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6.2. SEARCHING BY COMPARISON OF KEYS 

IN THIS SECTION we shall discuss search methods that are based on a linear 
ordering of the keys, such as alphabetic order or numeric order. After comparing 
the given argument K to a key Ki in the table, the search continues in three 
different ways, depending on whether K < Ki, K = Ki, or K > Ki. The 
sequential search methods of Section 6.1 were essentially limited to a two-way 
decision (K = Ki versus K -=f. Ki), but if we free ourselves from the restriction 
of sequential access we are able to make effective use of an order relation. 

6.2.1. Searching an Ordered Table 

What would you do if someone handed you a large telephone directory and 
told you to find the name of the person whose number is 795-6841? There is 
no better way to tackle this problem than to use the sequential methods of 
Section 6.1. (Well, you might try to dial the number and talk to the person who 
answers; or you might know how to obtain a special directory that is sorted by 
number instead of by name.) The point is that it is much easier to find an entry 
by the party's name, instead of by number, although the telephone directory 
contains all the information necessary in both cases. When a large file must 
be searched, sequential scanning is almost out of the question, but an ordering 
relation simplifies the job enormously. 

With so many sorting methods at our disposal (Chapter 5), we will have little 
difficulty rearranging a file into order so that it may be searched conveniently. 
Of course, if we need to search the table only once, a sequential search would 
be faster than to do a complete sort of the file; but if we need to make repeated 
searches in the same file, we are better off having it in order. Therefore in this 
section we shall concentrate on methods that are appropriate for searching a 
table whose keys satisfy 

Ki< K2 < ... <KN, 

assuming that we can easily access the key in any given position. After comparing 
K to Ki in such a table, we have either 

• K <Ki 
or • K =Ki 
or • K >Ki 

Ri+1 , ... , RN are eliminated from consideration]; 

[the search is done]; 

[R1 , R2, ... , Ri are eliminated from consideration]. 

In each of these three cases, substantial progress has been made, unless i is 
near one of the ends of the table; this is why the ordering leads to an efficient 
algorithm. 

Binary search. Perhaps the first such method that suggests itself is to start by 
comparing K to the middle key in the table; the result of this probe tells which 
half of the table should be searched next, and the same procedure can be used 
again, comparing K to the middle key of the selected half, etc. After at most 
about lg N comparisons, we will have found the key or we will have established 
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B3. Compare < > 

SUCCESS 

Fig. 3. Binary search. 

that it is not present. This procedure is sometimes known as "logarithmic search" 
or "bisection," but it is most commonly called binary search. 

Although the basic idea of binary search is comparatively straightforward, 
the details can be surprisingly tricky, and many good programmers have done it 
wrong the first few times they tried. One of the most popular correct forms of 
the algorithm makes use of two pointers, l and u, that indicate the current lower 
and upper limits for the search, as follows: 

Algorithm B (Binary search). Given a table of records RiR2 ... RN whose 
keys are in increasing order Ki < K2 < · · · < KN, this algorithm searches for a 
given argument K. 

Bl. [Initialize.) Set l +-- 1, u +-- N. 

B2. [Get midpoint.) (At this point we know that if K is in the table, it satisfies 
K1 K Ku. A more precise statement of the situation appears in exer-
cise 1 below.) If u < l, the algorithm terminates unsuccessfully. Otherwise, 
set i +-- l(l + u)/2 J, the approximate midpoint of the relevant table area. 

B3. [Compare.) If K < Ki, go to B4; if K > Ki, go to B5; and if K =Ki, the 
algorithm terminates successfully. 

B4. [Adjust u.] Set u +-- i - 1 and return to B2. 

B5. [Adjust l.] Set l +-- i + 1 and return to B2. I 

Figure 4 illustrates two cases of this binary search algorithm: first to search 
for the argument 653, which is present in the table, and then to search for 400, 
which is absent. The brackets indicate l and u, and the underlined key repre-
sents Ki. In both examples the search terminates after making four comparisons. 
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a) Searching for 653: 

[061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908] 
061 087 154 170 275 426 503 509 [512 612 653 677 703 765 897 908] 
061 087 154 170 275 426 503 509 [512 612 653] 677 703 765 897 908 
061 087 154 170 275 426 503 509 512 612 [653] 677 703 765 897 908 

b) Searching for 400: 

[061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908] 
[061 087 154 170 275 426 503] 509 512 612 653 677 703 765 897 908 
061 087 154 170 [275 426 503] 509 512 612 653 677 703 765 897 908 
061 087 154 170 [275] 426 503 509 512 612 653 677 703 765 897 908 
061 087 154 170 503 509 512 612 653 677 703 765 897 908 

Fig. 4. Examples of binary search. 

411 

Program B (Binary search). As in the programs of Section 6.1, we assume 
here that Ki is a full-word key appearing in location KEY+ i. The following code 
uses rll l, rl2 u, rl3 i. 
01 START ENT! 1 1 Bl. Initialize. l +--- 1. 
02 ENT2 N 1 u t-N. 
03 JMP 2F 1 To B2. 
04 SH JE SUCCESS Cl Jump if K =Ki. 
05 ENT! 1,3 Cl-S B5. Adiust l. l +--- i + 1. 
06 2H ENTA 0,1 C+l-S B2. Get mid12oint. 
01 INCA 0,2 C+l-S rA +--- l + u. 
08 SRB 1 C+l-S rA +--- LrA/2J. (rX changes too.) 
09 STA TEMP C+ l-S 
10 CMP1 TEMP C+l-S 
11 JG FAILURE C+l-S Jump if u < l. 
12 LD3 TEMP c i +---midpoint. 
13 3H LDA K c B3. Com12are. 
14 CMPA KEY,3 c 
15 JGE SB c Jump if K 2: Ki. 
16 ENT2 -1,3 C2 B4. Adiust u. ut-i-1. 
11 JMP 2B C2 To B2. I 

This procedure doesn't blend with MIX quite as smoothly as the other 
algorithms we have seen, because MIX does not allow much arithmetic in index 
registers. The running time is (18C - IOS + 12)u, where C = Cl+ C2 is the 
number of comparisons made (the number of times step B3 is performed), and 
S = [outcome is successful]. The operation on line 08 of this program is "shift 
right binary 1," which is legitimate only on binary versions of MIX; for general 
byte size, this instruction should be replaced by "MUL ==1/ /2+1=", increasing the 
running time to ( 26C - 18S + 20) u. 

