. In this way
the table can grow without the necessity of moving any of the existing records.
Figure 10 was formed by starting with an empty tree and successively inserting
the keys CAPRICORN, AQUARIUS, PISCES, ARIES, TAURUS, GEMINI, CANCER, LEO,

VIRGO, LIBRA, SCORPIO, in this order.
All of the keys in the left subtree of the root in Fig. 10 are alphabetically

less than CAPRICORN, and all keys in the right subtree are alphabetically greater.
A similar statement holds for the left and right subtrees of every node. It follows
that the keys appear in strict alphabetic sequence from left to right,

AQUARIUS, ARIES, CANCER, CAPRICORN, GEMINI, LEO, ...) VIRGO

if we traverse the tree in symmetric order (see Section 2.3.1), since symmetric
order is based on traversing the left subtree of each node just before that node,
then traversing the right subtree.

The following algorithm spells out the searching and insertion processes in
detail.

Algorithm T (Tree search and insertion). Given a table of records that form a
binary tree as described above, this algorithm searches for a given argument K.
If K is not in the table, a new node containing K is inserted into the tree in the
appropriate place.

428 SEARCHING 6.2.2

The nodes of the tree are assumed to contain at least the following fields:

KEY (P) = key stored in NODE (P);

LLINK (P) = pointer to left subtree of NODE (P);

RLINK (P) =pointer to right subtree of NODE(P).

Null subtrees (the external hodes in Fig. 10) are represented by the null pointer A.
The variable ROOT points to the root of the tree. For convenience, we assume
that the tree is not empty (that is, ROOT #- A), since the necessary operations
are trivial when ROOT = A.
Tl. [Initialize.] Set P +-ROOT. (The pointer variable P will move down the tree.)
T2. (Compare.] If K < KEY (P), go to T3; if K > KEY (P), go to T4; and if

K =KEY (P), the search terminates successfully.
T3. (Move left.] If LLINK (P) -j. A, set P +- LLINK (P) and go back to T2.

Otherwise go to T5.
T4. (Move right.] If RLINK (P) -j. A, set P +- RLINK (P) and go back to T2.
T5. [Insert into tree.] (The search is unsuccessful; we will now put K into the

tree.) Set Q ¢:: AVAIL, the address of a new node. Set KEY(Q) +- K,
LLINK (Q) +- RLINK (Q) +- A. (In practice, other fields of the new node
should also be initialized.) If K was less than KEY(P), set LLINK(P) +- Q,
otherwise set RLINK (P) +- Q. (At this point we could set P +- Q and
terminate the algorithm successfully.) I

LLINK=A

Tl. Initialize

>

SUCCESS

T4. Move right

RLINK=A
T5. Insert into tree

Fig. 11. Tree search and insertion.

This algorithm lends itself to a convenient machine language implementa-
tion. We may assume, for example, that the tree nodes have the form

+ 0 LLINK RLINK

KEY

followed perhaps by additional words of INFO. Using an AVAIL list for the free
storage pool, as in Chapter 2, we can write the following MIX program:

6.2.2 BINARY TREE SEARCHING 429

Program T (Tree search and insertion). rA K, rll P, rl2 Q.
01 LLINK EQU 2:3
02 RLINK EQU 4:5
03 START LDA K 1 Tl. Initialize.
04 LD1 ROOT 1 P
05 JMP 2F 1
06 4H LD2 0,1(RLINK) C2 T4. Move right. Q RLINK (P).
07 J2Z 5F C2 To T5 if Q =A.
08 1H ENT1 0,2 C-1 p Q.
09 2H CMPA 1,1 c T2. Comp_are.
10 JG 48 c To T4 if K > KEY(P).
11 JE SUCCESS Cl Exit if K = KEY(P).
12 LD2 0,1(LLINK) Cl-S T3. Move left. Q LL INK (P).
13 J2NZ 18 Cl-S To T2 if Q j A.
14 5H LD2 AVAIL 1- s TS. Insert into tree.
15 J2Z OVERFLOW 1- s
16 LDX 0,2(RLINK) 1- s
17 STX AVAIL l-S Q-¢= AVAIL.
18 STA 1,2 l-S KEY(Q) K.
19 STZ 0,2 l-S LLINK(Q) RLINK(Q)
20 JL 1F 1- s Was K < KEY(P)?
21 ST2 0,1(RLINK) A RLINK(P) Q.
22 JMP *+2 A
23 1H ST2 0,1(LLINK) l-S-A LLINK(P) Q.
24 DONE EQU * l-S Exit after insertion. I

The first 13 lines of this program do the search; the last 11 lines do the
insertion. The running time for the searching phase is (7C + Cl - 38 + 4) u,
where

C = number of comparisons made;
Cl = number of times K KEY (P);
C2 = number of times K > KEY (P);

8 = [search is successful] .

On the average we have Cl = (C + 8), since Cl + C2 = C and Cl - 8 has
the same probability distribution as C2; so the running time is about (7.5C -
2.58 + 4) u. This compares favorably with the binary search algorithms that use
an implicit tree (see Program 6.2.lC). By duplicating the code as in Program
6.2. lF we could effectively eliminate line 08 of Program T, reducing the running
time to (6.5C - 2.58 + 5)u. If the search is unsuccessful, the insertion phase of
the program costs an extra 14u or 15u.

Algorithm T can conveniently be adapted to variable-length keys and vari-
able-length records. For example, if we allocate the available space sequentially,
in a last-in-first-out manner, we can easily create nodes of varying size; the first
word of (1) could indicate the size. Since this is an efficient use of storage,
symbol table algorithms based on trees are often especially attractive for use in
compilers, assemblers, and loaders.

430 SEARCHING 6.2.2

But what about the worst case? Programmers are often skeptical of Algo-
rithm T when they first see it. If the keys of Fig. 10 had been entered into
the tree in alphabetic order AQUARIUS, ... , VIRGO instead of the calendar order
CAPRICORN, ... , SCORPIO, the algorithm would have built a degenerate tree that
essentially specifies a sequential search. All LLINKs would be null. Similarly, if
the keys come in the uncommon order

AQUARIUS, VIRGO, ARIES, TAURUS, CANCER, SCORPIO,
CAPRICORN, PISCES, GEMINI, LIBRA, LEO

we obtain a "zigzag" tree that is just as bad. (Try it!)
On the other hand, the particular tree in Fig. 10 requires only 3 1

2
1 com-

parisons, on the average, for a successful search; this is just a little higher than
the minimum possible average number of comparisons, 3, achievable in the best
possible binary tree.

When we have a fairly balanced tree, the search time is roughly propor-
tional to log N, but when we have a degenerate tree, the search time is roughly
proportional to N. Exercise 2.3.4.5-5 proves that the average search time would
be roughly proportional to y'J\f if we considered each N-node binary tree to be
equally likely. What behavior can we really expect from Algorithm T?

Fortunately, it turns out that tree search will require only about 2 ln N
1.386 lg N comparisons, if the keys are inserted into the tree in random order;
well-balanced trees are common, and degenerate trees are very rare.

There is a surprisingly simple proof of this fact. Let us assume that each of
the N! possible orderings of the N keys is an equally likely sequence of insertions
for building the tree. The number of comparisons needed to find a key is exactly
one more than the number of comparisons that were needed when that key was
entered into the tree. Therefore if C N is the average number of comparisons
involved in a successful search and Cfv is the average number in an unsuccessful
search, we have

C Cb+ + · · · + Cfv _1
N = 1+ N

But the relation between internal and external path length tells us that

CN = (1 + Cfv - 1; (3)

this is Eq. 6.2.1-(2). Putting (3) together with (2) yields

(N + 1) Cfv = 2N + Cb + + · · · + Cfv _ 1.

This recurrence is easy to solve. Subtracting the equation

NCfv_ 1 = 2(N - 1) +Cb+ + · · · + Cfv_2 ,

we obtain

(N + l)Cfv - NCfv_ 1 = 2 + Cfv_ 1 , hence Cfv = Cfv_ 1 +2/(N+1).

6.2.2 BINARY TREE SEARCHING 431

Since Cb= 0, this means that

= 2HN+I - 2.

Applying (3) and simplifying yields the desired result

CN=2(1+ (6)

Exercises 6, 7, and 8 below give more detailed information; it is possible to
compute the exact probability distribution of CN and not merely the average
values.

Tree insertion sorting. Algorithm T was developed for searching, but it can
also be used as the basis of an internal sorting algorithm; in fact, we can view
it as a natural generalization of list insertion, Algorithm 5.2.11. When properly
programmed, its average running time will be only a little slower than some of the
best algorithms we discussed in Chapter 5. After the tree has been constructed
for all keys, a symmetric tree traversal (Algorithm 2.3.1 T) will visit the records
in sorted order.

A few precautions are necessary, however. Something different needs to be
done if K = KEY (P) in step T2, since we are sorting instead of searching. One
solution is to treat K = KEY (P) exactly as if K > KEY (P); this leads to a stable
sorting method. (Equal keys will not necessarily be adjacent in the tree; they will
only be adjacent in symmetric order.) But if many duplicate keys are present,
this method will cause the tree to get badly unbalanced, and the sorting will
slow down. Another idea is to keep a list, for each node, of all records having
the same key; this requires another link field, but it will make the sorting faster
when a lot of equal keys occur.

Thus if we are interested only in sorting, not in searching, Algorithm T isn't
the best, but it isn't bad. And if we have an application that combines searching
with sorting, the tree method can be warmly recommended.

It is interesting to note that there is a strong relation between the analysis
of tree insertion sorting and the analysis of quicksort, although the methods
are superficially dissimilar. If we successively insert N keys into an initially
empty tree, we make the same average number of comparisons between keys as
Algorithm 5.2.2Q does, with minor exceptions. For example, in tree insertion
every key gets compared with K 1 , and then every key less than K 1 gets compared
with the first key less than K 1 , etc.; in quicksort, every key gets compared to
the first partitioning element K and then every key less than K gets compared
to a particular element less than K, etc. The average number of comparisons
needed in both cases is NCN - N. (However, Algorithm 5.2.2Q actually makes
a few more comparisons, in order to speed up the inner loops.)

Deletions. Sometimes we want to make the computer forget one of the table
entries it knows. We can easily delete a node in which either LLINK or RLINK = A;
but when both subtrees are nonempty, we have to do something special, since
we can't point two ways at once.

432 SEARCHING 6.2.2

For example, consider Fig. 10 again; how could we delete the root node,
CAPRICORN? One solution is to delete the alphabetically next node, which always
has a null LLINK, then reinsert it in place of the node we really wanted to delete.
For example, in Fig. 10 we could delete GEMINI, then replace CAPRICORN by
GEMINI. This operation preserves the essential left-to-right order of the table
entries. The following alg<?rithm gives a detailed description of such a deletion
process.

Algorithm D (Tree deletion). Let Q be a variable that points to a node of a
binary search tree represented as in Algorithm T. This algorithm deletes that
node, leaving a binary search tree. (In practice, we will have either Q ROOT or
Q LLINK(P) or RLINK (P) in some node of the tree. This algorithm resets the
value of Q in memory, to reflect the deletion.)

Dl. [Is RLINK null?] Set T Q. If RLINK(T) =A, set Q LLINK(T) and go
to D4. (For example, if Q RLINK(P) for some P, we would set RLINK(P)
LLINK(T) .)

D2. [Find successor.] Set R RLINK (T). If LLINK (R) = A, set LLINK (R)
LLINK (T) , Q R, and go to D4.

D3. [Find null LLINK.] Set S LLINK(R). Then if LLINK(S) i- A, set R S
and repeat this step until LLINK(S) = A. (At this point S will be equal
to Q$, the symmetric successor of Q.) Finally, set LLINK (S) LL INK (T),
LL INK (R) RLINK (S), RLINK (S) RLINK (T), Q S.

D4. [Free the node.] Set AVAIL<= T, thus returning the deleted node to the free
storage pool. I

The reader may wish to try this algorithm by deleting AQUARIUS, CANCER,
and CAPRICORN from Fig. 10; each case is slightly different. An alert reader may
have noticed that no special test has been made for the case RLINK (T) i- A,
LL INK (T) = A; we will defer the discussion of this case until later, since the
algorithm as it stands has some very interesting properties.

Since Algorithm D is quite unsymmetrical between left and right, it stands
to reason that a sequence of deletions will make the tree get way out of balance,
so that the efficiency estimates we have made will be invalid. But deletions don't
actually make the trees degenerate at all!

Theorem H (T. N. Hibbard, 1962). After a random element is deleted from a
random tree by Algorithm D, the resulting tree is still random.

[Nonmathematical readers, please skip to (10).] This statement of the theo-
rem is admittedly quite vague. We can summarize the situation more precisely
as follows: Let T be a tree of n elements, and let P(T) be the probability that
T occurs if its keys are inserted in random order by Algorithm T. Some trees
are more probable than others. Let Q(T) be the probability that T will occur if
n+ 1 elements are inserted in random order by Algorithm T and then one of these
elements is chosen at random and deleted by Algorithm D. In calculating P(T),
we assume that the n! permutations of the keys are equally likely; in calculating

6.2.2 BINARY TREE SEARCHING 433

Q (T), we assume that the (n + 1) ! (n + 1) permutations of keys and selections
of the doomed key are equally likely. The theorem states that P(T) = Q(T)
for all T.

Proof. We are faced with the fact that permutations are equally probable, not
trees, and therefore we shall prove the result by considering permutations as the
random objects. We shall define a deletion from a permutation, and then we
will prove that "a random element deleted from a random permutation leaves a
random permutation."

Let ai a 2 ... an+i be a permutation of {1, 2, ... , n+l}; we want to define the
operation of deleting ai, so as to obtain a permutation bi b2 ... bn of {1, 2, ... , n }.
This operation should correspond to Algorithms T and D, so that if we start
with the tree constructed from the sequence of insertions ai, a 2, ... , an+ i and
delete ai, renumbering the keys from 1 ton, we obtain the tree constructed from
bi b2 · ·. bn.

It is not hard to define such a deletion operation. There are two cases:
Case 1: ai = n + 1, or ai + 1 = aj for some j < i. (This is essentially the

condition "RLINK (aJ = A.") Remove ai from the sequence, and subtract unity
from each element greater than ai.

Case 2: ai + 1 = aj for some j > i. Replace ai by aj, remove aj from its
original place, and subtract unity from each element greater than ai.

For example, suppose we have the permutation 4 6 1 3 5 2. If we circle the
element to be deleted, we have

Ci) 6 1 3 5 2

4@1 3 5 2

4 6(D3 5 2

4 5 1 3 2

4 1 3 5 2

3 5 1 2 4

4 6 1@5 2

4 6 1 3@2

3 5 1 4 2

4 5 1 3 2

4 6 1 3 5 ®= 3 5 1 2 4

Since there are (n + 1)! (n + 1) possible deletion operations, the theorem will be
established if we can show that every permutation of {1, 2, ... , n} is the result
of exactly (n + 1) 2 deletions.

Let bi b2 ... bn be a permutation of {1, 2, ... , n }. We shall define (n + 1)2

deletions, one for each pair i, j with 1 ::; i, j :::; n + 1, as follows:
If i < j, the deletion is

Here, as below, stands for either bk or bk + 1, depending on whether or not
bk is less than the circled element. This deletion corresponds to Case 2.

If i > j, the deletion is

... ... (8)
this deletion fits the definition of Case 1.

Finally, if i = j, we have another Case 1 deletion, namely

... ... (g)

434 SEARCHING 6.2.2

As an example, let n = 4 and consider the 25 deletions that map into 3 1 4 2:

i = 1 i=2 i=3 i=4 i = 5

j = 1 @3 1 4 2 4@1 5 2 4 1@5 2 4 1 5@2 4 1 5 2@
j=2 @4 1 5 2 3@1 4 2 4 2(D5 3 4 2 5(D3 4 2 5 3(D
j=3 @1 4 5 2 4(D2 5 3 3 1@4 2 3 1 5@2 3 1 5 2@
j=4 @1 5 4 2 4(D5 2 3 3 1@5 2 3 1 4@2 4 1 5 3@
j=5 @1 5 2 4 4(D5 3 2 3 1@2 5 4 1 5@3 3 1 4 2®

The circled element is always in position i, and for fixed i we have con-
structed n + 1 different deletions, one for each j; hence (n + 1) 2 different deletions
have been constructed for each permutation b1 b2 ... bn. Since only (n + 1)2n!
deletions are possible, we must have found all of them. I

The proof of Theorem H not only tells us about the result of deletions, it
also helps us analyze the running time in an average deletion. Exercise 12 shows
that we can expect to execute step D2 slightly less than half the time, on the
average, when deleting a random element from a random table.

Let us now consider how often the loop in step D3 needs to be performed:
Suppose that we are deleting a node on level l, and that the external node
immediately following in symmetric order is on level k. For example, if we are
deleting CAPRICORN from Fig. 10, we have l = 0 and k = 3 since node [I] is on
level 3. If k = l + 1, we have RLINK(T) =A in step Dl; and if k > l + 1, we will
set S LL INK (R) exactly k - l - 2 times in step D3. The average value of l is
(internal path length)/N; the average value of k is

(external path length - distance to leftmost external node)/ N.

The distance to the leftmost external node is the number of left-to-right minima
in the insertion sequence, so it has the average value HN by the analysis of
Section 1.2.10. Since external path length minus internal path length is 2N, the
average value of k - l - 2 is -HN/N. Adding to this the average number of
times that k - l - 2 is -1, we see that the operation S LLINK (R) in step D3
is performed only

times, on the average, in a random deletion. This is reassuring, since the worst
case can be pretty slow (see exercise 11).