A tree representation. In order to really understand what is happening in 
Algorithm B, our best bet is to think of the procedure as a binary decision tree, 
as shown in Fig. 5 for the case N = 16. 
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Fig. 5. A comparison tree that corresponds to binary search when N = 16. 

When N is 16, the first comparison made by the algorithm is K: Ks; this is 
represented by the root node ® in the figure. Then if K < Ks, the algorithm 
follows the left subtree, comparing K to K4; similarly if K > Ks, the right 
subtree is used. An unsuccessful search will lead to one of the external square 
nodes numbered @] through [El; for example, we reach node [I] if and only if 
K5 < K < K1. 

The binary tree corresponding to a binary search on N records can be 
constructed as follows: If N = 0, the tree is simply @]. Otherwise the root 
node is 

( IN/21 ), 
the left subtree is the corresponding binary tree with I N/21 - 1 nodes, and the 
right subtree is the corresponding binary tree with lN /2 J nodes and with all 
node numbers increased by IN /21. 

In an analogous fashion, any algorithm for searching an ordered table of 
length N by means of comparisons can be represented as an N-node binary tree 
in which the nodes are labeled with the numbers 1 to N (unless the algorithm 
makes redundant comparisons). Conversely, any binary tree corresponds to a 
valid method for searching an ordered table; we simply label the nodes 

@] CD ITJ ® IN-11 ® [El (1) 

in symmetric order, from left to right. 
If the search argument input to Algorithm Bis K10, the algorithm makes the 

comparisons K >Ks, K < K12, K = K10. This corresponds to the path from 
the root to @ in Fig. 5. Similarly, the behavior of Algorithm B on other keys 
corresponds to the other paths leading from the root of the tree. The method of 
constructing the binary trees corresponding to Algorithm B therefore makes it 
easy to prove the following result by induction on N: 

Theorem B. I£2k-I :::; N < 2k, a successful search using Algorithm B requires 
(min 1, max k) comparisons. If N = 2k - 1, an unsuccessful search requires 
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k comparisons; and if 2k-l :::; N < 2k - 1, an unsuccessful search requires either 
k - 1 or k comparisons. I 

Further analysis of binary search. (N onmathematical readers should skip 
to Eq. (4).) The tree representation shows us also how to compute the average 
number of comparisons in a simple way. Let CN be the average number of 
comparisons in a successful search, assuming that each of the N keys is an 
equally likely argument; and let be the average number of comparisons in 
an unsuccessful search, assuming that each of the N + 1 intervals between and 
outside the extreme values of the keys is equally likely. Then we have 

C _ 1 internal path length of tree C' _ external path length of tree 
N- + N ) N- N+l ) 

by the definition of internal and external path length. We saw in Eq. 2.3.4.5-(3) 
that the external path length is always 2N more than the internal path length. 
Hence there is a rather unexpected relationship between C N and 

CN = ( 1 + - 1. 

This formula, which is due to T. N. Hibbard [JACM 9 (1962), 16-17), holds 
for all search methods that correspond to binary trees; in other words, it holds 
for all methods that are based on nonredundant comparisons. The variance of 
successful-search comparisons can also be expressed in terms of the corresponding 
variance for unsuccessful searches (see exercise 25). 

From the formulas above we can see that the "best" way to search by 
comparisons is one whose tree has minimum external path length, over all binary 
trees with N internal nodes. Fortunately it can be proved that Algorithm Bis 
optimum in this sense, for all N; for we have seen (exercise 5.3.1-20) that a 
binary tree has minimum path length if and only if its external nodes all occur 
on at most two adjacent levels. It follows that the external path length of the 
tree corresponding to Algorithm B is 

( N + 1) ( l lg NJ + 2) - 2 L lg NJ + 1 . (3) 
(See Eq. 5.3.1-(34).) From this formula and (2) we can compute the exact 
average number of comparisons, assuming that all search arguments are equally 
probable. 

N= 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
CN= 1 11 2 1£ 3 2 21 5 2£ 6 7 2.§. 8 21 9 2190 3 3112 3123 3134 3 i66 

= 1 1£ 3 2 2£ 5 6 2§. 7 3 3£ 9 3 i61 3182 310 13 312 14 314 15 4 4127 

In general, if k = l lg NJ , we have 

CN = k + 1 - (2k+l - k - 2)/N =lgN-l+E+(k+2)/N, 
(4) 

= k + 2 - 2k+ 1j(N + 1) = lg( N + 1) + E
1 

where 0 :SE, E1 < 0.0861; see Eq. 5.3.1-(35). 
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To summarize: Algorithm B never makes more than llg NJ+ 1 comparisons, 
and it makes about lg N - 1 comparisons in an average successful search. No 
search method based on comparisons can do better than this. The average 
running time of Program B is approximately 

( 18 lg N - 16) u for a successful search, . 
(18 lg N + 12)u for an unsuccessful search, 

if we assume that all outcomes of the search are equally likely. 

An important variation. Instead of using three pointers l, i and u in the 
search, it is tempting to use only two, namely the current position i and its rate 
of change, J; after each unequal comparison, we could then set i +-- i ± J and 
J +-- J /2 (approximately). It is possible to do this, but only if extreme care 
is paid to the details, as in the following algorithm. Simpler approaches are 
doomed to failure! 

Algorithm U (Uniform binary search). Given a table of records R 1 , R 2 , • .• , RN 
whose keys are in increasing order Ki < K2 < · · · < KN, this algorithm searches 
for a given argument K. If N is even, the algorithm will sometimes refer to a 
dummy key K 0 that should be set to - oo (or any value less than K). We assume 
that N > 1. 

Ul. [Initialize.) Seti+-- IN/21, m +-- lN/2J. 
U2. [Compare.) If K <Ki, go to U3; if K >Ki, go to U4; and if K =Ki, the 

algorithm terminates successfully. 
U3. [Decrease i.) (We have pinpointed the search to an interval that contains 

either m or m-1 records; i points just to the right of this interval.) If m = 0, 
the algorithm terminates unsuccessfully. Otherwise set i +-- i - I m/21; then 
set m +-- lm/2J and return to U2. 

U4. [Increase i.) (We have pinpointed the search to an interval that contains 
either m or m - 1 records; i points just to the left of this interval.) If m = 0, 
the algorithm terminates unsuccessfully. Otherwise set i +-- i + I m/21; then 
set m +-- lm/2J and return to U2. I 
Figure 6 shows the corresponding binary tree for the search, when N = 10. 

In an unsuccessful search, the algorithm may make a redundant comparison just 
before termination; those nodes are shaded in the figure. We may call the search 
process uniform because the difference between the number of a node on level l 
and the number of its ancestor on level l - 1 has a constant value J for all nodes 
on level l. 

The theory underlying Algorithm U can be understood as follows: Suppose 
that we have an interval of length n - 1 to search; a comparison with the middle 
element (for n even) or with one of the two middle elements (for n odd) leaves us 
with two intervals oflengths l n/2 J -1 and I n/21- L After repeating this process 
k times, we obtain 2k intervals, of which the smallest has length ln/2kJ - 1 and 
the largest has length I n/2kl - 1. Hence the lengths of two intervals at the same 
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8=3 

8=1 

Fig. 6. The comparison tree for a "uniform" binary search, when N = 10. 

level differ by at most unity; this makes it possible to choose an appropriate 
"middle" element, without keeping track of the exact lengths. 

The principal advantage of Algorithm U is that we need not maintain the 
value of m at all; we need only refer to a short table of the various c5 to use at 
each level of the tree. Thus the algorithm reduces to the following procedure, 
which is equally good on binary or decimal computers: 

Algorithm C (Uniform binary search). This algorithm is just like Algorithm U, 
but it uses an auxiliary table in place of the calculations involving m. The table 
entries are 

lN + 2J- 1J DELTA [j] = 2j , for 1:Sj:SllgNJ+2. (6) 

Cl. (Initialize.) Set i +--DELTA [1], j +-- 2. 
C2. (Compare.) If K < Ki, go to C3; if K >Ki, go to C4; and if K =Ki, the 

algorithm terminates successfully. 
C3. (Decrease i.) If DELTA [j] = 0, the algorithm terminates unsuccessfully. 

Otherwise, set i +-- i - DELTA [j], j +-- j + 1, and go to C2. 
C4. (Increase i.) If DELTA [j] = 0, the algorithm terminates unsuccessfully. 

Otherwise, set i +-- i +DELTA [j], j +-- j + 1, and go to C2. I 
Exercise 8 proves that this algorithm refers to the artificial key K 0 = -oo 

only when N is even. 

Program C (Uniform binary search). This program does the same job as 
Program B, using Algorithm C with rA K, rll i, rl2 j, rl3 DELTA [j]. 
01 START ENT! N+1/2 1 Cl. Initialize. i +--- l(N + l)/2J. 
02 ENT2 2 1 j +--- 2. 
03 LDA K 1 
04 JMP 2F 1 
05 3H JE SUCCESS Cl Jump if K =Ki. 
06 J3Z FAILURE Cl-S Jump if DELTA [j] = 0. 
01 DEC! 0,3 Cl- S-A C3. Decrease i. 
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8 9 10 

Fig. 7. The comparison tree for Shar's almost uniform search, when N = 10. 

08 SH INC2 1 C-1 j+-j+l. 
09 2H LD3 DELTA,2 c C2. Compare. 
10 CMPA KEY,1 c 
11 JLE 3B c Jump if K::; Ki. 
12 INC! 0,3 C2 C4. Increase i. 
13 J3NZ SB C2 Jump if DELTA[j] f 0. 
14 FAILURE EQU * l-S Exit if not in table. I 

In a successful search, this algorithm corresponds to a binary tree with the 
same internal path length as the tree of Algorithm B, so the average number of 
comparisons C N is the same as before. In an unsuccessful search, Algorithm C 
always makes exactly l lg NJ + 1 comparisons. The total running time of Pro-
gram C is not quite symmetrical between left and right branches, since Cl is 
weighted more heavily than C2, but exercise 11 shows that we have K < Ki 
roughly as often as K > Ki; hence Program C takes approximately 

(8.5 lg N - 6)u for a successful search, 

( 8. 5 l lg NJ + 12) u for an unsuccessful search. 

This is more than twice as fast as Program B, without using any special prop-
erties of binary computers, even though the running times (5) for Program B 
assume that MIX has a "shift right binary" instruction. 

Another modification of binary search, suggested in 1971 by L. E. Shar, will 
be still faster on some computers, because it is uniform after the first step, and 
it requires no table. The first step is to compare K with Ki, where i = 2k, 

k = llg NJ. If K < Ki, we use a uniform search with the J's equal to 2k-l, 

2k- 2, ... , 1, 0. On the other hand, if K > Ki we reset i to i' = N + 1 - 21, 

where l = pg(N - 2k + l)l, and pretend that the first comparison was actually 
K > Ki', using a uniform search with the J's equal to 21- 1, 21- 2, ••• , 1, O. 