Although Theorem His rigorously true, in the precise form we have stated it,
it cannot be applied, as we might expect, to a sequence of deletions followed
by insertions. The shape of the tree is random after deletions, but the relative-
distribution of values in a given tree shape may change, and it turns out that the
first random insertion after deletion actually destroys the randomness property
on the shapes. This startling fact, first observed by Gary Knott in 1972, must
be seen to be believed (see exercise 15). Even more startling is the empirical
evidence gathered by J. L. Eppinger [CACM 26 (1983), 663-669, 27 (1984),

6.2.2 BINARY TREE SEARCHING 435

235], who found that the path length decreases slightly when a few random
deletions and insertions are made, but then it increases until reaching a steady
state after about n2 deletion/insertion operations have been performed. This
steady state is worse than the behavior of a random tree, when N is greater
than about 150. Further study by Culberson and Munro [Comp. J. 32 (1989),
68-75; Algorithmica 5 (1990), 295-311] has led to a plausible conjecture that
the average search time in the steady state is asymptotically y'2N/97r. However,
Eppinger also devised a simple modification that alternates between Algorithm D
and a left-right reflection of the same algorithm; he found that this leads to an
excellent steady state in which the path length is reduced to about 88% of its
normal value for random trees. A theoretical explanation for this behavior is
still lacking.

As mentioned above, Algorithm D does not test for the case LLINK (T) = A,
although this is one of the easy cases for deletion. We could add a new step
between Dl and D2, namely,

(Is LLINK null?) If LLINK(T) =A, set Q RLINK(T) and go to D4.
Exercise 14 shows that Algorithm D with this extra step always leaves a tree
that is at least as good as the original Algorithm D, in the path-length sense, and
sometimes the result is even better. When this idea is combined with Eppinger's
symmetric deletion strategy, the steady-state path length for repeated random
deletion/insertion operations decreases to about 86% of its insertion-only value.

Frequency of access. So far we have assumed that each key was equally likely
as a search argument. In a more general situation, let Pk be the probability that
we will search for the kth element inserted, where p1 + · · · + PN = 1. Then a
straightforward modification of Eq. (2), if we retain the assumption of random
order so that the shape of the tree stays random and Eq. (5) holds, shows that
the average number of comparisons in a successful search will be

N N
1 + LPk(2Hk - 2) = 2 LPkHk - 1. (11)

k=l k=l

For example, if the probabilities obey Zipf's law, Eq. 6.1-(8), the average
number of comparisons reduces to

if we insert the keys in decreasing order of importance. (See exercise 18.) This
is about half as many comparisons as predicted by the equal-frequency analysis,
and it is fewer than we would make using binary search.

Fig. 12 shows the tree that results when the most common 31 words of
English are entered in decreasing order of frequency. The relative frequency is
shown with each word, using statistics from Cryptanalysis by H. F. Gaines (New
York: Dover, 1956), 226. The average number of comparisons for a successful
search in this tree is 4.042; the corresponding binary search, using Algorithm
6.2.lB or 6.2.lC, would require 4.393 comparisons.

436 SEARCHING 6.2.2

Fig. 12. The 31 most common English words, inserted in decreasing order of frequency.

Optimum binary search trees. These considerations make it natural to ask
about the best possible tree for searching a table of keys with given frequencies.
For example, the optimum tree for the 31 most common English words is shown
in Fig. 13; it requires only 3.437 comparisons for an average successful search.

Let us now explore the problem of finding the optimum tree. When N = 3,
for example, let us assume that the keys K 1 < K 2 < K 3 have respective
probabilities p, q, r. There are five possible trees:

I ll ill N V

Cost: 3p+2q+r 2p+3q+r 2p+q+2r p+3q+2r p+2q+3r

Figure 14 shows the ranges of p, q, r for which each tree is optimum; the balanced
tree is best about 45 percent of the time, if we choose p, q, r at random (see
exercise 21).

Unfortunately, when N is large there are

(2;) /(N + 1) 4Nj(fo N3/2)

binary trees, so we can't just try them all and see which is best. Let us therefore
study the properties of optimum binary search trees more closely, in order to
discover a better way to find them.

6.2.2 BINARY TREE SEARCHING 437

Fig. 13. An optimum search tree for the 31 most common English words.

' (0,0,1)

Fig. 14. If the relative frequencies of (K 1 , K 2, K 3) are (p, q, r), this graph shows which
of the five trees in (13) is best. The fact that p + q + r = 1 makes the graph two-
dimensional although there are three coordinates.

So far we have considered only the probabilities for a successful search; in
practice, the unsuccessful case must usually be considered as well. For example,
the 31 words in Fig. 13 account for only about 36 percent of typical English text;
the other 64 percent will certainly influence the structure of the optimum search
tree.

Therefore let us set the problem up in the following way: We are given 2n+ 1
probabilities Pi,P2, ... ,Pn and qo, qi, ... , qn, where

Pi = probability that Ki is the search argument;
qi = probability that the search argument lies between Ki and Ki+i ·

(By convention, q0 is the probability that the search argument is less than Ki,
and qn is the probability that the search argument is greater than Kn.) Thus,

438 SEARCHING 6.2.2

P1 + P2 + · · · + Pn + qo + qi + · · · + qn = 1, and we want to find a binary tree
that minimizes the expected number of comparisons in the search, namely

n n LPj (level(CJ))+ 1) + L qk level(rn),
j=l k=O

where CD is the jth internal node in symmetric order and rn is the (k + 1)st
external node, and where the root has level zero. Thus the expected number of
comparisons for the binary tree

is 2q0 + 2p1 + 3q1 + 3p2 + 3q2 + p3 + q3. Let us call this the cost of the tree; and
let us say that a minimum-cost tree is optimum. In this definition there is no
need to require that the p's and q's sum to unity; we can ask for a minimum-cost
tree with any given sequence of "weights" (P1, ... , Pn; qo, ... , qn).

We have studied Huffman's procedure for constructing trees with minimum
weighted path length, in Section 2.3.4.5; but that method requires all the p's to
be zero, and the tree it produces will usually not have the external node weights
(q0, ... , qn) in the proper symmetric order from left to right. Therefore we need
another approach.

What saves us is that all subtrees of an optimum tree are optimum. For
example, if (i5) is an optimum tree for the weights (P1,p2,p3; qo, qi, q2, q3),
then the left subtree of the root must be optimum for (p1, P2; q0 , q1, q2); any
improvement to a subtree leads to an improvement in the whole tree.

This principle suggests a computation procedure that systematically finds
larger and larger optimum subtrees. We have used much the same idea in Sec-
tion 5.4.9 to construct optimum merge patterns; the general approach is known
as "dynamic programming," and we shall consider it further in Section 7.7.

Let c(i,j) be the cost of an optimum subtree with weights (pi+1, ... ,pj;
qi, ... , qj); and let w(i,j) = Pi+l + · · · + Pj +qi+···+ qj be the sum of all those
weights; thus c(i, j) and w(i, j) are defined for 0 :::; i :::; j :::; n. It follows that

c(i,i) = 0,
c(i,j) = w(i,j) + .min.(c(i, k-1) + c(k,j)),

i<k5'J
for i < j,

since the minimum possible cost of a tree with root ® is w (i, j) + c(i, k-1) +
c(k, j). When i < j, let R(i, j) be the set of all k for which the minimum is
achieved in (16); this set specifies the possible roots of the optimum trees.

Equation (i6) makes it possible to evaluate c(i,j) for j - i = 1, 2, ... , n;
there are about such values, and the minimization operation is carried out

6.2.2 BINARY TREE SEARCHING 439

for about values of k. This means we can determine an optimum tree in
O(n3) units of time, using O(n2) cells of memory.

A factor of n can actually be removed from the running time if we make
use of a monotonicity property. Let r(i, j) denote an element of R(i, j); we need
not compute the entire set R(i, j), a single representative is sufficient. Once we
have found r(i,j-1) and r(i+l,j), the result of exercise 27 proves that we may
always assume that

r(i, j-1):::; r(i,j):::; r(i+l, j)
when the weights are nonnegative. This limits the search for the minimum, since
only r(i + 1, j) - r(i, j-1) + 1 values of k need to be examined in (16) instead of
j-i. The total amount of work when j-i = dis now bounded by the telescoping
series

L (r(i+l, j) - r(i, j-1) + 1) = r(n-d+l, n) - r(O, d-1) + n - d + 1 < 2n;
d'.Sj:Sn
i=j-d

hence the total running time is reduced to O(n2).

The following algorithm describes this procedure in detail.

Algorithm K (Find optimum binary search trees). Given 2n + 1 nonnegative
weights (p1, ... , Pn; q0 , ... , qn), this algorithm constructs binary trees t(i, j) that
have minimum cost for the weights (Pi+l, ... , Pj; qi, ... , qj) in the sense defined
above. Three arrays are computed, namely

c[i, j],
r[i, j),

w[i,j],

for 0 :::; i :::; j :::; n,
for 0 :::; i < j :::; n,
for 0 :::; i :::; j :::; n,

the cost oft(i, j);
the root oft(i, j);
the total weight of t(i, j).

The results of the algorithm are specified by the r array: If i = j, t(i,j) is null;
otherwise its left subtree is t(i, r[i,j]-1) and its right subtree is t(r[i,j], j).
Kl. (Initialize.] For 0 :::; i :::; n, set c[i, i] 0 and w[i, i] qi and w[i, j]

w [i, j -1] + p j + qj for j = i + 1, ... , n. Then for 1 :::; j :::; n set c[j -1, j]
w[j-1,j] and r[j-1,j] j. (This determines all the 1-node optimum
trees.)

K2. [Loop on d.] Do step K3 for d = 2, 3, ... , n, then terminate the algorithm.
K3. [Loop on j.] (We have already determined the optimum trees of fewer than

d nodes. This step determines all the d-node optimum trees.) Do step K4
for j = d, d + 1, ... , n.

K4. [Find c[i,j], r[i,j].] j - d. Then set

c[i, j] w[i, j] + minr(i,j-1]'.Sk'.Sr(i+l,j] (c[i, k-1] + c[k, jl),

and set r[i, j] to a value of k for which the minimum occurs. (Exercise 22
proves that r[i,j-1]:::; r[i+l,j].) I
As an example of Algorithm K, consider Fig. 15, which is based on a "key-

word-in-context" (KWIC) indexing application. The titles of all articles in the

440 SEARCHING 6.2.2

first ten volumes of the Journal of the ACM were sorted to prepare a concordance
in which there was one line for every word of every title. However, certain words
like "THE" and "EQUATION" were felt to be sufficiently uninformative that they
were left out of the index. These special words and their frequency of occurrence
are shown in the internal nodes of Fig. 15. Notice that a title such as "On the
solution of an equation (or a certain new problem" would be so uninformative,
it wouldn't appear in the index at all! The idea of KWIC indexing is due to
H. P. Luhn, Amer. Documentation 11 (1960), 288-295. (See W. W. Youden,
JACM 10 (1963), 583-646, where the full KWIC index appears.)

Fig. 15. An optimum binary search tree for a KWIC indexing application.

When preparing a KWIC index file for sorting, we might want to use a
binary search tree in order to test whether or not each particular word is to be
indexed. The other words fall between two of the unindexed words, with the
frequencies shown in the external nodes of Fig. 15; thus, exactly 277 words that
are alphabetically between "PROBLEMS" and "SOLUTION" appeared in the JACM
titles during 1954-1963.

Figure 15 shows the optimum tree obtained by Algorithm K, with n = 35.
The computed values of r[O, j] for j = 1, 2, ... , 35 are (1, 1, 2, 3, 3, 3, 3, 8, 8, 8,
8, 8, 8, 11, 11, ... , 11, 21, 21, 21, 21, 21, 21); the values of r[i, 35] for i = 0, 1, ... , 34
are (21,21, ... ,21,25,25,25,25,25,25,26,26,26,30,30,30,30,30,30,30,33,33,
33, 35, 35).

The "betweenness frequencies" qj have a· noticeable effect on the optimum
tree structure; Fig. 16(a) shows the optimum tree that would have been obtained
with the qj set to zero. Similarly, the internal frequencies Pi are important;
Fig. 16(b) shows the optimum tree when the Pi are set to zero. Considering the
full set of frequencies, the tree of Fig. 15 requires only 4.15 comparisons, on the
average, while the trees of Fig. 16 require, respectively, 4.69 and 4.55.

6.2.2 BINARY TREE SEARCHING 441

a)

b)

0 "'

Fig. 16. Optimum binary search trees based on half of the data of Fig. 15: (a) external
frequencies suppressed; (b) internal frequencies suppressed.

Since Algorithm K requires time and space proportional to n 2 , it becomes
impractical when n is very large. Of course we may not really want to use binary
search trees for large n, in view of the other search techniques to be discussed
later in this chapter; but let's assume anyway that we want to find an optimum
or nearly optimum tree when n is large.

We have seen that the idea of inserting the keys in order of decreasing
frequency can tend to make a fairly good tree, on the average; but it can also be
very bad (see exercise 20), and it is not usually very near the optimum, since it
makes no use of the qj weights. Another approach is to choose the root k so that
the resulting maximum subtree weight, max(w(O,k-1), w(k,n)), is as small as
possible. This approach can also be fairly poor, because it may choose a node
with very small Pk to be the root; however, Theorem M below shows that the
resulting tree will not be extremely far from the optimum.

442 SEARCHING 6.2.2

5.1
+>
0 5.0 0 r-.

...c:: 4.9 +>

4.8 Q)
Q) r-.

+> 4.7 ..,,
..... 4.6 0
+> rn
0 4.5 u
Q)

4.4
r-.
Q)

4.3
El 4.2 = El ·a 4.1

4.0

y-- c(O, k-1) + c(k, n) +w(O, n)
w(O, n)

300

200 15
i::
Q)

100 &
Q)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Fig. 17. Behavior of the cost as a function of the root, k.

A more satisfactory procedure can be obtained by combining these two
methods, as suggested by W. A. Walker and C. C. Gotlieb [Graph Theory and
Computing (Academic Press, 1972), 303-323): Try to equalize the left-hand and
right-hand weights, but be prepared to move the root a few steps to the left or
right to find a node with relatively large Pk. Figure 17 shows why this method is
reasonable: If we plot c(O, k-1) + c(k, n) as a function of k, for the KWIC data
of Fig. 15, we see that the result is quite sensitive to the magnitude of Pk.

A top-down method such as this can be used for large n to choose the root
and then to work on the left and the right subtrees. When we get down to
a sufficiently small subtree we can apply Algorithm K. The resulting method
yields fairly good trees (reportedly within 2 or 3 percent of the optimum), and it
requires only O(n) units of space, O(nlogn) units of time. In fact, M. Fredman
has shown that O(n) units of time suffice, if suitable data structures are used
[STOC 7 (1975), 240-244]; see K. Mehlhorn, Data Structures and Algorithms 1
(Springer, 1984), Section 4.2.

Optimum trees and entropy. The minimum cost is closely related to a
mathematical concept called entropy, which was introduced by Claude Shannon
in his seminal work on information theory [Bell System Tech. J. 27 (1948), 379-
423, 623-656]. If p 1 , P2, ... , Pn are probabilities with P1 + P2 + · · · + Pn = 1, we
define the entropy H(p1 ,p2, ... ,Pn) by the formula

n 1
H(p1 ,p2, · · · ,pn) = L Pk lg-.

k=l Pk

Intuitively, if n events are possible and the kth event occurs with probability Pk,
we can imagine that we have received lg(l/pk) bits of information when the kth

6.2.2 BINARY TREE SEARCHING 443

event has occurred. (An event of probability gives 5 bits of information, etc.)
Then H(p1,p2, ... ,pn) is the expected number of bits of information in a random
event. If Pk = 0, we define Pk lg(l/pk) = 0, because

1 1
lim E lg - = lim - lg m = 0.

E-+0+ E m-+oo m

This convention allows us to use (18) when some of the probabilities are zero.
The function xlg(l/x) is concave; that is, its second derivative, -1/(xln2),

is negative. Therefore the maximum value of H(p1, P2, ... ,Pn) occurs when
P1 = P2 = · · · = Pn = 1/n, namely

H (_!_ , _!_ , ... , _!_) = lg n.
n n n

In general, if we specify P1, ... , Pn-k but allow the other probabilities Pn-k+i,
.... , Pn to vary, we have

H(p1, ·. · ,Pn-k,Pn-k+I, · · · ,Pn) H(p1, · · · ,Pn-k, · ·.,

= H(P1, ... ,Pn-k, q) + q lg k, (20)

H(p1' ... ,Pn-k,Pn-k+l, ... ,Pn) H(p1' ... ,Pn-k, q, 0, ... '0)
= H(p1, ... ,Pn-k, q), (21)

where q = 1 - (P1 + · · · + Pn-k)·
Consider any not-necessarily-binary tree in which probabilities have been

assigned to the leaves, say

P2 P3 P4

Here Pk represents the probability that a search procedure will end at leaf
Then the branching at each internal (nonleaf) node corresponds to a local prob-
ability distribution based on the sums of leaf probabilities below each branch.
For example, at node @ the first, second, and third branches are taken with
the respective probabilities

(P1 + P2 + P3 + P4, Ps, P6 + P1 + PB + pg),

and at node @ the probabilities are

(p1,P2,p3 + p4)/(P1 + P2 + p3 + p4).

444 SEARCHING 6.2.2

Let us say that each internal node has the entropy of its local probability
distribution; thus

1
H(A) = (p1 +P2+p3+p4) lg-----

P1 +p2+p3+p4
1 1

+ p5 lg - + (p5+p1+PB+pg) lg + + + , p5 P6 p7 PB pg

H(B) = P1 lg P1 +P2+p3+p4 + P2 lg P1 +P2+p3+p4
P1+P2+p3+p4 PI P1+P2+p3+p4 P2

p3+p4 l P1 +P2+p3+p4 + g ' P1 +P2+p3+p4 p3+p4

H (C) = P2 lg P2 ,
P2 P2

H(D) = P3 lg p3+p4 + p4 lg p3+p4
p3 +p4 p3 p3 +p4 p4

H(E) = P6 lg P6+P1+PB+Pg + P1 lg P6+P1+PB+Pg
P6+P1+PB+Pg P6 P6+P1+PB+Pg P1
+ PB lg P6+P1+PB+Pg + pg lg P6+P1+PB+Pg

P6+P1+PB+Pg PB P6+P1+PB+Pg pg

Lemma E. The sum of p(a)H(a) over all internal nodes a of a tree, where
p(a) is the probability of reaching node a and H(a) is the entropy of a, equals
the entropy of the probability distribution on the leaves.