Shar's method is illustrated for N = 10 in Fig. 7. Like the previous 
algorithms, it never makes more than llg NJ + 1 comparisons; hence it makes 
at most one more than the minimum possible average number of comparisons, 
in spite of the fact that it occasionally goes through several redundant steps in 
succession (see exercise 12). 
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7 10 

Fig. 8. The Fibonacci tree of order 6. 

Still another modification of binary search, which increases the speed of all 
the methods above when N is extremely large, is discussed in exercise 23. See 
also exercise 24, for a method that is faster yet. 

*Fibonaccian search. In the polyphase merge we have seen that the Fibonacci 
numbers can play a role analogous to the powers of 2. A similar phenomenon 
occurs in searching, where Fibonacci numbers provide us with an alternative to 
binary search. The resulting method is preferable on some computers, because it 
involves only addition and subtraction, not division by 2. The procedure we are 
about to discuss should be distinguished from an important numerical procedure 
called "Fibonacci search," which is used to locate the maximum of a unimodal 
function [see Fibonacci Quarterly 4 (1966), 265-269); the similarity of names 
has led to some confusion. 

The Fibonaccian search technique looks very mysterious at first glance, if 
we simply take the program and try to explain what is happening; it seems to 
work by magic. But the mystery disappears as soon as the corresponding search 
tree is displayed. Therefore we shall begin our study of the method by looking 
at Fibonacci trees. 

Figure 8 shows the Fibonacci tree of order 6. It looks somewhat more like 
a real-life shrub than the other trees we have been considering, perhaps because 
many natural processes satisfy a Fibonacci law. In general, the Fibonacci tree of 
order k has Fk+l - 1 internal (circular) nodes and Fk+l external (square) nodes, 
and it is constructed as follows: 

If k = 0 or k = 1, the tree is simply [QJ. 
If k 2, the root is Fk; the left subtree is the Fibonacci tree of order k - 1; 
and the right subtree is the Fibonacci tree of order k - 2 with all numbers 
increased by Fk. 

Except for the external nodes, the numbers on the two children of each internal 
node differ from their parent's number by the same amount, and this amount 
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is a Fibonacci number. For example, 5 = 8 - F4 and 11 = 8 + F4 in Fig. 8. 
When the difference is FJ, the corresponding Fibonacci difference for the next 
branch on the left is Fj-1, while on the right it skips down to Fj-2· For example, 
3 = 5 - F3 while 10 = 11 - F2. 

If we combine these observations with an appropriate mechanism for recog-
nizing the external nodes,. we arrive at the following method: 

Algorithm F (Fibonaccian search). Given a table of records Ri R2 ... RN whose 
keys are in increasing order K 1 < K2 < · · · < KN, this algorithm searches for a 
given argument K. 

For convenience in description, we assume that N + 1 is a perfect Fibonacci 
number, Fk+l · It is not difficult to make the method work for arbitrary N, if a 
suitable initialization is provided (see exercise 14). 
Fl. [Initialize.) Seti+-- Fk, p +-- Fk-1, q +-- Fk-2· (Throughout the algorithm, 

p and q will be consecutive Fibonacci numbers.) 
F2. [Compare.] If K < Ki, go to step F3; if K >Ki, go to F4; and if K =Ki, 

the algorithm terminates successfully. 
F3. [Decrease i.] If q = 0, the algorithm terminates unsuccessfully. Otherwise 

set i +-- i - q, and set (p, q) +-- (q, p-q); then return to F2. 
F4. [Increase i.) If p = 1, the algorithm terminates unsuccessfully. Otherwise 

set i +-- i + q, p +-- p - q, then q +-- q - p, and return to F2. I 
The following MIX implementation gains speed by making two copies of the 

inner loop, one in which pis in rl2 and q in rl3, and one in which the registers are 
reversed; this simplifies step F3. In fact, the program actually keeps p - 1 and 
q - 1 in the registers, instead of p and q, in order to simplify the test "p = 1 ?" 
in step F4. 

Program F (Fibonaccian search). We follow the previous conventions, with 
rA K, rll i, (rl2 or rl3) p - 1, (rl3 or rl2) q - 1. 
01 START LDA K 1 Fl. Initialize. 
02 ENT! Fk 1 i +--- Fk. 
03 ENT2 Fk-1-1 1 p +--- Fk-1· 
04 ENT3 Fk-2-1 1 q +--- Fk-2· 
05 JMP F2A 1 To step F2. 
06 F4A INC! 1,3 C2-S-A F 4. Increase i. i +--- i + q. 
01 DEC2 1,3 C2-S-A p +--- p - q. 
08 DEC3 1,2 C2-S-A q +--- q - p. 
09 F2A CMPA KEY,1 c F2. Com12are. 
10 JL F3A c To F3 if K < Ki. 
11 JE SUCCESS C2 Exit if K =Ki. 
12 J2NZ F4A C2-S To F 4 if p -f: 1. 
13 JMP FAILURE A Exit if not in table. 
14 F3A DEC! 1,3 Cl F3. Decrease i. i +--- i - q. 
15 DEC2 1,3 Cl p +--- p - q. 
16 J3NN F2B Cl Swap registers if q > 0. 
11 JMP FAILURE l-S-A Exit if not in table. 
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18 F4B INC! 1,2 (Lines 18-29 are parallel to 06-17.) 
19 DEC3 1,2 
20 DEC2 1,3 
21 F2B CMPA KEY,1 
22 JL F3B 
23 JE SUCCESS 
24 J3NZ F4B 
25 JMP FAILURE 
26 F3B DEC! 1,2 
21 DEC3 1,2 
28 J2NN F2A 
29 JMP FAILURE I 

The running time of this program is analyzed in exercise 18. Figure 8 shows, 
and the analysis proves, that a left branch is taken somewhat more often than a 
right branch. Let C, Cl, and ( C2 - S) be the respective number of times steps 
F2, F3, and F4 are performed. Then we have 

C =(ave <f>k/J5 + 0(1), max k - 1), 
Cl= (ave k/J5 + 0(1), max k - 1), (8) 

C2 - S =(ave ¢-1k/J5 + 0(1), max lk/2J). 