Proof. It is easy to establish this identity by induction from bottom to top. For
example, we have

H(A) + (P1 +P2 +p3 +p4) H (B) +P2 H (C) + (p3 +p4)H (D) + (P6 +P1+PB +pg) H(E)
1 1 1

= P1 lg - + P2 lg - + · · · +pg lg -
P1 P2 pg

with respect to the formulas above; all terms involving lg(p1 + p 2 + p3 + p4),

lg(p3 + p4), and lg(p5 + P1 +PB+ pg) cancel out. I
As a consequence of Lemma E, we can use entropy to establish a convenient

lower bound on the cost of any binary tree.

Theorem B. Let (p1 , ... , Pn; qo, ... , qn) be nonnegative weights as in Algo-
rithm K, normalized so that P1 + · · · +Pn +qo + · · · +qn = 1, and let P = P1 + · · · +Pn
be the probability of a successful search. Let

H = H(p1,··· ,pn,qO,··· ,qn)

be the entropy of the corresponding probability distribution, and let C be the
minimum cost, (i4). Then if H 2'.: 2P/e we have

eH
C > H - P lg - . (23) 2P

6.2.2 BINARY TREE SEARCHING 445

Proof. Take a binary tree of cost C and assign the probabilities qk to its leaves.
Also add a middle branch below each internal node, leading to a new leaf that
has probability Pk· Then C = 2".:p(a), summed over the internal nodes a of the
resulting ternary tree, and H = 2".:p(a)H(a) by Lemma E.

The entropy H(a) corresponds to a three-way distribution, where one of the
probabilities is Pj / p(a) if a is internal node Ci). Exercise 35 proves that

H (p, q, r) p lg x + 1 + lg (1 + (24)

for all x > 0, whenever p + q + r = 1. Therefore we have the inequality

n 1
H = LP(a)H(a) lgx + (1+lg(1 + 2x)) C

a J=l

for all positive x. Choosing 2x = H / P now leads to the desired result, since

1 (H) C> H-Plg-
- 1 + lg(1 + p I H) 2P

1 (H PI) p 1 eH
1 + lg(l + P / H) + g e - 1 + lg(l + P / H) g 2P

eH
>H-Plg-- 2P'

because lg(l + y) :::; y lg e for all y > 0. I

Eq. (23) does not necessarily hold when the entropy is extremely low. But
the restriction to cases where H 2: 2P / e is not severe, since_ the value of H is
usually near lg n; see exercise 37. Notice that the proof doesn't actually use the
left-to-right order of the nodes; the lower bound (23) holds for any binary search
tree that has internal node probabilities Pj and external node probabilities qk in

"' any order.
Entropy calculations also yield an upper bound that is not too far from (23),

even when we do stick to the left-to-right order:

Theorem M. Under the assumptions of Theorem B, we also have

C < H+2-P.

Proof. Form the n+l sums so= s1 = qo+P1 s2 = qo+P1 +q1
... , Sn= qo+P1 + · · · +qn-1 +Pn + we may assume that so< s1 <···<Sn
(see exercise 38). Express each sk as a binary fraction, writing Sn= (.111 ...)2
if Sn = 1. Then let the string (]'k be the leading bits of s k, retaining just enough
bits to distinguish sk from Sj for j -j. k. For example, we might haven= 3 and

So= (.0000001)2
S1 = (.0000101)2
S2 = (.0001011)2
S3 = (.1100000)2

(]'o = 00000
(J'l = 00001
(]'2 = 0001
(]'3 = 1

446 SEARCHING 6.2.2

Construct a binary tree with n + 1 leaves, in such a way that (]'k corresponds to
the path from the root to [!] for 0 k n, where 'O' denotes a left branch
and 'l' denotes a right branch. Also, if (J'k-1 has the form ak0f3k and (]'k has the
form ak 1 /k for some ak, f3k, and /k, let the internal node ® correspond to the
path ak. Thus we would have

in the example above. There may be some internal nodes that are still nameless;
replace each of them by their one and only child. The cost of the resulting tree
is at most + 1) +

We have

Pk +Pk + = Sk - Sk-1 2-lak I, (26)

because sk (.ak)2 + 2-lakl and sk-1 (.akh· Furthermore, if qk 2-t we
have sk sk-l + 2-t-l and sk+l sk + 2-t-l, hence l(]'k I t + 1. It follows
that qk < 2-lak 1+2 , and we have constructed a binary tree of cost

n n n 1 n 1 L Pk (1 + lak I) + L qk l(]'k I L Pk (1 + lg -) + L qk (2 + lg -)
k=l k=O k=l Pk k=O qk

= P + 2(1 - P) + H = H + 2 - P. I
In the KWIC indexing application of Fig. 15, we have P = 1304/3288

0.39659, and H(p1, ... ,p35, qo, ... , q3s) 5.00635. Therefore Theorem B tells us
that C 3.3800, and Theorem M tells us that C < 6.6098.

*The Garsia-Wachs algorithm. An amazing improvement on Algorithm K
is possible in the special case that P1 = · · · = Pn = 0. This case, in which
only the leaf probabilities (qo, qi, ... , qn) are relevant, is especially important
because it arises in a several significant applications. Let us therefore assume
in the remainder of this section that the probabilities Pj are zero. Notice that
Theorems B and M reduce to the inequalities

H(qo, q1, ... , qn) C(qo, qi,···, qn) < H(qo, qi, ... , qn) + 2 (27)
in this case; and the cost function (14) simplifies to

n

c = :Lqkzk, lk = the level of [!].
k=O

The key property that makes a simpler algorithm possible is the following
observation:

6.2.2 BINARY TREE SEARCHING 447

Lemma W. If qk-l > qk+l then lk lk+l in every optimum tree. If qk.,-1 =
qk+l then lk lk+l in some optimum tree.

Proof. Suppose qk-l qk+l and consider a tree in which lk > lk+l· Then [!]
must be a right child, and its left sibling Lis a subtree of cost c qk-l· Replace
the parent of[!] by L; replace I k+l I by a node whose children are [!] and I k+l I.
This changes the overall cost by -c - qk(lk - lk+1 - 1) + qk+1 qk+l - qk-1·
So the given tree was not optimum if qk-l > qk+1, and it has been transformed
into another optimum tree if qk-l = qk+l · In the latter case a sequence of such
transformations will make lk lk+l · I

A deeper analysis of the structure tells us considerably more.

Lemma X. Suppose j and k are indices such that j < k and we have
i) qi-1 > qi+l for 1 i < k;

ii) qk-1 qk+l;
iii) qi < qk-l + qk for j i < k - 1; and
iv) qj-1 qk-1 + qk.
Then there is an optimum tree in which lk-1 = lk and either
a) l j = l k - 1, or
b) lj = lk and [lJ is a left child.

Proof. By reversing left and right in Lemma W, we see that (ii) implies the
existence of an optimum tree in which lk-l lk. But Lemma W and (i) also
imply that l1 l2 · · · lk. Therefore lk-1 = lk.

Suppose ls < lk - 1 l8 +1 for some s with j s < k. Let t be the smallest
index < k such that lt = lk· Then ls+l = · · · = lt-1 = lk - 1, and I s+l I is a
left child; hence t- s is odd, and node ITJ is a left child for i = s + 1, s + 3, ... , t.
Replace the parent of ITJ by I t+ 1 I ; replace ITJ by I i+ 1 I for s < i < t; and
replace the external node 0 by an internal node whose children are 0 and
ls+l I. This changes the cost qs - qt - qt+1 qs - qk-1 - qk, so it is an
improvement if q8 < qk-l + qk. Therefore, by (iii), lj lk - 1.

We still have not used hypothesis (iv). If lj = lk and IJJ is not a left
child, [lJ must be the right sibling of jj + 1 I. Replace their parent by jj + 1 I;
then replace leaf ITJ by I i+l j for j < i < k; and replace the external node
[!] by an internal node whose children are I k+ 1 I and [!]. This changes the
cost by -qj-l + qk-l + qk 0, so we obtain an optimum tree satisfying (b). I
Lemma Y. Let j and k be as in Lemma X, and consider the modifi.ed probabil-
ities (qb, ... = (q0, ... ,qj_1,qk-l +qk,qj, ... ,qk_2,qk+1, ... ,qn) obtained
by removing qk-l and qk and inserting qk-1 + qk after qj-l · Then

· · ·, (qk-1 + qk) + C(qo, · · ·, qn) · (29)
Proof. It suffices to show that any optimum tree for (q0, ... , qn) can be trans-
formed into a tree of the same cost in which I k-1 I and [!] are siblings and the
leaves appear in permuted order

7
B

c
D

E

F
G

H

I

J
K

L
M

N

0

p
Q

R

s

T
u

v
w

x

y
z

F
ig. 18. T

he G
arsia-W

achs algorithm
 applied to alphabetic frequency data: Phases 1 and 2.

6.2.2 BIN ARY TREE SEARCHING 449

We start with the tree constructed in Lemma X. If it is of type (b), we simply
rename the leaves, sliding I k-1 I and [!] to the left by k - 1 - j places. If it is
of type (a), suppose ls-l = lk - 1 and ls= lk; we proceed as follows: First slide
lk-11 and[!] left by k-1-s places; then replace their (new) parent by lk-21;
finally replace IJJ by a node whose children are I k-1 I and [!], and replace node
ITJ by I i-1 I for j < i < k - 1. I

Lemma Z. Under the hypotheses of Lemma Y, equality holds in (29).

Proof. Every tree for (qb, ... , corresponds to a tree with leaves (30) in
which the two out-of-order leaf nodes I k-1 I and [!] are siblings. Let internal
node @ be their parent. We want to show that any optimum tree of that type
can be converted to a tree of the same cost in which the leaves appear in normal
order @] ...

There is nothing to prove if j = k - 1. Otherwise we have 1 > 1 for
j i < k - 1, because qj-l 2: qk-l + qk > qj. Therefore by Lemma W we have
lx lj · · · lk-2, where lx is the level of @ and li is the level of ITJ for
j i < k - 1. If lx = lk_2, we simply slide node @ to the right, replacing the
sequence G) IJJ . . . I k-2 I by IJJ ... I k-2 I @; this straightens out the leaves
as desired.

Otherwise suppose ls = lx and ls+l > lx. We first replace G) IJJ ... 0
by []] ... 0 @; this makes l ls+l · · · lk-2, where l = lx + 1 is the
common level of nodes I k-1 I and [!]. Finally replace nodes

lk-11 [!] ls+ll ... lk-21
by the cyclically shifted sequence

ls+ll ... lk-21 lk-ll [!].

Exercise 40 proves that this decreases the cost, unless lk-2 = l. But the cost
cannot decrease, because of Lemma Y. Therefore lk-2 = l, and the proof is
complete. I

These lemmas show that the problem for n + 1 weights q0, q1 , ... , qn can
be reduced to an n-weight problem: We first find the smallest index k with
qk-1 qk+1; then we find the largest j < k with qj-l 2: qk-l + qk; then we
remove qk-1 and qk from the list, and insert the sum qk-l + qk just after qj-l·

In the special cases j = 0 or k = n, the proofs show that we should proceed as
if infinite weights q_ 1 and qn+l were present at the left and right. The proofs
also show that any optimum tree T' that is obtained from the new weights
(qb, ... , can be rearranged into a tree T that has the original weights
(qo, ... , qn) in the correct left-to-right order; moreover, each weight will appear
at the same level in both T and T'.

For example, Fig. 18 illustrates the construction when the weights qk are
the relative frequencies of the characters u, A, B, ... , Z in English text. The first
few weights are

186, 64, 13, 22, 32, 103, ...

7

x
y

F
ig. 19. T

he G
arsia-W

achs algorithm
 applied to alphabetic frequency data: Phase 3.

6.2.2 BINARY TREE SEARCHING 451

and we have 186 > 13, 64 > 22, 13 :::; 32; therefore we replace "13, 22" by 35. In
the new sequence

186, 64, 35, 32, 103, ...

we replace "35, 32" by 67 and slide 67 to the left of 64, obtaining

186, 67, 64, 103,

Then "67, 64" becomes 131, and we begin to examine the weights that follow 103.
After the 27 original weights have been combined into the single weight 1000, the
history of successive combinations specifies a binary tree whose weighted path
length is the solution to the original problem.

But the leaves of the tree in Fig. 18 are not at all in the correct order,
because they get tangled up when we slide Qk-l +qk to the left (see exercise 41).
Still, the proof of Lemma Z guarantees that there is a tree whose leaves are in
the correct order and on exactly the same levels as in the tangled tree. This
untangled tree, Fig. 19, is therefore optimum; it is the binary tree output by the
Garsia-Wachs algorithm.

Algorithm G (Garsia-Wachs algorithm for optimum binary trees). Given a
sequence of nonnegative weights wo, w1 , ... , Wn, this algorithm constructs a
binary tree with n internal nodes for which wklk is minimum, where lk is
the distance of external node (I] from the root. It uses an array of 2n + 2 nodes
whose addresses are Xk for 0 :::; k :::; 2n + 1; each node has four fields called
WT, LLINK, RLINK, and LEVEL. The leaves of the constructed tree will be nodes
Xo ... Xn; the internal nodes will be Xn+1 ... X2n; the root will be X2n; and X2n+1
is used as a temporary sentinel. The algorithm also maintains a working array
of pointers Po, P1, ... , Pt, where t:::; n + 1.

G 1. (Begin phase 1.] Set WT (Xk) +- Wk and LLINK (Xk) +- RLINK (Xk) +- A for
0 :::; k :::; n. Also set Po +- X2n+ 1, WT (Po) +- oo, P1 +- X0 , t +- 1, m +- n.
Then perform step G2 for j = 1, 2, ... , n, and go to G3.

G2. [Absorb Wj.] (At this point we have the basic condition

for 1 :::; i < t;
in other words, the weights in the working array are "2-descending.") Per-
form Subroutine C below, zero or more times, until WT(Pt_ 1) > Wj. Then
set t +- t + 1 and Pt +- X j .

G3. [Finish phase 1.] Perform Subroutine C zero or more times, until t = 1.

G4. [Do phase 2.] (Now P1 = X2n is the root of a binary tree, and WT (P1)
wo+· · ·+wn.) Set lk to the distance of node Xk from node P1 , for 0:::; k:::; n.
(See exercise 43. An example is shown in Fig. 18, where level numbers
appear at the right of each node.)

G5. [Do phase 3.] By changing the links of Xn+1, ... , X2n, construct a new binary
tree having the same level numbers lk, but with the leaf nodes in symmetric
order X0 , ... , Xn. (See exercise 44; an example appears in Fig. 19.) I

452 SEARCHING 6.2.2

Subroutine C (Combination). This subroutine is the heart of the Garsia-
Wachs algorithm. It combines two weights, shifts them left as appropriate, and
maintains the 2-descending condition (31).

Cl. [Initialize.] Set k +- t.
C2. [Create a new node.] .(At this point we have k 2.) Set m +- m + 1,

LLINK(Xm) +- Pk-1, RLINK(Xm) +-Pk, WT(Xm) +- WT(Pk-1) + WT(Pk).

C3. [Shift the following nodes left.] Sett+- t - 1, then Pj+1 +- Pj fork::; j ::; t.
C4. [Shift the preceding nodes right.] Set j +- k-2; then while WT (Pj) <WT (Xm)

set PJ+I +- Pj and j +- j - 1.

C5. [Insert the new node.] Set Pj+l +- Xm·

C6. [Done?] If j > 0 and WT(Pj_ 1)::; WT(Xm), set k +- j and return to C2. I

As stated, Subroutine C might need D(n) steps to create and insert a new
node, because it uses sequential memory instead of linked lists. Therefore the
total running time of Algorithm G might be D(n2). But more elaborate data
structures can be used to guarantee that phase 1 will require at most 0(n log n)
steps (see exercise 45). Phases 2 and 3 need only O(n) steps.

Kleitman and Saks [SIAM J. Algeb. Discr. Methods 2 (1981), 142-146]
proved that the optimum weighted path length never exceeds the value of the
optimum weighted path length that occurs when the q's have been rearranged
in "sawtooth order":

Qo::; Q2::; q4::; · · ·::; Q2Ln/2j ::; Q2fn/2l-l ::; · · ·::; q3::; Q1 · (32)

(This is the inverse of the organ-pipe order discussed in exercise 6.1-18.) In
the latter case the Garsia-Wachs algorithm essentially reduces to Huffman's
algorithm on the weights q0 + q1 , Q2 + q3, ... , because the weights in the working
array will actually be nonincreasing (not merely "2-descending" as in (31)).
Therefore we can improve the upper bound of Theorem M without knowing
the order of the weights.

The optimum binary tree in Fig. 19 has an important application to coding
theory as well as to searching: Using 0 to stand for a left branch in the tree and -
1 to stand for a right branch, we obtain the following variable-length codewords:

u 00 I 1000 R 11001
A 0100 J 1001000 s 1101
B 010100 K 1001001 T 1110
c 010101 L 100101 u 111100
D 01011 M 10011 v 111101 (33)
E 0110 N 1010 w 111110
F 011100 0 1011 x 11111100
G 011101 p 110000 y 11111101
H 01111 Q 110001 z 1111111

6.2.2 BINARY TREE SEARCHING 453

Thus a message like "RIGHT ON" would be encoded by the string

1100110000111010111111100010111010.

Decoding from left to right is easy, in spite of the variable length of the codewords,
because the tree structure tells us when one codeword ends and another begins.
This method of coding preserves the alphabetical order of messages, and it uses
an average of about 4.2 bits per letter. Thus the code could be used to compress
data files, without destroying lexicographic order of alphabetic information. (The
figure of 4.2 bits per letter is minimum over all binary tree codes, although it
could be reduced to 4.1 bits per letter if we disregarded the alphabetic ordering
constraint. A further reduction, preserving alphabetic order, could be achieved
if pairs of letters instead of single letters were encoded.)

History and bibliography. The tree search methods of this section were
discovered independently by several people during the 1950s. In an unpublished
memorandum dated August 1952, A. I. Durney described a primitive form of
tree insertion in the following way:

Consider a drum with 2n item storages in it, each having a binary
address.

Follow this program:
1. Read in the first item and store it in address 2n-i, i.e., at the

halfway storage place.
2. Read in the next item. Compare it with the first.
3. If it is larger, put it in address 2n-l + 2n-2. It it is smaller, put it

at 2n-2

Another early form of tree insertion was introduced by D. J. Wheeler, who
actually allowed multiway branching similar to what we shall discuss in Section
6.2.4; and a binary tree insertion technique was devised by C. M. Berners-Lee
[see Comp. J. 2 (1959), 5].