Thus the left branch is taken about </> 1.618 times as often as the right branch 
(a fact that we might have guessed, since each probe divides the remaining 
interval into two parts, with the left part about </> times as large as the right). 
The total average running time of Program F therefore comes to approximately 

i ( (18 + 4</>)k + 31 - 26¢) u (7.050 lg N + 1.08)u (g) 

for a successful search, plus ( 9 - 3¢ )u 4.15u for an unsuccessful search. This is 
faster than Program C, although the worst case running time (roughly 8.6 lg N) 
is slightly slower. 

Interpolation search. Let's forget computers for a moment, and consider how 
people actually carry out a search. Sometimes everyday life provides us with 
clues that lead to good algorithms. 

Imagine yourself looking up a word in a dictionary. You probably don't 
begin by looking first at the middle page, then looking at the 1/ 4 or 3/ 4 point, 
etc., as in a binary search. It's even less likely that you use a Fibonaccian search! 

If the word you want starts with the letter A, you probably begin near the 
front of the dictionary. In fact, many dictionaries have thumb indexes that show 
the starting page or the middle page for the words beginning with a fixed letter. 
This thumb-index technique can readily be adapted to computers, and it will 
speed up the search; such algorithms are explored in Section 6.3. 

Yet even after the initial point of search has been found, your actions still 
are not much like the methods we have discussed. If you notice that the desired 
word is alphabetically much greater than the words on the page being examined, 
you will turn over a fairly large chunk of pages before making the next reference. 
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This is quite different from the algorithms above, which make no distinction 
between "much greater" and "slightly greater." 

Such considerations suggest an algorithm that might be called interpolation 
search: When we know that K lies between K1 and Ku, we can choose the next 
probe to be about (K - K 1)/(Ku - K 1) of the way between l and u, assuming 
that the keys are numeric "and that they increase in a roughly constant manner 
throughout the interval. 

Interpolation search is asymptotically superior to binary search. One step of 
binary search essentially reduces the amount of uncertainty from n to n, while 
one step of interpolation search essentially reduces it to fa, when the keys in the 
table are randomly distributed. Hence interpolation search takes about lg lg N 
steps, on the average, to reduce the uncertainty from N to 2. (See exercise 22.) 

However, computer simulation experiments show that interpolation search 
does not decrease the number of comparisons enough to compensate for the 
extra computing time involved, unless the table is rather large. Typical files 
aren't sufficiently random, and the difference between lg lg N and lg N is not 
substantial unless N exceeds, say, 216 = 65,536. Interpolation is most successful 
in the early stages of searching a large possibly external file; after the range has 
been narrowed down, binary search finishes things off more quickly. (Note that 
dictionary lookup by hand is essentially an external, not an internal, search. We 
shall discuss external searching later.) 

History and bibliography. The earliest known example of a long list of items 
that was sorted into order to facilitate searching is the remarkable Babylonian 
reciprocal table of Inakibit-Anu, dating from about 200 B.C. This clay tablet 
contains more than 100 pairs of values, which appear to be the beginning of 
a list of approximately 500 multiple-precision sexagesimal numbers and their 
reciprocals, sorted into lexicographic order. For example, the list included the 
following sequence of entries: 

01 13 09 34 29 08 08 53 20 
01 13 14 31 52 30 
01 13 43 40 48 
01 13 48 40 30 
01 14 04 26 40 

49 12 27 
49 09 07 12 
48 49 41 15 
48 46 22 59 25 25 55 33 20 
48 36 

The task of sorting 500 entries like this, given the technology available at that 
time, must have been phenomenal. [See D. E. Knuth, Selected Papers on Com-
puter Science (Cambridge Univ. Press, 1996), Chapter 11, for further details.] 

It is fairly natural to sort numerical values into order, but an order relation 
between letters or words does not suggest itself so readily. Yet a collating 
sequence for individual letters was present already in the most ancient alpha-
bets. For example, many of the Biblical psalms have verses that follow a strict 
alphabetic sequence, the first verse starting with aleph, the second with beth, 
etc.; this was an aid to memory. Eventually the standard sequence of letters 
was used by Semitic and Greek peoples to denote numerals; for example, a, {3, 'Y 
stood for 1, 2, 3, respectively. 
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The use of alphabetic order for entire words seems to be a much later 
invention; it is something we might think is obvious, yet it has to be taught 
to children, and at some point in history it was necessary to teach it to adults. 
Several lists from about 300 B.C. have been found on the Aegean Islands, giving 
the names of people in certain religious cults; these lists have been alphabetized, 
but only by the first letter, thus representing only the first pass of a left-
to-right radix sort. Some Greek papyri from the years A.D. 134-135 contain 
fragments of ledgers that show the names of taxpayers alphabetized by the first 
two letters. Apollonius Sophista used alphabetic order on the first two letters, 
and often on subsequent letters, in his lengthy concordance of Homer's poetry 
(first century A.D.). A few examples of more perfect alphabetization are known, 
notably Galen's Hippocratic Glosses (c. 200), but they are very rare. Words were 
arranged by their first letter only in the Etymologiarum of St. Isidorus ( c. 630, 
Book x); and the Corpus Glossary ( c. 725) used only the first two letters of each 
word. The latter two works were perhaps the largest nonnumerical files of data 
to be compiled during the Middle Ages. 