The first published descriptions of tree insertion were by P. F. Windley
[Comp. J. 3 (1960), 84-88], A. D. Booth and A. J. T. Colin [Information and
Control 3 (1960), 327-334], and Thomas N. Hibbard [JACM 9 (1962), 13-28].
Each of these authors seems to have developed the method independently of
the others, and each paper derived the average number of comparisons (6) in
a different way. The individual authors also went on to treat different aspects
of the algorithm: Windley gave a detailed discussion of tree insertion sorting;
Booth and Colin discussed the effect of preconditioning by making the first 2n -1
elements form a perfectly balanced tree (see exercise 4); Hibbard introduced the
idea of deletion and showed the connection between the analysis of tree insertion
and the analysis of quicksort.

The idea of optimum binary search trees was first developed for the special
case P1 = · · · = Pn = 0, in the context of alphabetic binary encodings like
(33). A very interesting paper by E. N. Gilbert and E. F. Moore [Bell System
Tech. J. 38 (1959), 933-968] discussed this problem and its relation to other

454 SEARCHING 6.2.2

coding problems. Gilbert and Moore proved Theorem M in the special case
P = 0, and observed that an optimum tree could be constructed in O(n3) steps,
using a method like Algorithm K but without making use of the monotonicity
relation (i7). K. E. Iverson [A Programming Language (Wiley, 1962), 142-144]
independently considered the other case, when all the q's are zero. He suggested
that an optimum tree wou!d be obtained if the root is chosen so as to equalize the
left and right subtree probabilities as much as possible; unfortunately we have
seen that this idea doesn't work. D. E. Knuth [Acta Informatica 1 (1971), 14-25,
270] subsequently considered the case of general p and q weights and proved that
the algorithm could be reduced to O(n2) steps; he also presented an example
from a compiler application, where the keys in the tree are "reserved words" in
an ALGOL-like language. T. C. Hu had been studying his own algorithm for the
case Pj = 0 for several years; a rigorous proof of the validity of that algorithm
was difficult to find because of the complexity of the problem, but he eventually
obtained a proof jointly with A. C. Tucker [SIAM J. Applied Math. 21 (1971),
514-532]. Simplifications leading to Algorithm G were found several years later
by A. M. Garsia and M. L. Wachs, SICOMP 6 (1977), 622-642, although their
proof was still rather complicated. Lemmas W, X, Y, and Z above are due to
J. H. Kingston, J. Algorithms 9 (1988), 129-136. See also the paper by Hu,
Kleitman, and Tamaki, SIAM J. Applied Math. 37 (1979), 246-256, for an
elementary proof of the Hu-Tucker algorithm and some generalizations to other
cost functions.

Theorem Bis due to Paul J. Bayer, report MIT/LCS/TM-69 (Mass. Inst.
of Tech., 1975), who also proved a slightly weaker form of Theorem M. The
stronger form above is due to K. Mehlhorn, SICOMP 6 (1977), 235-239.

EXERCISES
1. [15] Algorithm T has been stated only for nonempty trees. What changes should

be made so that it works properly for the empty tree too?
2. [20] Modify Algorithm Tso that it works with right-threaded trees. (See Section

2.3.1; symmetric traversal is easier in such trees.)

3. [20] In Section 6.1 we found that a slight change to the sequential search Algo-
rithm 6.lS made it faster (Algorithm 6.lQ). Can a similar trick be used to speed up
Algorithm T?

4. [M24] (A. D. Booth and A. J. T. Colin.) Given N keys in random order, suppose
that we use the first 2n - 1 to construct a perfectly balanced tree, placing 2k keys on
level k for 0 ::;; k < n; then we use Algorithm T to insert the remaining keys. What is
the average number of comparisons in a successful search? [Hint: Modify Eq. (2).]

5. [M25] There are 11! = 39,916,800 different orders in which the names CAPRICORN,
AQUARIUS, etc. could have been inserted into a binary search tree.

a) How many of these arrangements will produce Fig. 10?
b) How many of these arrangements will produce a degenerate tree, in which LLINK

or RLINK is A in each node?

6. [M26] Let Pnk be the number of permutations ai a2 ... an of {1, 2, ... , n} such
that, if Algorithm T is used to insert ai, a2, ... , an successively into an initially empty

6.2.2 BINARY TREE SEARCHING 455

tree, exactly k comparisons are made when an is inserted. (In this problem, we will
ignore the comparisons made when a 1 , ... , an-I were inserted. In the notation of the
text, we have = (Z::=k kPnk)/n!, since this is the average number of comparisons
made in an unsuccessful search of a tree containing n - 1 elements.)

a) Prove that P(n+l)k = 2Pn(k-l) + (n- l)Pnk· [Hint: Consider whether or not an+l
falls below an in the tree.]

b) Find a simple formula for the generating function Gn(z) = Lk PnkZk, and use
your formula to express P nk in terms of Stirling numbers.

c) What is the variance of this distribution?

7. [M25] (S. R. Arora and W. T. Dent.) After n elements have been inserted into
an initially empty tree, in random order, what is the average number of comparisons
needed by Algorithm T to find the mth largest element, given the key of that element?

8. [M38] Let p(n, k) be the probability that k is the total internal path length of a
tree built by Algorithm T from n randomly ordered keys. (The internal path length is
the number of comparisons made by tree insertion sorting as the tree is being built.)

a) Find a recurrence relation that defines the corresponding generating function.
b) Compute the variance of this distribution. [Several of the exercises in Section 1.2. 7

may be helpful here.]
9. [41] We have proved that tree search and insertion requires only about 2 lnN

comparisons when the keys are inserted in random order; but in practice, the order
may not be random. Make empirical studies to see how suitable tree insertion really is
for symbol tables within a compiler and/or assembler. Do the identifiers used in typical
large programs lead to fairly well-balanced binary search trees?

10. [22] (R. W. Floyd.) Perhaps we are not interested in the sorting property of
Algorithm T, but we expect that the input will come in nonrandom order. Devise a
way to keep tree search efficient, by making the input "appear to be" in random order.

11. [20] What is the maximum number of times the assignment S +- LLINK(R) might
be performed in step D3, when deleting a node from a tree of size N? empirical data

12. [M22] When making a random deletion from a random tree of N items, how often
does step Dl go to D4, on the average? (See the proof of Theorem H.)

13. [M23] If the root of a random tree is deleted by Algorithm D, is the resulting tree
still random?
14. [22] Prove that the path length of the tree produced by Algorithm D with step

added is never more than the path length of the tree produced without that step.
Find a case where step actually decreases the path length.

15. [23] Let ai a2 a 3 a4 be a permutation of {1, 2, 3, 4}, and let j = 1, 2, or 3. Take the
one-element tree with key ai and insert a2, a3 using Algorithm T; then delete aj using
Algorithm D; then insert a4 using Algorithm T. How many of the 4! x 3 possibilities
produce trees of shape I, II, III, IV, V, respectively, in (i3)?

16. [25] Is the deletion operation commutative? That is, if Algorithm D is used to
delete X and then Y, is the resulting tree the same as if Algorithm D is used to delete
Y and then X?
1 7. [25] Show that if the roles of left and right are completely reversed in Algorithm D,
it is easy to extend the algorithm so that it deletes a given node from a right-threaded
tree, preserving the necessary threads. (See exercise 2.)

18. [M21] Show that Zipf's law yields (i2).

456 SEARCHING 6.2.2

19. [M23] What is the approximate average number of comparisons, (n), when the
input probabilities satisfy the 80-20 law defined in Eq. 6.l-(11)?

20. [M20] Suppose we have inserted keys into a tree in order of decreasing frequency
Pi 2': P2 2': · · · 2': Pn· Can this tree be substantially worse than the optimum search
tree?

21. [M20] If p, q, r are proba'bilities chosen at random, subject to the condition that
p + q + r = 1, what are the probabilities that trees I, II, III, IV, V of (i3) are optimal,
respectively? (Consider the relative areas of the regions in Fig. 14.)

22. [M20] Prove that r[i, j-1] is never greater than r[i+l, j] when step K4 of Algo-
rithm K is performed.

23. [M23] Find an optimum binary search tree for the case N = 40, with weights
Pi = 9, p2 = p3 = · · · = P4o = 1, qo =qi = · · · = q4o = 0. (Don't use a computer.)

24. [M25] Given that Pn = qn = 0 and that the other weights are nonnegative, prove
that an optimum tree for (pi, ... ,pn; qo, ... , qn) may be obtained by replacing

by

in any optimum tree for (p1, ... ,Pn-1; qo, ... , qn-1).

25. [M20] Let A and B be nonempty sets of real numbers, and define A ::;: B if the
following property holds:

(a E A, b E B, and b < a) implies (a E B and b E A).

a) Prove that this relation is transitive on nonempty sets.
b) Prove or disprove: A ::;: B if and only if A :S A U B ::;: B.

26. [M22] Let (p1, ... ,pn; qo, ... , qn) be nonnegative weights, where Pn + qn = x.
Prove that as x varies from 0 to oo, while (p1 , ... , Pn-1 ; qo, ... , qn-1) are held constant,
the cost c(O, n) of an optimum binary search tree is a concave, continuous, piecewise
linear function of x with integer slopes. In other words, prove that there exist positive
integers lo > li > · · · > lrn and real constants 0 = xo < xi < · · · < Xrn < Xrn+i = oo
and yo <Yi··· < Yrn such that c(O, n) = Yh + lhx when xh :S x :S xh+1, for 0::;: h::;: m.

27. [M33] The object of this exercise is to prove that the sets of roots R(i,j) of
optimum binary search trees satisfy

R(i,j-1) :S R(i,j) :S R(i+l,j), for j - i 2': 2,

in terms of the relation defined in exercise 25, when the weights (p1 , •.. , Pn; q0 , ••• , qn)
are nonnegative. The proof is by induction on j-i; our task is to prove that R(O, n-1)::;:
R(O, n), assuming that n 2': 2 and that the stated relation holds for j - i < n. [By
left-right symmetry it follows that R(O, n) ::;: R(l, n).]

a) Prove that R(O, n - 1) :S R(O, n) if Pn = qn = 0. (See exercise 24.)
b) Let Pn + qn = x. In the notation of exercise 26, let Rh be the set R(O, n) of

optimum roots when Xh < x < Xh+1, and let be the set of optimum roots when
x = Xh· Prove that

6.2.2 BINARY TREE SEARCHING 457

Hence by part (a) and exercise 25 we have R(O, n-1) ::;; R(O, n) for all x. [Hint:
Consider the case x = Xh, and assume that both the trees

t(O, r-1) t(r, n) t(O, s-1) t(s, n)

G at level l G at level l'

are optimum, with s < r and l 2': l'. Use the induction hypothesis to prove that
there is an optimum tree with root (r) such that is at level l', and an optimum
tree with root 0 such that is at level Z.]

28. [24] Use some macro language to define a "optimum binary search" macro, whose
parameter is a nested specification of an optimum binary tree.

29. [40] What is the worst possible binary search tree for the 31 most common English
words, using the frequency data of Fig. 12?

30. [M34] Prove that the costs of optimum binary search trees satisfy the "quadrangle
inequality" c(i, j) - c(i, j-1) 2': c(i+l, j) - c(i+l, j-1) when j 2': i + 2.

31. [M35] (K. C. Tan.) Prove that, among all possible sets of probabilities (p1, ... ,pn;
qo, ... , qn) with P1 + · · · + Pn + qo + · · · + qn = 1, the most expensive minimum-cost
tree occurs when Pi= 0 for all i, qj = 0 for all even j, and qj = 1/f n/21 for all odd j.

· 32. [M25] Let n + 1 = 2rn + k, where 0 :S k :S 2rn. There are exactly (2:) binary
trees in which all external nodes appear on levels m and m + 1. Show that, among all
these trees, we obtain one with the minimum cost for the weights (p1, ... ,pn; qo, ... , qn)
if we apply Algorithm K to the weights (p1, ... , Pn; M +qo, ... , M +qn) for sufficiently
large M.

33. [M41] In order to find the binary search tree that minimizes the running time of
Program T, we should minimize the quantity 7C +Cl instead of simply minimizing
the number of comparisons C. Develop an algorithm that finds optimum binary search
trees when different costs are associated with left and right branches in the tree.
(Incidentally, when the right cost is twice the left cost, and the node frequencies are all
equal, the Fibonacci trees turn out to be optimum; see L. E. Stanfel, JACM 17 (1970),
508-517. On machines that cannot make three-way comparisons at once, a program
for Algorithm T will have to make two comparisons in step T2, one for equality and
one for less-than; B. Sheil and V. R. Pratt have observed that these comparisons need
not involve the same key, and it may well be best to have a binary tree whose internal
nodes specify either an equality test or a less-than test but not both. This situation
would be interesting to explore as an alternative to the stated problem.)

34. [HM21] Show that the asymptotic value of the multinomial coefficient

(p1N, ... , PnN)

as N -+ oo is related to the entropy H (p1, p2, ... , Pn).

35. [HM22] Complete the proof of Theorem B by establishing the inequality (24).

36. [HM25] (Claude Shannon.) Let X and Y be random variables with finite ranges
{ X1, ... , Xrn} and {y1, ... , Yn}, and let Pi = Pr(X = Xi), qj = Pr(Y = Yi), rij =
Pr(X =Xi and Y = Y1)· Let H(X) = H(p1, ... ,prn) and H(Y) = H(q1, ... , qn) be the

458 SEARCHING 6.2.2

respective entropies of the variables singly, and let H(XY) = H(r11, ... , Tmn) be the
entropy of their joint distribution. Prove that

H(X) :S H(XY) :S H(X) + H(Y).

[Hint: If f is any concave function, we have Ef(X) :S /(EX).]
37. [HM26] (P. J. Bayer, 1Q75.) Suppose (Pi, ... , Pn) is a random probability distri-
bution, namely a random point in the (n - 1)-dimensional simplex defined by Pk 2: O
for 1 :S k ::; n and Pi + · · · + Pn = 1. (Equivalently, (Pi, ... , Pn) is a set of random
spacings, in the sense of exercise 3.3.2-26.) What is the expected value of the entropy
H(Pi, ... , Pn)?
38. [M20] Explain why Theorem M holds in general, although we have only proved
it in the case so < s1 < s2 < · · · < Sn·

39. [M25] Let w 1 , ••• , Wn be nonnegative weights with W1 + · · · + Wn = 1. Prove
that the weighted path length of the Huffman tree constructed in Section 2.3.4.5 is less
than H (w1 , •.• , Wn) + 1. Hint: See the proof of Theorem M.
40. [M26] Complete the proof of Lemma Z.
41. [21] Fig. 18 shows the construction of a tangled binary tree. List its leaves in
left-to-right order.
42. [23] Explain why Subroutine C preserves the 2-descending condition (31).
43. [20] Explain how to implement phase 2 of the Garsia-Wachs algorithm efficiently.
44. [25] Explain how to implement phase 3 of the Garsia-Wachs algorithm efficiently:
Construct a binary tree, given the levels lo, Z 1, ... , ln of its leaves in symmetric order.
45. [30] Explain how to implement Subroutine C so that the total running time of
the Garsia-Wachs algorithm is at most O(n log n).
46. [M30] (C. K. Wong and Shi-Kuo Chang.) Consider a scheme whereby a binary
search tree is constructed by Algorithm T, except that whenever the number of nodes
reaches a number of the form 2n - 1 the tree is reorganized into a perfectly balanced
uniform tree, with 2k nodes on level k for 0 :S k < n. Prove that the total number of
comparisons made while constructing such a tree is N lg N +O(N) on the average. (It is
not difficult to show that the amount of time needed for the reorganizations is O(N).)
47. [M40] Generalize Theorems Band M from binary trees to t-ary trees. If possible,
also allow the branching costs to be nonuniform as in exercise 33.
48. [M4 7] Carry out a rigorous analysis of the steady state of a binary search tree
subjected to random insertions and deletions.
49. [HM42] Analyze the average height of a random binary search tree.

6.2.3. Balanced Trees
The tree insertion algorithm we have just learned will produce good search
trees, when the input data is random, but there is still the annoying possibility
that a degenerate tree will occur. Perhaps we could devise an algorithm that
keeps the tree optimum at all times; but unfortunately that seems to be very
difficult. Another idea is to keep track of the total path length, and to completely
reorganize the tree whenever its path length exceeds 5N lg N, say. But such an
approach might require about VNJ2 reorganizations as the tree is being built.

6.2.3 BALANCED TREES 459

A very pretty solution to the problem of maintaining a good search tree
was discovered in 1962 by two Russian mathematicians, G. M. Adelson-Velsky
and E. M. Landis [Doklady Akademiia Nauk SSSR 146 (1962), 263-266; English
translation in Soviet Math. 3, 1259-1263]. Their method requires only two extra
bits per node, and it never uses more than O(log N) operations to search the
tree or to insert an item. In fact, we shall see that their approach also leads to a
general technique that is good for representing arbitrary linear lists of length N,
so that each of the following operations can be done in only O(log N) units of
time:

i) Find an item having a given key.

ii) Find the kth item, given k.

iii) Insert an item at a specified place.

iv) Delete a specified item.

If we use sequential allocation for linear lists, operations (i) and (ii) are efficient
but operations (iii) and (iv) take order N steps; on the other hand, if we use
linked allocation, operations (iii) and (iv) are efficient but operations (i) and (ii)
take order N steps. A tree representation of linear lists can do all four operations
in O(log N) steps. And it is also possible to do other standard operations
with comparable efficiency, so that, for example, we can concatenate a list of
M elements with a list of N elements in 0 (log(M + N)) steps.

The method for achieving all this involves what we shall call balanced trees.
(Many authors also call them AVL trees, where the AV stands for Adelson-Velsky
and the L stands for Landis.) The preceding paragraph is an advertisement for
balanced trees, which makes them sound like a universal panacea that makes all
other forms of data representation obsolete; but of course we ought to have a
balanced attitude about balanced trees! In applications that do not involve all
four of the operations above, we may be able to get by with substantially less
overhead and simpler programming. Furthermore, there is no advantage to bal-
anced trees unless N is reasonably large; thus if we have an efficient method that
takes 64 lg N units of time and an inefficient method that takes 2N units of time,
we should use the inefficient method unless N is greater than 256. On the other
hand, N shouldn't be too large, either; balanced trees are appropriate chiefly for
internal storage of data, and we shall study better methods for external direct-
access files in Section 6.2.4. Since internal memories seem to be getting larger and
larger as time goes by, balanced trees are becoming more and more important.

The height of a tree is defined to be its maximum level, the length of the
longest path from the root to an external node. A binary tree is called balanced
if the height of the left subtree of every node never differs by more than ±1 from
the height of its right subtree. Figure 20 shows a balanced tree with 17 internal
nodes and height 5; the balance factor within each node is shown as +, • , or -
according as the right subtree height minus the left subtree height is +1, 0, or -1.
The Fibonacci tree in Fig. 8 (Section 6.2.1) is another balanced binary tree of
height 5, having only 12 internal nodes; most of the balance factors in that tree

460 SEARCHING 6.2.3

Fig. 20. A balanced binary tree.

are -1. The zodiac tree in Fig. 10 (Section 6.2.2) is not balanced, because the
height restriction on subtrees fails at both the AQUARIUS and GEMINI nodes.

This definition of balance represents a compromise between optimum binary
trees (with all external nodes required to be on two adjacent levels) and arbitrary
binary trees (unrestricted). It is therefore natural to ask how far from optimum
a balanced tree can be. The answer is that its search paths will never be more
than 45 percent longer than the optimum:

Theorem A (Adelson-Velsky and Landis). The height of a balanced tree with
N internal nodes always lies between lg(N + 1) and l.4404lg(N + 2) - 0.3277.

Proof. A binary tree of height h obviously cannot have more than 2h external
nodes; so N + 1 2h, that is, h 2: flg(N + l)l in any binary tree.

In order to find the maximum value of h, let us turn the problem around and
ask for the minimum number of nodes possible in a balanced tree of height h.
Let Th be such a tree with fewest possible nodes; then one of the subtrees of
the root, say the left subtree, has height h - 1, and the other subtree has height
h-1 or h- 2. Since we want Th to have the minimum number of nodes, we may
assume that the left subtree of the root is Th-I, and that the right subtree is
Th-2· This argument shows that the Fibonacci tree of order h + 1 has the fewest
possible nodes among all possible balanced trees of height h. (See the definition
of Fibonacci trees in Section 6.2.1.) Thus

N 2: Fh+2 - 1 > c/>h+ 2j J5 - 2,

and the stated result follows as in the corollary to Theorem 4.5.3F. I
The proof of this theorem shows that a search in a balanced tree will require

more than 25 comparisons only if the tree contains at least F 28 - 1 = 317,810
nodes.

Consider now what happens when a new node is inserted into a balanced
tree using tree insertion (Algorithm 6.2.2T). In Fig. 20, the tree will still be
balanced if the new node takes the place of 8J , [}] , [1J , [2J , [!2J , or , but

6.2.3 BALANCED TREES 461

some adjustment will be needed if the new node falls elsewhere. The problem
arises when we have a node with a balance factor of +1 whose right subtree
got higher after the insertion; or, dually, if the balance factor is -1 and the left
subtree got higher. It is not difficult to see that trouble arises only in two cases:

Case 1 (3 I I Case 2 t (i)
(3

h
h+l h-1 t l i "---- h

' ' t
' ' ' ' ' ' ' ' , ____ 1 •----·

(Two other essentially identical cases occur if we reflect these diagrams, in-
terchanging left and right.) In these diagrams the large rectangles a, {3, "'(, 6
represent subtrees having the respective heights shown. Case 1 occurs when a
new element has just increased the height of node B's right subtree from h to
h + 1, and Case 2 occurs when the new element has increased the height of B's
left subtree. In the second case, we have either h = 0 (so that X itself was the
new node), or else node X has two subtrees of respective heights (h-1, h) or
(h,h-1).

Simple transformations will restore balance in both of these cases, while
preserving the symmetric order of the tree nodes:

I I Case 1 t a (3 Case 2 t a (3 I 8 (2)
h+l

h l h

t t ,..--- .. ,..--- ..
' ' ' ' ' ' ' ' ' ' ' ' 1 ____ 1

• ----·

In Case 1 we simply "rotate" the tree to the left, attaching {3 to A instead of B.
This transformation is like applying the associative law to an algebraic formula,
replacing a(f3"'!) by (a{3)"'!. In Case 2 we use a double rotation, first rotating
(X, B) right, then (A, X) left. In both cases only a few links of the tree need to
be changed. Furthermore, the new trees have height h + 2, which is exactly the
height that was present before the insertion; hence the rest of the tree (if any)
that was originally above node A always remains balanced.

For example, if we insert a new node into position [!I] of Fig. 20 we obtain
the balanced tree shown in Fig. 21, after a single rotation (Case 1). Notice that
several of the balance factors have changed.

The details of this insertion procedure can be worked out in several ways.
At first glance an auxiliary stack seems to be necessary, in order to keep track
of which nodes will be affected, but the following algorithm gains some speed by

462 SEARCHING 6.2.3

Fig. 21. The tree of Fig. 20, rebalanced after a new key R has been inserted.

exploiting the fact that the balance factor of node B in (1) was zero before the
insertion.

Algorithm A (Balanced tree search and insertion). Given a table of records
that form a balanced binary tree as described above, this algorithm searches for
a given argument K. If K is not in the table, a new node containing K is inserted
into the tree in the appropriate place and the tree is rebalanced if necessary.

The nodes of the tree are assumed to contain KEY, LL INK, and RLINK fields
as in Algorithm 6.2.2T. We also have a new field

B (P) = balance factor of NODE (P) ,

the height of the right subtree minus the height of the left subtree; this field
always contains either + 1, 0, or -1. A special header node also appears at the
top of the tree, in location HEAD; the value of RLINK(HEAD) is a pointer to the
root of the tree, and LLINK(HEAD) is used to keep track of the overall height of
the tree. (Knowledge of the height is not really necessary for this algorithm, but
it is useful in the concatenation procedure discussed below.) We assume that
the tree is nonempty, namely that RLINK(HEAD) =j:. A.

For convenience in description, the algorithm uses the notation LINK (a, P)
as a synonym for LLINK(P) if a= -1, and for RLINK(P) if a= +l.
Al. (Initialize.] Set T +-HEAD, S +- P +- RLINK(HEAD). (The pointer variable P

will move down the tree; Swill point to the place where rebalancing may
be necessary, and T always points to the parent of S.)

A2. [Compare.] If K < KEY(P), go to A3; if K > KEY(P), go to A4; and if
K = KEY (P) , the search terminates successfully.

A3. [Move left.] Set Q +- LLINK(P). If Q =A, set Q ¢:AVAIL and LLINK(P) +- Q
and go to step A5. Otherwise if B (Q) =j:. 0, set T +- P and S +- Q. Finally
set P +- Q and return to step A2.

A4. [Move right.] Set Q +- RLINK(P). If Q =A, set Q ¢:AVAIL and RLINK(P) +- Q
and go to step A5. Otherwise if B (Q) =j:. 0, set T +- P and S +- Q. Finally set

6.2.3 BALANCED TREES 463

Search
Al. Initialize

A 2 C
K =KEY(P)

. ompare SUCCESS

Leaf found Leaf found
.

: Insert :
A5. Insert :···

A6. Adjust
balance factors

A 7. Balancing
act

Tree still
balanced

AS. Single
rotation

A9. Double
rotation

Fig. 22. Balanced tree search and insertion.

Rebalance

AlO. Finish-
ing touch

P +- Q and return to step A2. (The last part of this step may be combined
with the last part of step A3.)

A5. [Insert.] (We have just linked a new node, NODE(Q), into the tree, and its
fields need to be initialized.) Set KEY(Q) +- K, LLINK(Q) +-RLINK(Q) +-A,
and B (Q) +- 0.

A6. [Adjust balance factors.] (Now the balance factors on nodes between S
and Q need to be changed from zero to ± 1.) If K < KEY (S) set a +- -1,
otherwise set a +- + 1. Then set R +- P +- LINK (a, S) , and repeatedly do
the following operations zero or more times until P = Q: If K < KEY (P) set
B(P) +- -1 and P +- LLINK(P); if K > KEY(P), set B(P) +- +1 and P +-
RLINK (P). (If K = KEY (P), then P = Q and we proceed to the next step.)

A 7. [Balancing act.] Several cases now arise:
i) If B(S) = 0 (the tree has grown higher), set B(S) +- a, LLINK(HEAD)

+- LLINK(HEAD) + 1, and terminate the algorithm.
ii) If B (S) = - a (the tree has gotten more balanced), set B (S) +- 0 and

terminate the algorithm.
iii) If B (S) = a (the tree has gotten out of balance), go to step A8 if

B(R) =a, to A9 if B(R) =-a.
(Case (iii) corresponds to the situations depicted in (i) when a= +1;
Sand R point, respectively, to nodes A and B, and LINK(-a,S) points
to a, etc.)

464 SEARCHING 6.2.3

A8. (Single rotation.] Set P +- R, LINK (a, S) +-LINK (-a, R), LINK (-a, R) +- S,
B (S) +- B (R) +- 0. Go to AlO.

A9. (Double rotation.] Set P +- LINK(-a,R), LINK(-a,R) +- LINK(a,P),
LINK(a,P) +- R, LINK(a,S) +- LINK(-a,P), LINK(-a,P) +- S. Now set

{

(-a, 0), if B(P) = a;
(B(S),B(R)) +- (0,0), ifB(P) = O;

(0, a), if B(P) =-a;
(3)

and then set B (P) +- 0.

AlO. [Finishing touch.] (We have completed the rebalancing transformation,
taking (1) to (2), with P pointing to the new subtree root and T pointing
to the parent of the old subtree root S.) If S = RLINK (T) then set
RLINK (T) +- P, otherwise set LLINK (T) +- P. I

This algorithm is rather long, but it divides into three simple parts: Steps
Al-A4 do the search, steps A5-A7 insert a new node, and steps A8-A10 rebal-
ance the tree if necessary. Essentially the same method can be used if the tree
is threaded (see exercise 6.2.2-2), since the balancing act never needs to make
difficult changes to thread links.

We know that the algorithm takes about Clog N units of time, for some C,
but it is important to know the approximate value of C so that we can tell how
large N should be in order to make balanced trees worth all the trouble. The
following MIX implementation gives some insight into this question.

Program A (Balanced tree search and insertion). This program for Algorithm A
uses tree nodes having the form

B LLINK RLINK

KEY

rA K, rll P, rl2 Q, rl3 R, rl4 S, rl5 T. The code for steps A7-A9
is duplicated so that the value of a appears implicitly (not explicitly) in the
program.

01 B EQU 0:1
02 LLINK EQU 2:3
03 RLINK EQU 4:5
04 START LDA K 1 Al. Initialize.
05 ENT5 HEAD 1 T +--HEAD.
06 LD2 0,5(RLINK) 1 Q +-- RLINK (HEAD) .
01 JMP 2F 1 To A2 with S +-- P +-- Q.
08 4H LD2 0,1(RLINK) 02 A4. Move right. Q +-- RLINK(P).
09 J2Z 5F 02 To A5 if Q =A.
10 1H LDX 0,2(B) 0-1 rX +-- B(Q).
11 JXZ *+3 0-1 Jump if B(Q) = 0.
12 ENT5 0,1 D-l T +-- P.

6.2.3 BALANCED TREES 465

13 2H ENT4 0,2 D sf- Q.

14 ENT1 0,2 c pf- Q.

15 CMPA 1, 1 c A2. Compare.
16 JG 4B c To A4 if K > KEY(P).

11 JE SUCCESS Cl Exit if K = KEY(P).

18 LD2 0,1(LLINK) Cl-S A3. Move left. Q +- LLINK (P).

19 J2NZ 1B Cl-S Jump if Q f. A.
20 5H LD2 AVAIL l-S A5. Insert.
21 J2Z OVERFLOW l-S
22 LDX 0,2(RLINK) l-S
23 STX AVAIL l-S Q ¢:AVAIL.

24 STA 1,2 l-S KEY(Q) +- K
25 STZ 0,2 l-S LLINK(Q) +- RLINK(Q) +-A.
26 JL 1F l-S Was K < KEY(P)?
21 ST2 0,1(RLINK) A RLINK(P) +- Q.
28 JMP *+2 A
29 1H ST2 0,1(LLINK) l-S-A LLINK(P) +- Q.
30 6H CMPA 1,4 l-S A6. Ad;ust balance factors.
31 JL *+3 l-S Jump if K < KEY(S).
32 LD3 0,4(RLINK) E R +- RLINK(S).
33 JMP *+2 E
34 LD3 0,4(LLINK) l-S-E R +- LLINK(S).
35 ENT1 0,3 l-S p +- R.
36 ENTX -1 l-S rX t- -1.
31 JMP 1F l-S To comparison loop.
38 4H JE 7F F2+1- S To A7 if K = KEY(P).
39 STX 0,1(1:1) F2 B(P) +- +l (it was +o).
40 LD1 0,1(RLINK) F2 P +- RLINK (P).

41 1H CMPA 1, 1 F+l-S
42 JGE 4B F+ l-S Jump if K 2: KEY(P).

43 STX 0,1(B) Fl B(P) +- -1.

44 LD1 0,1(LLINK) Fl P +- LLINK (P).

45 JMP 1B Fl To comparison loop.
46 7H LD2 0,4(B) l-S A7. Balancing act. rl2 +- B (S).

41 STZ 0,4(B) l-S B(S) +- 0.

48 CMPA 1,4 l-S
49 JG A7R l-S To a= +l routine if K > KEY(S).
50 A7L J2P DONE Ul Exit if rl2 = -a.
51 J2Z 7F Gl + Jl Jump if B (S) was zero.
52 ENT1 0,3 Gl p +- R.
53 LD2 0,3(B) Gl rl2 +- B(R).

54 J2N ASL Gl To A8 if rl2 = a.
55 A9L LD1 0,3(RLINK) Hl A9. Double rotation.
56 LDX 0,1(LLINK) Hl LINK(a,P +- LINK(-a,R))
51 STX 0,3(RLINK) Hl -7 LINK(-a,R).
58 ST3 0,1(LLINK) Hl LINK(a,P) +- R.
59 LD2 0,1(B) Hl rl2 +- B(P).
60 LDX T1,2 Hl -a, 0 or 0
61 STX 0,4(B) Hl -7B(S).

466 SEARCHING 6.2.3

62 LDX T2,2 Hl 0, 0, or a
63 STX 0,3(B) Hl -7 B(R).

64 ASL LDX 0,1(RLINK) Gl A8. Single rotation.
65 STX 0,4(LLINK) Gl LINK(a,S) +- LINK(-a,P).

66 ST4 0,1(RLINK) Gl LINK(-a,P) +- S.

61 JMP SF Gl Join up with the other branch.

68 A7R J2N DONE . U2 Exit if rl2 = -a.
69 J2Z 6F G2+ J2 Jump ifB(S) was zero.

10 ENT1 0,3 G2 p +- R.
11 LD2 0,3(B) G2 rl2 +- B(R).
12 J2P ASR G2 To A8 if rl2 =a.
13 A9R LD1 0,3(LLINK) H2 A9. Double rotation.
14 LDX 0,1(RLINK) H2 LINK(a,P +- LINK(-a,R))

15 STX 0,3(LLINK) H2 -7 LINK(-a,R).

16 ST3 0,1(RLINK) H2 LINK(a,P) +- R.
11 LD2 0,1(B) H2 rl2 +- B(P).
18 LDX T2,2 H2 -a, 0 or 0
19 STX 0,4(B) H2 -7B(S).
80 LDX T1,2 H2 0, O, or a
81 STX 0,3(B) H2 -7 B(R).
82 ASR LDX 0,1(LLINK) G2 A8. Single rotation.
83 STX 0,4(RLINK) G2 LINK(a,S) +- LINK(-a,P).

84 ST4 0,1(LLINK) G2 LINK(-a,P) +- S.
85 SH STZ 0,1(B) G B(P) t-0.
86 A10 CMP4 0,5(RLINK) G AlO. Finishing touch.
81 JNE *+3 G Jump if RLINK(T) =f. S.
88 ST1 0,5(RLINK) G3 RLINK(T) +- P.
89 JMP DONE G3 Exit.
90 ST1 0,5(LLINK) G4 LLINK(T) +- P.
91 JMP DONE G4 Exit.
92 CON +1
93 T1 CON 0 Table for (3).
94 T2 CON 0
95 CON -1
96 6H ENTX +1 J2 rX +- +1.
91 7H STX 0,4(B) J B(S) t-a.
98 LDX HEAD(LLINK) J LLINK(HEAD)
99 INCX 1 J +1

100 STX HEAD(LLINK) J -7 LL INK (HEAD) .
101 DONE EQU * l-S Insertion is complete. I

Analysis of balanced tree insertion. [Nonmathematical readers, please skip
to (io).] In order to figure out the running time of Algorithm A, we would like
to know the answers to the following questions:

• How many comparisons are made during the search?
• How far apart will nodes Sand Q be? (In other words, how much adjustment

is needed in step A6?)
• How often do we need to do a single or double rotation?

6.2.3 BALANCED TREES 467

It is not difficult to derive upper bounds on the worst case running time, using
Theorem A, but of course in practice we want to know the average behavior.
No theoretical determination of the average behavior has been successfully com-
pleted as yet, since the algorithm appears to be quite complicated, but several
interesting theoretical and empirical results have been obtained.