It is not until Giovanni di Genoa's Catholicon (1286) that we find a specific 
description of true alphabetical order. In his preface, Giovanni explained that 

amo precedes bibo 
abeo precedes adeo 

amatus precedes am or 
imprudens precedes impudens 

iusticia precedes iustus 
polisintheton precedes polissenus 

(thereby giving examples of situations in which the ordering is determined by the 
1st, 2nd, ... , 6th letters), "and so in like manner." He remarked that strenuous 
effort was required to devise these rules. "I beg of you, therefore, good reader, 
do not scorn this great labor of mine and this order as something worthless." 

A detailed study of the development of alphabetic order, up to the time 
printing was invented, has been made by Lloyd W. Daly [Collection Latomus 
90 (1967), 100 pages]. He found some interesting old manuscripts that were 
evidently used as worksheets while sorting words by their first letters (see pages 
89-90 of his monograph). 

The first dictionary of English, Robert Cawdrey's Table Alphabeticall (Lon-
don, 1604), contains the following instructions: 

Nowe if the word, which thou art desirous to finde, beginne with (a) then 
looke in the beginning of this Table, but if with (v) looke towards the end. 
Againe, if thy word beginne with (ca) looke in the beginning of the letter 
( c) but if with (cu) then looke toward the end of that letter. And so of all 
the rest. &c. 

Cawdrey seems to have been teaching himself how to alphabetize as he prepared 
his dictionary; numerous misplaced words appear on the first few pages, but the 
alphabetic order in the last part is not as bad. 
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Binary search was first mentioned by John Mauchly, in what was perhaps the 
first published discussion of nonnumerical programming methods [Theory and 
Techniques for the Design of Electronic Digital Computers, edited by G. W. Pat-
terson, 1 (1946), 9.7-9.8; 3 (1946), 22.8-22.9]. The method became well known 
to programmers, but nobody seems to have worked out the details of what should 
be done when N does not ltave the special form 2n -1. [See A. D. Booth, Nature 
176 (1955), 565; A. I. Durney, Computers and Automation 5 (December 1956), 7, 
where binary search is called "Twenty Questions"; Daniel D. McCracken, Digital 
Computer Programming (Wiley, 1957), 201-203; and M. Halpern, CACM 1, 1 
(February 1958), 1-3.] 

D. H. Lehmer [Proc. Symp. Appl. Math. 10 (1960), 180-181] was apparently 
the first to publish a binary search algorithm that works for all N. The next 
step was taken by H. Bottenbruch [JACM 9 (1962), 214], who presented an 
interesting variation of Algorithm B that avoids a separate test for equality until 
the very end: Using 

i +- \(l + u)/21 
instead of i +- L(l + u)/2J in step B2, he set l +- i whenever K 2 Ki; then 
u - l decreases at every step. Eventually, when l = u, we have Kz K < K 1+1 , 

and we can test whether or not the search was successful by making one more 
comparison. (He assumed that K 2 K 1 initially.) This idea speeds up the inner 
loop slightly on many computers, and the same principle can be used with all 
of the algorithms we have discussed in this section; but a successful search will 
require about one more iteration, on the average, because of ( 2). Since the inner 
loop is performed only about lg N times, this tradeoff between an extra iteration 
and a faster loop does not save time unless n is extremely large. (See exercise 23.) 
On the other hand Bottenbruch's algorithm will find the rightmost occurrence of 
a given key when the table contains duplicates, and this property is occasionally 
important. 

K. E. Iverson [A Programming Language (Wiley, 1962), 141] gave the proce-
dure of Algorithm B, but without considering the possibility of an unsuccessful 
search. D. E. Knuth [CACM 6 (1963), 556-558] presented Algorithm B as 
an example used with an automated flowcharting system. The uniform binary 
search, Algorithm C, was suggested to the author by A. K. Chandra of Stanford 
University in 1971. 

Fibonaccian searching was invented by David E. Ferguson [CACM 3 (1960), 
648]. Binary trees similar to Fibonacci trees appeared in the pioneering work 
of the Norwegian mathematician Axel Thue as early as 1910 (see exercise 28). 
A Fibonacci tree without labels was also exhibited as a curiosity in the first 
edition of Hugo Steinhaus's popular book Mathematical Snapshots (New York: 
Stechert, 1938), page 28; he drew it upside down and made it look like a real 
tree, with right branches twice as long as left branches so that all the leaves 
would occur at the same level. 

Interpolation searching was suggested by W. W. Peterson [IBM J. Res. & 
Devel. 1 (1957), 131-132]. A correct analysis of its average behavior was not 
discovered until many years later (see exercise 22). 
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EXERCISES 
Ii>- 1. [21] Prove that if u < l in step B2 of the binary search, we have u = l - 1 and 

Ku < K < K 1• (Assume by convention that Ko = -oo and KN+1 = +oo, although 
these artificial keys are never really used by the algorithm so they need not be present 
in the actual table.) 

Ii>- 2. [22] Would Algorithm B still work properly when K is present in the table if we 
(a) changed step B5 to "l i" instead of "l i + 1"? (b) changed step B4 to "u i" 
instead of "u i -1"? (c) made both of these changes? 

3. [ 15] What searching method corresponds to the tree ? 

What is the average number of comparisons made in a successful search? m an 
unsuccessful search? 

4. [20] If a search using Program 6.lS (sequential search) takes exactly 638 units of 
time, how long does it take with Program B (binary search)? 

5. [ M24] For what values of N is Program B actually slower than a sequential search 
(Program 6. lQ') on the average, assuming that the search is successful? 

6. [ 28] (K. E. Iverson.) Exercise 5 suggests that it would be best to have a hybrid 
method, changing from binary search to sequential search when the remaining interval 
has length less than some judiciously chosen value. Write an efficient MIX program for 
such a search and determine the best changeover value. 