In the first place we can ask about the number Bnh of balanced binary trees
with n internal nodes and height h. It is not difficult to compute the generating
function Bh(z) = Ln>o BnhZn for small h, from the relations

Bo(z) = 1, B1(z) = z,

(See exercise 6.) Thus

B2(z) = 2z2 + z3,
B3(z) = 4z4 + 6z5 + 4z6 + z1 ,

B4(z) = 16z7 + 32z8 + 44z9 + · · · + 8z14 + z15 ,

and in general B h (z) has the form

(5)

2Fh+1-1 zFh+2-1 + 2Fh+1-2 Lh-1zFh+2 +complicated terms+ 2h-1 z2h-2 + z2h-1
(6)

for h 2 3, where Lk = Fk+l +Fk-l· (This formula generalizes Theorem A.) The
total number of balanced trees with height h is Bh = Bh(l), which satisfies the
recurrence

Bo= B 1 =1, (7)
so that B2 = 3, B3 = 3 · 5, B4 = 32 · 5 · 7, B5 = 33 · 52 · 7 · 23; and, in general,

B _ AFh AFh-1 AF1 AF0
h - 0 1 . . . h-1 h ' (8)

where Ao = 1, A1 = 3, A2 = 5, A3 = 7, A4 = 23, A5 = 347, ... , Ah =
Ah-1Bh-2 + 2. The sequences Bh and Ah grow very rapidly; in fact, they are
doubly exponential: Exercise 7 shows that there is a real number () 1.43687
such that

(g)

If we consider each of the Bh trees to be equally likely, exercise 8 shows that the
average number of nodes in a tree of height h is

This indicates that the height of a balanced tree with N nodes is usually much
closer to log2 N than to log¢ N.

Unfortunately, these results don't really have much to do with Algorithm A,
since the mechanism of that algorithm makes some trees significantly more
probable than others. For example, consider the case N = 7, where 17 balanced
trees are possible. There are 7! = 5040 possible orderings in which seven keys

468 SEARCHING 6.2.3

can be inserted, and the perfectly balanced "complete" tree

(11)

is obtained 2160 times. By contrast, the Fibonacci tree

occurs only 144 times, and the similar tree

occurs 216 times. Replacing the left subtrees of (12) and (13) by arbitrary four-
node balanced trees, and then reflecting left and right, yields 16 different trees;
the eight generated from (12) each occur 144 times, and those generated from
(13) each occur 216 times. It is surprising that (13) is more common than (12).

The fact that the perfectly balanced tree is obtained with such high prob-
ability-together with (10), which corresponds to the case of equal probabili-
ties - makes it plausible that the average search time for a balanced tree should
be about lg N + c comparisons for some small constant c. But R. W. Floyd
has observed that the coefficient of lg N is unlikely to be exactly 1, because the
root of the tree would then be near the median, and the roots of its two subtrees
would be near the quartiles; then single and double rotation could not easily keep
the root near the median. Empirical tests indicate that the true average number
of comparisons needed to insert the Nth item is approximately 1.01 lg N + 0.1,
except when N is small.

In order to study the behavior of the insertion and re balancing phases of
Algorithm A, we can classify the external nodes of balanced trees as shown
in Fig. 23. The path leading up from an external node can be specified by a
sequence of +'sand -'s (+for a right link, - for a left link); we write down the
link specifications until reaching the first node with a nonzero balance factor,
or until reaching the root, if there is no such node. Then we write A or B
according as the new tree will be balanced or unbalanced when an internal node
is inserted in the given place. Thus the path up from [}] is ++-B, meaning
"right link, right link, left link, unbalance." A specification ending in A requires

6.2.3 BALANCED TREES 469

i:o i:o i:o i:o
I I I I
I I + +
I + I +

i:o i:o i:o i:o i:o i:o i:o i:o
I I I I + + + +
I + I + + + + + + + + +

I I + +
I + I +

Fig. 23. Classification codes that specify the behavior of Algorithm A after insertion.

no rebalancing after insertion of a new node; a specification ending in ++B or --B
requires a single rotation; and a specification ending in +-B or -+B requires a
double rotation. When k links appear in the specification, step A6 has to adjust
exactly k- 1 balance factors. Thus the specifications give the essential facts that
govern the running time of steps A6 to AlO.

Empirical tests on random numbers for 100 N 2000 gave the approxi-
mate probabilities shown in Table 1 for paths of various types; apparently these
probabilities rapidly approach limiting values as N --+ oo. Table 2 gives the
exact probabilities corresponding to Table 1 when N = 10, considering the 10!
permutations of the input as equally probable. (The probabilities that show up
as .143 in Table 1 are actually equal to 1/7, for all N 2 7; see exercise 11. Single
and double rotations are equally likely when N 15, but double rotations occur
slightly less often when N 2 16.)

Table 1
APPROXIMATE PROBABILITIES FOR INSERTING THE NTH ITEM

Path length k No rebalancing Single rotation Double rotation
1 .143 .ooo .000
2 .152 .143 .143
3 .092 .048 .048
4 .060 .024 .024
5 .036 .010 .010

>5 .051 .009 .008

ave 2.78 total .534 .233 .232

From Table 1 we can see that k is 2 with probability about .143 + .153 +
.143 + .143 = .582; thus, step A6 is quite simple almost 60 percent of the time.
The average number of balance factors changed from 0 to ± 1 in that step is

470 SEARCHING 6.2.3

Table 2
EXACT PROBABILITIES FOR INSERTING THE lOTH ITEM

Path length k No rebalancing Single rotation Double rotation

1 1/7 0 0
2 6/35 1/7 1/7
3 4/21 2/35 2/35
4 0 1/21 1/21

--
ave 247 /105 53/105 26/105 26/105

about 1.8. The average number of balanced factors changed from ±1 to 0 in
steps A7 through AlO is approximately .534+2(.233+.232) 1.5; thus, inserting
one new node adds about 1.8 - 1.5 = 0.3 unbalanced nodes, on the average. This
agrees with the fact that about 68 percent of all nodes were found to be balanced
in random trees built by Algorithm A.

An approximate model of the behavior of Algorithm A has been proposed
by C. C. Foster [Proc. ACM Nat. Conf. 20 (1965), 192-205.] This model is
not rigorously accurate, but it is close enough to the truth to give some insight.
Let us assume that p is the probability that the balance factor of a given node
in a large tree built by Algorithm A is O; then the balance factor is + 1 with
probability - p), and it is -1 with the same probability - p). Let us
assume further (without justification) that the balance factors of all nodes are
independent. Then the probability that step A6 sets exactly k-1 balance factors
nonzero is pk- 1(1- p), so the average value of k is 1/(1 - p). The probability
that we need to rotate part of the tree is q Inserting a new node should
increase the number of balanced nodes by p, on the average; this number is
actually increased by 1 in step A5, by -p / (1 - p) in step A6, by q in step A 7,
and by 2q in step A8 or A9, so we should have

p = 1 - p/(1 - p) + 3q 5/2 - p/(1 - p).

Solving for p yields fair agreement with Table 1:

9-V41
p 4 0.649; 1/(1 - p) 2.851.

The running time of the search phase of Program A (lines 01-19) is

lOC +Cl+ 2D + 2 - 3S,

where C, Cl, Sare the same as in previous algorithms of this chapter and D is
the number of unbalanced nodes encountered on the search path. Empirical tests
show that we may take D C, C 1 (C + S), C + S 1. 0 llg N + 0 .1, so the
average search time is approximately 11.3 lg N + 3.3 - 13. 7 S units. (If searching
is done much more often than insertion, we could of course use a separate, faster
program for searching, since it would be unnecessary to look at the balance
factors; the average running time for a successful search would then be only
about (6.6lg N - 3.4)u, and the worst case running time would in fact be better
than the average running time obtained with Program 6.2.2T.)

6.2.3 BALANCED TREES 471

Fig. 24. RANK fields, used for searching by position.

The running time of the insertion phase of Program A (lines 20-45) is 8F +
26 + (0, 1, or 2) units, when the search is unsuccessful. The data of Table 1
indicate that F 1.8 on the average. The rebalancing phase (lines 46-101)
takes either 16.5, 8, 27.5, or 45.5 (±0.5) units, depending on whether we increase
the total height, or simply exit without rebalancing, or do a single or double
rotation. The first case almost never occurs, and the others occur with the
approximate probabilities .534, .233, .232, so the average running time of the
combined insertion-rebalancing portion of Program A is about 63u.

These figures indicate that maintenance of a balanced tree in memory is
reasonably fast, even though the program is rather lengthy. If the input data
are random, the simple tree insertion algorithm of Section 5.2.2 is roughly 50u
faster per insertion; but the balanced tree algorithm is guaranteed to be reliable
even with nonrandom input data.

One way to compare Program A with Program 6.2.2T is to consider the
worst case of the latter. If we study the amount of time necessary to insert N
keys in increasing order into an initially empty tree, it turns out that Program A
is slower for N :::; 26 and faster for N 27.

Linear list representation. Now let us return to the claim made at the
beginning of this section, that balanced trees can be used to represent linear
lists in such a way that we can insert items rapidly (overcoming the difficulty
of sequential allocation), yet we can also perform random accesses to list items
(overcoming the difficulty of linked allocation).

The idea is to introduce a new field in each node, called the RANK field. The
field indicates the relative position of that node in its subtree, namely one plus
the number of nodes in its left subtree. Figure 24 shows the RANK values for the
binary tree of Fig. 23. We can eliminate the KEY field entirely; or, if desired, we
can have both KEY and RANK fields, so that it is possible to retrieve items either
by their key value or by their relative position in the list.

Using such a RANK field, retrieval by position is a straightforward modifica-
tion of the search algorithms we have been studying.

472 SEARCHING 6.2.3

Algorithm B (Tree search by position). Given a linear list represented as a
binary tree, this algorithm finds the kth element of the list (the kth node of the
tree in symmetric order), given k. The binary tree is assumed to have LL INK
and RLINK fields and a header as in Algorithm A, plus a RANK field as described
above.
Bl. [Initialize.] Set M +--- k, P +--- RLINK(HEAD).

B2. [Compare.] If P = A, the algorithm terminates unsuccessfully. (This can
happen only if k was greater than the number of nodes in the tree, or
k:::; 0.) Otherwise if M < RANK(P), go to B3; if M > RANK(P), go to B4; and
if M = RANK (P), the algorithm terminates successfully (P points to the kth
node).

B3. [Move left.] Set P +--- LLINK (P) and return to B2.

B4. [Move right.] Set M +--- M-RANK (P) and P +--- RLINK (P) and return to B2. I
The only new point of interest in this algorithm is the manipulation of Min

step B4. We can modify the insertion procedure in a similar way, although the
details are somewhat trickier:

Algorithm C (Balanced tree insertion by position). Given a linear list repre-
sented as a balanced binary tree, this algorithm inserts a new node just before
the kth element of the list, given k and a pointer Q to the new node. If k = N + 1,
the new node is inserted just after the last element of the list.

The binary tree is assumed to be nonempty and to have LLINK, RLINK and
B fields and a header, as in Algorithm A, plus a RANK field as described above.
This algorithm is merely a transcription of Algorithm A; the difference is that
it uses and updates the RANK fields instead of the KEY fields.

Cl. [Initialize.] Set T +---HEAD, S +--- P +--- RLINK (HEAD), U +--- M +--- k.

C2. [Compare.] If M :=:; RANK (P), go to C3, otherwise go to C4.

C3. [Move left.] Set RANK (P) +---RANK (P) + 1 (we will be inserting a new node
to the left of P). Set R +--- LLINK(P). If R =A, set LLINK(P) +--- Q and go
to C5. Otherwise if B (R) =f. 0 set T +--- P, S +--- R, and U +--- M. Finally set
P +---Rand return to C2.

C4. [Move right.] Set M +--- M - RANK(P), and R +--- RLINK(P). If R = A, set
RLINK (P) +--- Q and go to C5. Otherwise if B (R) =f. 0 set T +--- P, S +--- R, and
U +--- M. Finally set P +--- R and return to C2.

C5. [Insert.] Set RANK (Q) +--- 1, LLINK (Q) +--- RLINK (Q) +--- A, B (Q) +--- 0.

C6. [Adjust balance factors.] Set M +--- U. (This restores the former value of M
when P was S; all RANK fields are now properly set.) If M < RANK (S) , set
R +-P +--- LLINK(S) and a+--- -1; otherwise set R +--- P +--- RLINK(S), a+---
+ 1, and M +--- M - RANK (S). Then repeatedly do the following operations
until P = Q: If M < RANK (P), set B (P) +--- -1 and P +--- LLINK (P); if
M > RANK(P), set B(P) +--- +1 and M +--- M- RANK(P) and P +--- RLINK(P).
(If M = RANK(P), then P = Q and we proceed to the next step.)

C7. [Balancing act.] Several cases now arise.

6.2.3 BALANCED TREES 473

i) If B (S) = 0, set B (S) +--- a, LLINK (HEAD) +--- LLINK (HEAD) + 1, and
terminate the algorithm.

ii) If B (S) = -a, set B (S) +--- 0 and terminate the algorithm.

iii) If B(S) =a, go to step C8 if B(R) =a, to C9 if B(R) =-a.
C8. (Single rotation.] Set P = R, LINK(a,S) +--- LINK(-a,R), LINK(-a,R) +--- S,

B(S) +--- B(R) +--- 0. If a= +1, set RANK(R) +--- RANK(R) + RANK(S); if
a= -1, set RANK(S) +--- RANK(S) - RANK(R). Go to ClO.

C9. [Double rotation.] Do all the operations of step A9 (Algorithm A). Then
if a = +1, set RANK(R) +--- RANK(R) - RANK(P), RANK(P) +--- RANK(P) +
RANK (S); if a = -1, set RANK (P) +---RANK (P) +RANK (R), then RANK (S) +-
RANK (S) - RANK(P).

ClO. [Finishing touch.] If S = RLINK (T) then set RLINK (T) +--- P, otherwise set
LLINK(T) +-P. I

+=Deletion, concatenation, etc. It is possible to do many other things to
balanced trees and maintain the balance, but the algorithms are sufficiently
lengthy that the details are beyond the scope of this book. We shall discuss
the general ideas here, and an interested reader will be able to fill in the details
without much difficulty.

The problem of deletion can be solved in O(log N) steps if we approach it
correctly [C. C. Foster, "A Study of AVL Trees," Goodyear Aerospace Corp.
report GER-12158 (April 1965)]. In the first place we can reduce deletion of
an arbitrary node to the simple deletion of a node P for which LLINK (P) or
RLINK(P) is A, as in Algorithm 6.2.2D. The algorithm should also be modified
so that it constructs a list of pointers that specify the path to node P, namely

(Po, ao), ... '

where Po = HEAD, a0 = +1; LINK(ai ,Pi) = Pi+1, for 0 :::; i < l; P1 = P; and
LINK Ca1, P1) = A. This list can be placed on an auxiliary stack as we search down
the tree. The process of deleting node P sets LINK (a1-1, P1_ 1) +---LINK (-a1, P1),
and we must adjust the balance factor at node P1_ 1. Suppose that we need to
adjust the balance factor at node Pk, because the ak subtree of this node has
just decreased in height; the following adjustment procedure should be used: If
k = 0, set LLINK (HEAD) +--- LLINK (HEAD) - 1 and terminate the algorithm, since
the whole tree has decreased in height. Otherwise look at the balance factor
B(Pk); there are three cases:

i) B(Pk) = ak· Set B(Pk) +--- 0, decrease k by 1, and repeat the adjustment
procedure for this new value of k.

ii) B(Pk) = 0. Set B(Pk) to -ak and terminate the deletion algorithm.
iii) B(Pk) = -ak· Rebalancing is required!
The situations that require rebalancing are almost the same as we met in the
insertion algorithm; referring again to (1), A is node Pk, and B is the node
LINK (-ak , Pk), on the opposite branch from where the deletion has occurred.
The only new feature is that node B might be balanced; this leads to a new

474 SEARCHING 6.2.3

Case 3, which is like Case 1 except that {3 has height h + 1. In Cases 1
and 2, rebalancing as in (2) means that we decrease the height, so we set
LINK(ak_1,Pk_1) to the root of (2), decrease k by 1, and restart the adjustment
procedure for this new value of k. In Case 3 we do a single rotation, and this
leaves the balance factors of both A and B nonzero without changing the overall
height; after making LINJ$(ak_ 1,Pk-1) point to node B, we therefore terminate
the algorithm.

The important difference between deletion and insertion is that deletion
might require up to log N rotations, while insertion never needs more than one.
The reason for this becomes clear if we try to delete the rightmost node of a
Fibonacci tree (see Fig. 8 in Section 6.2.1). But empirical tests show that only
about 0.21 rotations per deletion are actually needed, on the average.

The use of balanced trees for linear list representation suggests also the
need for a concatenation algorithm, where we want to insert an entire tree L 2 to
the right of tree L 1, without destroying the balance. An elegant algorithm for
concatenation was first devised by Clark A. Crane: Assume that height(L1) 2:
height (L2); the other case is similar. Delete the first node of L2, calling it the
juncture node J, and let be the new tree for L2 \ { J}. Now go down the right
links of L1 until reaching a node P such that

height(P) - = 0 or 1;

this is always possible, since the height changes by 1 or 2 each time we go down

one level. Then replace © by

and proceed to adjust L1 as if the new node J had just been inserted by
Algorithm A.

Crane also solved the more difficult inverse problem, to split a list into two
parts whose concatenation would be the original list. Consider, for example,
the problem of splitting the list in Fig. 20 to obtain two lists, one containing
{A, ... , I} and the other containing {J, ... , Q}; a major reassembly of the subtrees
is required. In general, when we want to split a tree at some given node P, the
path to P will be something like that in Fig. 25. We wish to construct a left
tree that contains the nodes of a 1, P1, a4, P4, a6, P6, a 7 , P 7 , a, P in symmetric
order, and a right tree that contains {3, Ps, f3s, P5, {35, P3, {33, P2, {32. This can be
done by a sequence of concatenations: First insert P at the right of a, then
concatenate {3 with {38 using Ps as juncture node, concatenate a 7 with aP using
P1 as juncture node, a6 with a1P1aP using P6, f3Psf3s with {35 using P5, etc.; the
nodes Ps, P 7 , ... , P 1 on the path to P are used as juncture nodes. Crane proved
that this splitting algorithm takes only O(log N) units of time, when the original
tree contains N nodes; the essential reason is that concatenation using a given
juncture node takes O(k) steps, where k is the difference in heights between the

6.2.3 BALANCED TREES 475

a {3

Fig. 25. The problem of splitting a list.

trees being concatenated, and the values of k that must be summed essentially
form a telescoping series for both the left and right trees being constructed.

All of these algorithms can be used with either KEY or RANK fields or both
(although in the case of concatenation the keys of L2 must all be greater than
the keys of L 1 . For general purposes it is often preferable to use a triply linked
tree, with UP links as well as LLINKs and RLINKs, together with a new one-bit
field that specifies whether a node is the left or right child of its parent. The
triply linked tree representation simplifies the algorithms slightly, and allows us
to specify nodes in the tree without explicitly tracing the path to that node; we
can write a subroutine to delete NODE (P), given P, or to delete the node that
follows NODE(P) in symmetric order, or to find the list containing NODE(P), etc.
In the deletion algorithm for triply linked trees it is unnecessary to construct the
list (16), since the UP links provide the information we need. Of course, a triply
linked tree requires us to change a few more links when insertions, deletions, and
rotations are being performed. The use of a triply linked tree instead of a doubly
linked tree is analogous to the use of two-way linking instead of one-way: We can
start at any point and go either forward or backward. A complete description of
list algorithms based on triply linked balanced trees appears in Clark A. Crane's
Ph.D. thesis (Stanford University, 1972).

Alternatives to AVL trees. Many other ways have been proposed to organize
trees so that logarithmic accessing time is guaranteed. For example, C. C. Foster
[CACM 16 (1973), 513-517) considered the binary trees that arise when we allow
the height difference of subtrees to be at most k. Such structures have been called
HB (k) (meaning "height-balanced"), so that ordinary balanced trees represent
the special case HB(l).

476 SEARCHING 6.2.3

The interesting concept of weight-balanced trees has been studied by J. Nie-
vergelt, E. Reingold, and C. K. Wong. Instead of considering the height of trees,
they stipulate that the subtrees of all nodes must satisfy

In left weight In
y L, - 1 < < y 2 + 1, . right weight

where the left and right weights count the number of external nodes in the
left and right subtrees, respectively. It is possible to show that weight balance
can be maintained under insertion, using only single and double rotations for
rebalancing as in Algorithm A (see exercise 25). However, it may be necessary
to do many rebalancings during a single insertion. It is possible to relax the
conditions of (1 7), decreasing the amount of rebalancing at the expense of
increased search time.

Weight-balanced trees may seem at first glance to require more memory
than plain balanced trees, but in fact they sometimes require slightly less! If we
already have a RANK field in each node, for the linear list representation, this is
precisely the left weight, and it is possible to keep track of the corresponding right
weights as we move down the tree. However, it appears that the bookkeeping
required for maintaining weight balance takes more time than Algorithm A, and
the elimination of two bits per node is probably not worth the trouble.

Why don't you pair 'em up in threes?
- attributed to YOGI BERRA (c. 1970)

Another interesting alternative to AVL trees, called "2-3 trees," was intro-
duced by John Hopcroft in 1970 [see Aho, Hopcroft, and Ullman, The Design
and Analysis of Computer Algorithms (Reading, Mass.: Addison-Wesley, 1974),
Chapter 4]. The idea is to have either 2-way or 3-way branching at each node,
and to stipulate that all external nodes appear on the same level. Every internal
node contains either one or two keys, as shown in Fig. 26.

Fig. 26. A 2-3 tree.

Insertion into a 2-3 tree is somewhat easier to explain than insertion into an
AVL tree: If we want to put a new key into a node that contains just one key,
we simply insert it as the second key. On the other hand, if the node already
contains two keys, we divide it into two one-key nodes, and insert the middle key
into the parent node. This may cause the parent node to be divided in a similar
way, if it already contains two keys. Figure 27 shows the process of inserting a
new key into the 2-3 tree of Fig. 26.

6.2.3 BALANCED TREES 477

Fig. 27. Inserting the new key "M" into the 2-3 tree of Fig. 26.

Hopcroft observed that deletion, concatenation, and splitting can all be
done with 2-3 trees, in a reasonably straightforward manner analogous to the
corresponding operations with AVL trees.

R. Bayer [Proc. ACM-SIGFIDET Workshop (1971), 219-235] proposed an
interesting binary tree representation for 2-3 trees. See Fig. 28, which shows the
binary tree representation of Fig. 26; one bit in each node is used to distinguish
"horizontal" RLINKs from "vertical" ones. Note that the keys of the tree appear
from left to right in symmetric order, just as in any binary search tree. It turns
out that the transformations we need to perform on such a binary tree, while in-
serting a new key as in Fig. 27, are precisely the single and double rotations used
while inserting a new key into an AVL tree, although we need just one version
of each rotation, not the left-right reflections needed by Algorithms A and C.

Fig. 28. The 2-3 tree of Fig. 26 represented as a binary search tree.

Elaboration of these ideas has led to many additional flavors of balanced
trees, most notably the red-black trees, also called symmetric binary B-trees or
half-balanced trees [R. Bayer, Acta Informatica 1 (1972), 290-306; L. Guibas
and R. Sedgewick, FOCS 19 (1978), 8-21; H. J. Olivie, RAIRO Informatique
Theorique 16 (1982), 51-71; R. E. Tarjan, Inf Proc. Letters 16 (1983), 253-257;
T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms
(MIT Press, 1989), Chapter 14; R. Sedgewick, Algorithms in C (Addison-Wesley,
1997), §13.4]. There is also a strongly related family called hysterical B-trees or
(a, b)-trees, notably (2, 4)-trees [D. Maier and S. C. Salveter, Inf Proc. Letters 12
(1981), 199-202; S. Huddleston and K. Mehlhorn, Acta Informatica 17 (1982),
157-184].

478 SEARCHING 6.2.3

When some keys are accessed much more frequently than others, we want
the important ones to be relatively close to the root, as in the optimum binary
search trees of Section 6.2. 2. Dynamic trees that make it possible to maintain
weighted balance within a constant factor of the optimum, called biased trees,
have been developed by S. W. Bent, D. D. Sleator, and R. E. Tarjan, SICOMP
14 (1985), 545-568; J. Feigenbaum and R. E. Tarjan, Bell System Tech. J. 62
(1983), 3139-3158. The algorithms are, however, quite complicated.

A much simpler self-adjusting data structure called a splay tree was devel-
oped subsequently by D. D. Sleator and R. E. Tarjan [JACM 32 (1985), 652-686],
based on ideas like the move-to-front and transposition heuristics discussed in
Section 6.1; similar techniques had previously been explored by B. Allen and
I. Munro [JACM 25 (1978), 526-535] and by J. Bitner [SICOMP 8 (1979),
82-110]. Splay trees, like the other kinds of balanced trees already mentioned,
support the operations of concatenation and splitting as well as insertion and
deletion, and in a particularly simple way. Moreover, the time needed to access
data in a splay tree is known to be at most a small constant multiple of the access
time of a statically optimum tree, when amortized over any series of operations.
Indeed, Sleator and Tarjan conjectured that the total splay tree access time is
at most a constant multiple of the optimum time to access data and to perform
rotations dynamically by any binary tree algorithm whatsoever.

Randomization leads to methods that appear to be even simpler and faster
than splay trees. Jean Vuillemin [CACM 23 (1980), 229-239] introduced Car-
tesian trees, in which every node has two keys (x, y). The x parts are ordered
from left to right as in binary search trees; the y parts are ordered from top to
bottom as in the priority queue trees of Section 5.2.3. C. R. Aragon and R. G.
Seidel gave this data structure the more colorful name treap, because it neatly
combines the notions of trees and heaps. Exactly one treap can be formed with
n given key pairs (x 1 , y1), ... , (xn, Yn), if the x's and y's are distinct. One way to
obtain it is to insert the x's by Algorithm 6.2.2T according to the order of the y's;
but there is also a simple algorithm that inserts any new key pair directly into any
treap. Aragon and Seidel observed [FOCS 30 (1989), 540-546] that if the x's are
ordinary keys while the y's are chosen at random, we can be sure that the treap
has the shape of a random binary search tree. In particular, a treap with random
y values will always be reasonably well balanced, except with exponentially small
probability (see exercise 5.2.2-42). Aragon and Seidel also showed that treaps
can readily be biased so that, for example, a key x with relative frequency f
will appear suitably near the root when it is associated with y = U 11 f, where
U is a random number between 0 and 1. Treaps performed consistently better
than splay trees in some experiments conducted by D. E. Knuth relating to the
calculation of convex hulls [Lecture Notes in Comp. Sci. 606 (1992), 53-55].

A new Section 6.2.5 devoted to randomized data structures is planned for
Y the next edition of the present book. It will discuss "skip lists" [W. Pugh,
CACM 33 (1990), 668-676} and "randomized binary search trees" [S. Roura and
C. Martinez, Lecture Notes in Comp. Sci. 1136 (1996), 91-106} as well as treaps.

6.2.3 BALANCED TREES 479

EXERCISES
1. [01] In Case 2 of (1), why isn't it a good idea to restore the balance by simply

interchanging the left subtrees of A and B?
2. [16] Explain why the tree has gotten one level higher if we reach step A 7 with

B(S) = 0.

3. [M25] Prove that a balanced tree with N internal nodes never contains more than
(¢ - l)N::::::: 0.61803N nodes whose balance factor is nonzero.

4. [M22] Prove or disprove: Among all balanced trees with Fh+1 - 1 internal nodes,
the Fibonacci tree of order h has the greatest internal path length.

5. [M25] Prove or disprove: If Algorithm A is used to insert the keys K2, ... , KN
successively in increasing order into a tree that initially contains only the single key
K 1, where K 1 < K 2 < · · · < KN, then the tree produced is always optimum (that is,
it has minimum internal path length over all N-node binary trees).

6. [M21] Prove that Eq. (5) defines the generating function for balanced trees of
height h.

7. [M27] (N. J. A. Sloane and A. V. Aho.) Prove the remarkable formula (g) for the
number of balanced trees of height h. [Hint: Let Cn = Bn + Bn-1, and use the fact
that log(is exceedingly small for large n.]

8. [M24] (L.A. Khizder.) Show that there is a constant f3 such that Bh(l) =
2hf3 - 1+0(2h/ Bh-1) ash--+ oo.

9. [Jllv.[44] What is the asymptotic number of balanced binary trees with n internal
nodes, Lh?O Bnh? What is the asymptotic average height, Lh?O hBnh/ Lh?O Bnh?
10. [27] (R. C. Richards.) Show that the shape of a balanced tree can be constructed
uniquely from the list of its balance factors B(l)B(2) ... B(N) in symmetric order.
11. [M24] (Mark R. Brown.) Prove that when n 2 6 the average number of external
nodes of each of the types +A, -A, ++B, +-B, -+B, --Bis exactly (n + 1)/14, in a random
balanced tree of n internal nodes constructed by Algorithm A.
12. [24] What is the maximum possible running time of Program A when the eighth
node is inserted into a balanced tree? What is the minimum possible running time for
this insertion?
13. [05] Why is it better to use RANK fields as defined in the text, instead of simply
to store the index of each node as its key (calling the first node "1", the second node
"2", and so on)?
14. [11] Could Algorithms 6.2.2T and 6.2.2D be adapted to work with linear lists,
using a RANK field, just as the balanced tree algorithms of this section have been so
adapted?
15. [18] (C. A. Crane.) Suppose that an ordered linear list is being represented as
a binary tree, with both KEY and RANK fields in each node. Design an algorithm that
searches the tree for a given key, K, and determines the position of K in the list; that is,
it finds the number m such that K is the mth smallest key.
16. [20] Draw the balanced tree that is obtained after node E and the root node Fare
deleted from Fig. 20, using the deletion algorithm suggested in the text.
1 7. [21] Draw the balanced trees that are obtained after the Fibonacci tree (12)
is concatenated (a) to the right, (b) to the left, of the tree in Fig. 20, using the
concatenation algorithm suggested in the text.

480 SEARCHING 6.2.3

18. [22] Draw the balanced trees that are obtained after Fig. 20 is split into two parts
{A, ... , I} and { J, ... , Q}, using the splitting algorithm suggested in the text.
19. [26] Find a way to transform a given balanced tree so that the balance factor at
the root is not -1. Your transformation should preserve the symmetric order of the
nodes; and it should produce another balanced tree in 0(1) units of time, regardless of
the size of the original tree.
20. [40] Explore the idea of using the restricted class of balanced trees whose nodes
all have balance factors of 0 or + 1. (Then the length of the B field can be reduced to
one bit.) Is there a reasonably efficient insertion procedure for such trees?
21. [30] (Perfect balancing.) Design an algorithm to construct N-node binary trees
that are optimum in the sense of exercise 5. Your algorithm should use O(N) steps and
it should be "online," in the sense that it inputs the nodes one by one in increasing order
and builds partial trees as it goes, without knowing the final value of N in advance. (It
would be appropriate to use such an algorithm when restructuring a badly balanced
tree, or when merging the keys of two trees into a single tree.)
22. [M20] What is the analog of Theorem A, for weight-balanced trees?
23. [M20] (E. Reingold.) Demonstrate that there is no simple relation between
height-balanced trees and weight-balanced trees:

a) Prove that there exist height-balanced trees that have an arbitrarily small ratio
(left weight)/ (right weight) in the sense of (1 7).

b) Prove that there exist weight-balanced trees that have an arbitrarily large differ-
ence between left and right subtree heights.

24. [M22] (E. Reingold.) Prove that if we strengthen condition (i7) to
1 left weight

2 -2<.h .h<' ng t we1g t
the only binary trees that satisfy this condition are perfectly balanced trees with 2n -1
internal nodes. (In such trees, the left and right weights are exactly equal at all nodes.)
25. [27] (J. Nievergelt, E. Reingold, C. Wong.) Show that it is possible to design
an insertion algorithm for weight-balanced trees so that condition (1 7) is preserved,
making at most 0 (log N) rotations per insertion.
26. [40] Explore the properties of balanced t-ary trees, for t > 2.
27. [M23] Estimate the maximum number of comparisons needed to search in a 2-3
tree with N internal nodes.
28. [41] Prepare efficient implementations of 2-3 tree algorithms.
29. [M47] Analyze the average behavior of 2-3 trees under random insertions.
30. [26] (E. McCreight.) Section 2.5 discusses several strategies for dynamic storage
allocation, including best-fit (choosing an available area as small as possible from among
all those that fulfill the request) and first-fit (choosing the available area with lowest
address among all those that fulfill the request). Show that if the available space is
linked together as a balanced tree in an appropriate way, it is possible to do (a) best-fit
(b) first-fit allocation in only O(logn) units of time, where n is the number of available
areas. (The algorithms given for those methods in Section 2.5 take order n steps.)
31. [34] (M. L. Fredman, 1975.) Invent a representation of linear lists with the
property that insertion of a new item between positions m - 1 and m, given m, takes
O(logm) units of time.

6.2.4 MULTIWAY TREES 481

32. [M27] Given two n-node binary trees, T and T', let us say that T :::S T' if T' can
be obtained from T by a sequence of zero or more rotations to the right. Prove that
T :::ST' if and only if rk for 1 k n, where rk and denote the respective sizes
of the right subtrees of the kth nodes of T and T' in symmetric order.
33. [25] (A. L. Buchsbaum.) Explain how to encode the balance factors of an AVL
tree implicitly, thus saving two bits per node, at the expense of additional work when
the tree is accessed.

6.2.4. Multiway Trees

Samuel considered the nation of Israel, tribe by tribe,
and the tribe of Benjamin was picked by lot.

Then he considered the tribe of Benjamin, family by family,
and the family of Matri was picked by lot.

Then he considered the family of Matri, man by man,
and Saul son of Kish was picked by lot.

But when they looked for Saul he could not be found.
- 1 Samuel 10: 20-21

The tree search methods we have been discussing were developed primarily for
internal searching, when we want to look at a table that is contained entirely
within a computer's high-speed internal memory. Let's now consider the problem
of external searching, when we want to retrieve information from a very large
file that appears on direct access storage units such as disks or drums. (An
introduction to disks and drums appears in Section 5.4.9.)

Tree structures lend themselves nicely to external searching, if we choose
an appropriate way to represent the tree. Consider the large binary search
tree shown in Fig. 29, and imagine that it has been stored in a disk file. (The
LLINKs and RLINKs of the tree are now disk addresses instead of internal memory
addresses.) If we search this tree in a naive manner, simply applying the
algorithms we have learned for internal tree searching, we will have to make
about lg N disk accesses before our search is complete. When N is a million,
this means we will need 20 or so seeks. But suppose we divide the table into
7-node "pages," as shown by the dotted lines in Fig. 29; if we access one page at
a time, we need only about one third as many seeks, so the search goes about
three times as fast!

Grouping the nodes into pages in this way essentially changes the tree from
a binary tree to an octonary tree, with 8-way branching at each page-node. If
we let the pages be still larger, with 128-way branching after each disk access,
we can find any desired key in a million-entry table after looking at only three
pages. We can keep the root page in the internal memory at all times, so that
only two references to the disk are required even though the internal memory
never needs to hold more than 254 keys at any time.

Of course we don't want to make the pages arbitrarily large, since the
internal memory size is limited and also since it takes a long time to read a
large page. For example, suppose that it takes 72.5 + 0.05m milliseconds to read
a page that allows m-way branching. The internal processing time per page will

482 SEARCHING 6.2.4

... ··· ······· ··· ...

"

.·

Fig. 29. A large binary search tree can be divided into "pages."

be about a+ b lg m, where a is small compared to 72.5 ms, so the total amount
of time needed for searching a large table is approximately proportional to lg N
times

(72.5 + 0.05m)/lgm + b.

This quantity achieves a minimum when m 307; actually the minimum is
very "broad" - a nearly optimum value is achieved for all m between 200 and
500. In practice there will be a similar range of good values for m, based on the
characteristics of particular external memory devices and on the length of the
records in the table.

W. I. Landauer [IEEE Trans. EC-12 (1963), 863-871] suggested building an
m-ary tree by requiring level l to become nearly full before anything is allowed
to appear on level l + 1. This scheme requires a rather complicated rotation
method, since we may have to make major changes throughout the tree just to
insert a single new item; Landauer was assuming that we need to search for items
in the tree much more often than we need to insert or delete them.

When a file is stored on disk, and is subject to comparatively few insertions
and deletions, a three-level tree is appropriate, where the first level of branching
determines what cylinder is to be used, the second level of branching determines
the appropriate track on that cylinder, and the third level contains the records
themselves. This method is called indexed-sequential file organization [see JACM
16 (1969), 569-571].