Ii>- 7. [ M22] Would Algorithm U still work properly if we changed step Ul so that 
a) both i and m are set equal to L N /2 J? 
b) both i and m are set equal to IN /21? 

[Hint: Suppose the first step were 0, m N (or N + 1), go to U4."] 

8. [M20] Let 8j = DELTA[j] be the jth increment in Algorithm C, as defined in (6). 
a) What is the sum 8J? 
b) What are the minimum and maximum values of i that can occur in step C2? 

9. [20] Is there any value of N > 1 for which Algorithm B and C are exactly 
equivalent, in the sense that they will both perform the same sequence of comparisons 
for all search arguments? 

10. [21] Explain how to write a MIX program for Algorithm C containing approx-
imately 7 lg N instructions and having a running time of about 4.5 lg N units. 

11. [M26] Find exact formulas for the average values of Cl, C2, and A in the fre-
quency analysis of Program C, as a function of N and S. 

12. [20] Draw the binary search tree corresponding to Shar's method when N = 12. 

13. [ M24] Tabulate the average number of comparisons made by Shar's method, for 
1 ::; N ::; 16, considering both successful and unsuccessful searches. 

14. [21] Explain how to extend Algorithm F so that it will apply for all N;:::: 1. 

15. [M19] For what values of k does the Fibonacci tree of order k define an optimal 
search procedure, in the sense that the fewest comparisons are made on the average? 
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16. [21] Figure 9 shows the lineal chart of the rabbits in Fibonacci's original rabbit 
problem (see Section 1.2.8). Is there a simple relationship between this and the 
Fibonacci tree discussed in the text? 

Initial 
First month 

Second month 
Third month ___ __,.'-++----.----->r___..,-.....------

Fourth month ---J---t-+---+-+--..-----...,..-....c------

Fifth month ---+----+---4J--t----i-----.....----

Sixth month---------------------

Fig. 9. Pairs of rabbits breeding by Fibonacci's rule. 

17. [M21] From exercise 1.2.8-34 (or exercise 5.4.2-10) we know that every positive 
integer n has a unique representation as a sum of Fibonacci numbers 

where r 2: 1, aj 2: aJ+ 1 + 2 for 1 :S j < r, and ar 2: 2. Prove that in the Fibonacci tree 
of order k, the path from the root to node @ has length k + 1 - r - ar. 

18. [M30] Find exact formulas for the average values of Cl, C2, and A in the fre-
quency analysis of Program F, as a function of k, Fk, Fk+1, and S. 

19. [M42] Carry out a detailed analysis of the average running time of the algorithm 
suggested in exercise 14. 

20. [M22] The number of comparisons required in a binary search is approximately 
log2 N, and in the Fibonaccian search it is roughly ( </> / ./5") loge/> N. The purpose of this 
exercise is to show that these formulas are special cases of a more general result. 

Let p and q be positive numbers with p + q = 1. Consider a search algorithm that, 
given a table of N numbers in increasing order, starts by comparing the argument with 
the (pN)th key, and iterates this procedure on the smaller blocks. (The binary search 
hasp= q = 1/2; the Fibonacci search hasp= 1/¢, q = 1/¢2

.) 

If C ( N) denotes the average number of comparisons required to search a table of 
size N, it approximately satisfies the relations 

C(l) = O; C(N) = 1 + pC(pN) + qC(qN) for N > 1. 

This happens because there is probability p (roughly) that the search reduces to a 
pN-element search, and probability q that it reduces to a qN-element search, after the 
first comparison. When N is large, we may ignore the small-order effect caused by the 
fact that pN and qN aren't exactly integers. 

a) Show that C(N) = logb N satisfies these relations exactly, for a certain choice of b. 
For binary and Fibonaccian search, this value of b agrees with the formulas derived 
earlier. 

b) Consider the following argument: "With probability p, the size of the interval 
being scanned in this algorithm is divided by 1/p; with probability q, the interval 
size is divided by 1/q. Therefore the interval is divided by p · (1/p) + q · (1/q) = 2 
on the average, so the algorithm is exactly as good as the binary search, regardless 
of p and q." Is there anything wrong with this reasoning? 
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21. [20] Draw the binary tree corresponding to interpolation search when N = 10. 

22. [M41] (A. C. Yao and F. F. Yao.) Show that an appropriate formulation of 
interpolation search requires asymptotically lg lg N comparisons, on the average, when 
applied to N independent uniform random keys that have been sorted. Furthermore 
all search algorithms on such tables must make asymptotically lg lg N comparisons, on 
the average . 

.,. 23. [25] The binary search algorithm of H. Bottenbruch, mentioned at the close of 
this section, avoids testing for equality until the very end of the search. (During the 
algorithm we know that Kz :S K < Ku+1, and the case of equality is not examined 
until l = u.) Such a trick would make Program B run a little bit faster for large N, 
since the "JE" instruction could be removed from the inner loop. (However, the idea 
wouldn't really be practical since lg N is always rather small; we would need N > 266 

in order to compensate for the extra work necessary on a successful search, because the 
running time (18lgN-16)u of (5) is "decreased" to (17.5lgN + 17)u!) 

Show that every search algorithm corresponding to a binary tree can be adapted to 
a search algorithm that uses two-way branching ( < versus 2: ) at the internal nodes of 
the tree, in place of the three-way branching ( <, =, or>) used in the text's discussion. 
In particular, show how to modify Algorithm C in this way. 

Ii>- 24. [23] We have seen in Sections 2.3.4.5 and 5.2.3 that the complete binary tree is 
a convenient way to represent a minimum-path-length tree in consecutive locations. 
Devise an efficient search method based on this representation. [Hint: Is it possible to 
use multiplication by 2 instead of division by 2 in a binary search?] 