R. Muntz and R. Uzgalis [Proc. Princeton Conf on Inf Sciences and Systems
4 (1970), 345-349] suggested modifying the tree search and insertion method,
Algorithm 6.2.2T, so that all insertions go onto nodes belonging to the same
page as their parent node, whenever possible; if that page is full, a new page
is started, whenever possible. If the number of pages is unlimited, and if the
data arrives in random order, it can be shown that the average number of page
accesses is approximately HN /(Hrn -1), only slightly more than we would obtain
in the best possible m-ary tree. (See exercise 8.)

B-trees. A new approach to external searching by means of multiway tree
branching was discovered in 1970 by R. Bayer and E. McCreight [Acta Informa-

6.2.4 MULTIWAY TREES 483

tica 1 (1972), 173-189], and independently at about the same time by M. Kauf-
man [unpublished]. Their idea, based on a versatile new kind of data structure
called a B-tree, makes it possible both to search and to update a large file with
guaranteed efficiency, in the worst case, using comparatively simple algorithms.

A B-tree of order m is a tree that satisfies the following properties:

i) Every node has at most m children.

ii) Every node, except for the root and the leaves, has at least m/2 children.

iii) The root has at least 2 children (unless it is a leaf).

iv) All leaves appear on the same level, and carry no information.

v) A nonleaf node with k children contains k - 1 keys.

(As usual, a "leaf" is a terminal node, one with no children. Since the leaves
carry no information, we may regard them as external nodes that aren't really
in the tree, so that A is a pointer to a leaf.)

Figure 30 shows a B-tree of order 7. Each node (except for the root and the
leaves) has between f7 /21 and 7 children, so it contains 3, 4, 5, or 6 keys. The
root node is allowed to contain from 1 to 6 keys; in this case it has 2. All of the
leaves are at level 3. Notice that (a) the keys appear in increasing order from
left to right, using a natural extension of the concept of symmetric order; and
(b) the number of leaves is exactly one greater than the number of keys.

B-trees of order 1 or 2 are obviously uninteresting, so we will consider only
the case m 2_ 3. The 2-3 trees defined at the close of Section 6.2.3 are equivalent
to B-trees of order 3. (Bayer and McCreight considered only the case that m is
odd; some authors consider a B-tree of order m to be what we are calling a
B-tree of order 2m + 1.)

A node that contains j keys and j + 1 pointers can be represented as
p

where K1 < K2 < · · · < KJ and Pi points to the subtree for keys between
Ki and Ki+I· Therefore searching in a B-tree is quite straightforward: After
node (1) has been fetched into the internal memory, we search for the given
argument among the keys K 1 ,K2 , ... ,Kj· (When j is large, we probably do a
binary search; but when j is smallish, a sequential search is best.) If the search
is successful, we have found the desired key; but if the search is unsuccessful
because the argument lies between Ki and Ki+i, we fetch the node indicated
by Pi and continue the process. The pointer Po is used if the argument is less
than K 1 , and P J is used if the argument is greater than KJ. If Pi = A, the search
is unsuccessful.

The nice thing about B-trees is that insertion is also quite simple. Consider
Fig. 30, for example; every leaf corresponds to a place where a new insertion
might happen. If we want to insert the new key 337, we simply change the

484 SEARCHING 6.2.4

Fig. 30. AB-tree of order 7, with all leaves
on level 3. Every node contains 3, 4, 5, or 6
keys. The leaf that precedes key 449 has
been marked A; see (8).

6.2.4 MULTIWAY TREES 485

appropriate node from

to

On the other hand, if we want to insert the new key 071, there is no room since
the corresponding node on level 2 is already "full." This case can be handled by
splitting the node into two parts, with three keys in each part, and passing the
middle key up to level 1:

..... I'-
... O") O> ...

0 0

becomes (3)

In general, if we want to insert a new item into a B-tree of order m, when
all the leaves are at level l, we insert the new key into the appropriate node on
level l - 1. If that node now contains m keys, so t]:iat it has the form (1) with
j = m, we split it into two nodes

p p'

and insert the key K f 111 ; 21 into the parent of the original node. (Thus the pointer
P in the parent node is replaced by the sequence P, K f 111 ; 21 , P'.) This insertion
may cause the parent node to contain m keys, and if so, it should be split in
the same way. (Fig. 27 in the previous section illustrates the case m = 3.) If we
need to split the root node, which has no parent, we simply create a new root
node containing the single key K1111 ; 21; the tree gets one level taller in this case.

This insertion procedure neatly preserves all of the B-tree properties; in
order to appreciate the full beauty of the idea, the reader should work exercise 1.
The tree essentially grows up from the top, instead of down from the bottom,
since it gains in height only when the root splits.

Deletion from B-trees is only slightly more complicated than insertion (see
exercise 6).

Upper bounds on the running time. Let us now see how many nodes have
to be accessed in the worst case, while searching in a B-tree of order m. Suppose
that there are N keys, and that the N + 1 leaves appear on level l. Then the
number of nodes on levels 1, 2, 3, ... is at least 2, 2 r m/21, 2 r m/21 2 ' ... ; hence

(5)
In other words,

(N + 1) l :S l+logfrn/21 2 ; (6)

486 SEARCHING 6.2.4

this means, for example, that if N = 1,999,998 and m = 199, then l is at most 3.
Since we need to access at most l nodes during a search, this formula guarantees
that the running time is quite small.

When a new key is being inserted, we may have to split as many as l nodes.
However, the average number of nodes that need to be split is much less, since the
total number of splittings· that occur while the entire tree is being constructed
is just the total number of internal nodes in the tree, minus l. If there are p
internal nodes, there are at least 1 + (lm/21 - l)(p - 1) keys; hence

N-1
/l .

1m 2 -1 (7)

It follows that the average number of times we need to split a node while building
a tree of N keys is less than 1/ (I m/21 - 1) split per insertion.

Refinements and variations. There are several ways to improve upon the
basic B-tree structure defined above, by breaking the rules a little.

In the first place, we note that all of the pointers in the level l - 1 nodes
are A, and none of the pointers in the other levels are A. This often represents a
significant amount of wasted space, so we can save both time and space by elim-
inating all the A's and using a different value of m for all of the "bottom" nodes.
This use of two different m's does not foul up the insertion algorithm, since both
halves of a node that is being split remain on the same level as the original
node. We could in fact define a generalized B-tree of orders m 1 , m2, m3, ... by
requiring all nonroot nodes on level l -k to have between mk/2 and mk children;
such a B-tree has different m's on each level, yet the insertion algorithm still
works essentially as before.

To carry the idea in the preceding paragraph even further, we might use
a completely different node format in each level of the tree, and we might also
store information in the leaves. Sometimes the keys form only a small part of
the records in a file, and in such cases it is a mistake to store the entire records
in the branch nodes near the root of the tree; this would make m too small for
efficient multiway branching.

We can therefore reconsider Fig. 30, imagining that all the records of the
file are now stored in the leaves, and that only a few of the keys have been
duplicated in the branch nodes. Under this interpretation, the leftmost leaf
contains all records whose key is 011; the leaf marked A contains all records
whose key satisfies

439 < K 449; (8)

and so on. Under this interpretation the leaf nodes grow and split just as the
branch nodes do, except that a record is never passed up from a leaf to the next
level. Thus the leaves are always at least half filled to capacity. A new key
enters the nonleaf part of the tree whenever a leaf splits. If each leaf is linked
to its successor in symmetric order, we gain the ability to traverse the file both
sequentially and randomly in an efficient and convenient manner. This variant
has become known as a B+ -tree.

- - ---------

6.2.4 MULTIWAY TREES 487

Some calculations by S. P. Ghosh and M. E. Senko [JACM 16 (1969),
569-579] suggest that it might be a good idea to make the leaves fairly large,
say up to about 10 consecutive pages long. By linear interpolation in the known
range of keys for each leaf, we can guess which of the 10 pages probably contains
a given search argument. If our guess is wrong, we lose time, but experiments
indicate that this loss might be less than the time we save by decreasing the size
of the tree.

T. H. Martin [unpublished] has pointed out that the idea underlying B-trees
can be used also for variable-length keys. We need not put bounds [m/2 .. m) on
the number of children of each node; instead we can say merely that each node
should be at least about half full of data. The insertion and splitting mechanism
still works fine, even though the exact number of keys per node depends on
whether the keys are long or short. However, the keys shouldn't be allowed to
get extremely long, or they can mess things up. (See exercise 5.)

Another important modification to the basic B-tree scheme is the idea
of overflow introduced by Bayer and McCreight. The idea is to improve the
insertion algorithm by resisting its temptation to split nodes so often; a local
rotation is used instead. Suppose we have a node that is over-full because it
contain m keys and m + 1 pointers; instead of splitting it, we can look first at its
sibling node on the right, which has say j keys and j + 1 pointers. In the parent
node there is a key Kt that separates the keys of the two siblings; schematically,

(9)

If j < m - 1, a simple rearrangement makes splitting unnecessary: We leave
l(m + j)/2 J keys in the left node, we replace K1 by KLcm:+j)/ 2J+i in the parent
node, and we put the f (m + j)/21 remaining keys (including Kt) and the
corresponding pointers into the right node. Thus the full node "flows over" into
its sibling node. On the other hand, if the sibling node is already full (j = m-1),
we can split both of the nodes, making three nodes each about two-thirds full,
containing, respectively, l(2m- 2)/3J, l(2m -1)/3J, and l2m/3j keys:

K L(2m.+1)/3J K' L(m.-1)/3J

p P" P'

Ki K2 ···Km. KJ K'
(10)

1

Po P1 Pm. P' 0 P' 1 P'
J

If the original node has no right sibling, we can look at its left sibling in essentially
the same way. (If the original node has both a right and a left sibling, we could
even refrain from splitting off a new node unless both left and right siblings are
full.) Finally if the original node to be split has no siblings at all, it must be

488 SEARCHING 6.2.4

the root; we can change the definition of B-tree, allowing the root to contain as
many as 2 l (2m - 2)/3 J keys, so that when the root splits it produces two nodes

of l(2m - 2)/3 J keys each.
The effect of all the technicalities in the preceding paragraph is to produce a

superior breed of tree, say a B* -tree of order m, which can be defined as follows:

i) Every node except root has at most m children.

ii) Every node, except for the root and the leaves, has at least (2m - 1)/3
children.

iii) The root has at least 2 and at most 2 l (2m - 2) / 3 J + 1 children.

iv) All leaves appear on the same level.

v) A nonleaf node with k children contains k - 1 keys.

The important change is condition (ii), which asserts that we utilize at least
two-thirds of the available space in every node. This change not only uses space
more efficiently, it also makes the search process faster, since we may replace
f m/21 by !(2m - 1)/31 in (6) and (7)· However, the insertion process gets
slower, because nodes tend to need more attention as they fill up; see B. Zhang
and M. Hsu, Acta Informatica 26 (1989), 421-438, for an approximate analysis
of the tradeoffs involved.

At the other extreme, it is sometimes better to let nodes become less than
half full in a tree that changes quite frequently, if insertions tend
to outnumber deletions. This situation has been analyzed by T. Johnson and
D. Shasha, J. Comput. Syst. Sci. 47 (1993), 45-76.

Perhaps the reader has been skeptical of B-trees because the degree of the
root can be as low as 2. Why should we waste a whole disk access on merely
a 2-way decision?! A simple buffering scheme, called least-recently-used page
replacement, overcomes this objection; we can keep several bufferloads of infor-
mation in the internal memory, so that input commands can be avoided when
the corresponding page is already present. Under this scheme, the algorithms
for searching or insertion issue "virtual read" commands that are translated
into actual input instructions only when the necessary page is not in memory;
a subsequent "release" command is issued when the buffer has been read and
possibly modified by the algorithm. When an actual read is required, the buffer
that has least recently been released is chosen; we write out that buffer, if its
contents have changed since they were read in, then we read the desired page
into the chosen buffer.

Since the number of levels in the tree is generally small compared to the
number of buffers, this paging scheme will ensure that the root page is always
present in memory; and if the root has only 2 or 3 children, the first-level pages
will almost surely stay there too. Any pages that might need to be split during
an insertion are automatically present in memory when they are needed, because
they will be remembered from the immediately preceding search.

Experiments by E. McCreight have shown that this policy is quite successful.
For example, he found that with 10 buffers and m = 121, the process of inserting

6.2.4 MULTIWAY TREES 489

100,000 keys in ascending order required only 22 actual read commands, and only
857 actual write commands; thus most of the activity took place in the internal
memory. Furthermore the tree contained only 835 nodes, just one higher than
the minimum possible value I 100000 / (m - 1) l = 834; thus the storage utilization
was nearly 100 percent. For this experiment he used the overflow technique, but
with only 2-way node splitting as in (4), not 3-way splitting as in (io). (See
exercise 3.)

In another experiment, again with 10 buffers and m = 121 and the overflow
technique, he inserted 5000 keys into an initially empty tree, in random order;
this produced a 2-level tree with 48 nodes (87 percent storage utilization), after
making 2762 actual reads and 2739 actual writes. Then 1000 random searches
required 786 actual reads. The same experiment without the overflow feature
produced a 2-level tree with 62 nodes (67 percent storage utilization), after
making 2743 actual reads and 2800 actual writes; 1000 subsequent random
searches required 836 actual reads. This shows not only that the paging scheme
is effective but also that it is wise to handle overflows locally before deciding to
split a node.

Andrew Yao has proved that the average number of nodes after random
insertions without the overflow feature will be

N / (m ln 2) + 0 (N / m 2),

for large N and m, so the storage utilization will be approximately ln 2 = 69.3
percent [Acta Informatica 9 (1978), 159-170). See also the more detailed analyses
by B. Eisenbarth, N. Ziviani, G. H. Gonnet, K. Mehlhorn, and D. Wood, Infor-
mation and Control 55 (1982), 125-174; R. A. Baeza-Yates, Acta Informatica
26 (1989), 439-471.

B-trees became popular soon after they were invented. See, for example,
the article by Douglas Comer in Computing Surveys 11 (1979), 121-138, 412,
which discusses early developments and describes a widely used system called
VSAM (Virtual Storage Access Method) developed by IBM Corporation. One of
the innovations of VSAM was to replicate blocks on a disk track so that latency
time was minimized.

Two of the most interesting developments of the basic B-tree strategy have
unfortunately been given almost identical names: "SB-trees" and "SB-trees."
The SB-tree of P. E. O'Neil [Acta Inf. 29 (1992), 241-265] is designed to min-
imize disk I/O time by allocating nearby records to the same track or cylinder,
maintaining efficiency in applications where many consecutive records need to be
accessed at the same time; in this case "SB" is in italic type and the S connotes
"sequential." The SB-tree of P. Ferragina and R. Grossi [STOC 27 (1995), 693-
702; SODA 7 (1996), 373-382] is an elegant combination of B-tree structure
with the Patricia trees that we will consider in Section 6.3; in this case "SB"
is in roman type and the S connotes "string." SB-trees have many applications
to large-scale text processing, and they provide a basis for efficient sorting of
variable-length strings on disk [see Arge, Ferragina, Grossi, and Vitter, STOC
29 (1997), 540-548].

490 SEARCHING 6.2.4

EXERCISES
1. [1 O] What B-tree of order 7 is obtained after the key 613 is inserted into Fig. 30?

(Do not use the overflow technique.)
2. [15] Work exercise 1, but use the overflow technique, with 3-way splitting as

in (10). .
Ji>- 3. [23] Suppose we insert the keys 1, 2, 3, ... in ascending order into an initially

empty B-tree of order 101. Which key causes the leaves to be on level 4 for the first time
a) when we use no overflow?
b) when we use overflow and only 2-way splitting as in (4)?
c) when we use a B* -tree of order 101, with overflow and 3-way splitting as in (10)?
4. [21] (Bayer and McCreight.) Explain how to handle insertions into a generalized

B-tree so that all nodes except the root and leaves will be guaranteed to have at least
m - children.

Ji>- 5. [21 J Suppose that a node represents 1000 character positions of external memory.
If each pointer occupies 5 characters, and if the keys are variable in length, between
5 and 50 characters long but always a multiple of 5 characters, what is the minimum
number of character positions occupied in a node after it splits during an insertion?
(Consider only a simple splitting procedure analogous to that described in the text
for fixed-length-key B-trees, without overflowing; move up the key that makes the
remaining two parts most nearly equal in size.)

6. [23] Design a deletion algorithm for B-trees.
7. [28] Design a concatenation algorithm for B-trees (see Section 6.2.3).

Ji>- 8. [HM37] Consider the generalization of tree insertion suggested by Muntz and
Uzgalis, where each page can hold M keys. After N random items have been inserted
into such a tree, so that there are N + 1 external nodes, let be the probability that
an unsuccessful search requires k page accesses and that it ends at an external node
whose parent node belongs to a page containing j keys. If (z) = I: zk is the
corresponding generating function, prove that we have Bi3) (z) = 8j 1 z and

B(j) (z) = N - j - 1 B(j) (z) + j + 1 B(j-l) (z)
N N+l N-1 N+l N-1 ' for 1 < j < M;

B(l)() = N - 2 B(1) () + 2z B(M) (z)·
N z N + 1 N-1 z N + 1 N-1 '

B(M)(z) = N - 1 B(M) (z) + M + 1 B(M-l)(z).
N N+l N-1 N+l N-1

Find the asymptotic behavior of Civ = I:J'!1 (1), the average number of page
accesses per unsuccessful search. [Hint: Express the recurrence in terms of the matrix

-3 0 0 2z
3 -4 0 0
0 4 0 0

W(z) =

0 0 -M-1 0
0 0 M+l -2

and relate c;_, to an Nth degree polynomial in W(l).]

6.2.4 MULTIWAY TREES 491

9. [22] Can the B-tree idea be used to retrieve items of a linear list by position
instead of by key value? (See Algorithm 6.2.3B.)

· 10. [35] Discuss how a large file, organized as a B-tree, can be used for concurrent
accessing and updating by a large number of simultaneous users, in such a way that
users of different pages rarely interfere with each other.

Little is known, even for otherwise equivalent algorithms,
about the optimization of storage a/location,

minimization of the number of required operations,
and so on. This area of investigation

must draw upon the most powerful resources
of both pure and applied mathematics

for further progress.
- ANTHONY G. OETTINGER (1961)