Ii>- 25. [ M25] Suppose that a binary tree has ak internal nodes and bk external nodes 
on level k, for k = 0, 1,... . (The root is at level zero.) Thus in Fig. 8 we have 
(ao,a1, ... ,a5) = (1,2,4,4,1,0) and (bo,b1, ... ,b5) = (0,0,0,4,7,2). 

a) Show that a simple algebraic relationship holds between the generating functions 
A(z) = L:k akzk and B(z) = L:k bkzk. 

b) The probability distribution for a successful search in a binary tree has the gen-
erating function g(z) = zA(z) / N, and for an unsuccessful search the generating 
function is h(z) = B(z)/(N + 1). (Thus in the text's notation we have CN = 
mean(g), Cfv = mean(h), and Eq. (2) gives a relation between these quantities.) 
Find a relation between var(g) and var( h). 

26. [22] Show that Fibonacci trees are related to polyphase merge sorting on three 
tapes. 

27. [M30] (H. S. Stone and John Linn.) Consider a search process that uses k 
processors simultaneously and that is based solely on comparisons of keys. Thus at 
every step of the search, k indices ii, ... , ik are specified, and we perform k simultaneous 
comparisons; if K = Kij for some j, the search terminates successfully, otherwise 
the search proceeds to the next step based on the 2k possible outcomes K < Kij or 
K > Ki1 , for 1 :S j :S; k. 

Prove that such a process must always take at least approximately logk+I N steps 
on the average, as N -+ oo, assuming that each key of the table is equally likely as a 
search argument. (Hence the potential increase in speed over 1-processor binary search 
is only a factor of lg(k + 1), not the factor of k we might expect. In this sense it is more 
efficient to assign each processor to a different, independent search problem, instead of 
making them cooperate on a single search.) 
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28. [M23] Define Thue trees Tn by means of algebraic expressions in a binary opera-
tor* as follows: To(x) = x * x, T1(x) = x, Tn+2(x) = Tn+1(x) * Tn(x). 

a) The number ofleaves of Tn is the number of occurrences of x when Tn(x) is written 
out in full. Express this number in terms of Fibonacci numbers. 

b) Prove that if the binary operator * satisfies the axiom 

•((x*X)*x)*((x*X)*x) =x, 

then T m(Tn(x)) = T m+n-I (x) for all m 2: 0 and n 2: 1. 

.,. 29. [22] (Paul Feldman, 1975.) Instead of assuming that K1 < K2 < · · · < KN, 

assume only that Kp(I) < Kp( 2 ) < · · · < Kp(N) where the permutation p(l)p(2) ... p(N) 
is an involution, and p(j) = j for all even values of j. Show that we can locate any given 
key K, or determine that K is not present, by making at most 2LlgNJ+1 comparisons. 

30. [27] (Involution coding.) Using the idea of the previous exercise, find a way to 
arrange N distinct keys in such a way that their relative order implicitly encodes an 
arbitrarily given array oft-bit numbers x1, x2, ... , Xm, when m :S N/4 + 1 - 2t. 
With your arrangement it should be possible to determine the leading k bits of x1 by 
making only k comparisons, for any given j, as well as to look up an arbitrary key with 
:S 2 L lg NJ + 1 comparisons. (This result is used in theoretical studies of data structures 
that are asymptotically efficient in both time and space.) 

6.2.2. Binary Tree Searching 
In the preceding section, we learned that an implicit binary tree structure makes 
the behavior of binary search and Fibonaccian search easier to understand. For a 
given value of N, the tree corresponding to binary search achieves ·the theoretical 
minimum number of comparisons that are necessary to search a table by means 
of key comparisons. But the methods of the preceding section are appropriate 
mainly for fixed-size tables, since the sequential allocation of records makes 
insertions and deletions rather expensive. If the table is changing dynamically, 
we might spend more time maintaining it than we save in binary-searching it. 

The use of an explicit binary tree structure makes it possible to insert and 
delete records quickly, as well as to search the table efficiently. As a result, we 
essentially have a method that is useful both for searching and for sorting. This 
gain in flexibility is achieved by adding two link fields to each record of the table. 

Techniques for searching a growing table are often called symbol table algo-
rithms, because assemblers and compilers and other system routines generally 
use such methods to keep track of user-defined symbols. For example, the key of 
each record within a compiler might be a symbolic identifier denoting a variable 
in some FORTRAN or C program, and the rest of the record might contain 
information about the type of that variable and its storage allocation. Or the key 
might be a symbol in a MIXAL program, with the rest of the record containing the 
equivalent of that symbol. The tree search and insertion routines to be described 
in this section are quite efficient for use as symbol table algorithms, especially in 
applications where it is desirable to print out a list of the symbols in alphabetic 
order. Other symbol table algorithms are described in Sections 6.3 and 6.4. 

Figure 10 shows a binary search tree containing the names of eleven signs of 
the zodiac. If we now search for the twelfth name, SAGITTARIUS, starting at the 
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AQUARIUS 

GEMINI 

Fig. 10. A binary search tree. 

root or apex of the tree, we find it is greater than CAPRICORN, so we move to the 
right; it is greater than PISCES, so we move right again; it is less than TAURUS, so 
we move left; and it is less than SCORPIO, so we arrive at external node !}:]. The 
search was unsuccessful; we can now insert SAGITTARIUS at the place the search 
ended, by linking it into the tree in place of the external node 11]. In this way 
the table can grow without the necessity of moving any of the existing records. 
Figure 10 was formed by starting with an empty tree and successively inserting 
the keys CAPRICORN, AQUARIUS, PISCES, ARIES, TAURUS, GEMINI, CANCER, LEO, 

VIRGO, LIBRA, SCORPIO, in this order. 
All of the keys in the left subtree of the root in Fig. 10 are alphabetically 

less than CAPRICORN, and all keys in the right subtree are alphabetically greater. 
A similar statement holds for the left and right subtrees of every node. It follows 
that the keys appear in strict alphabetic sequence from left to right, 

AQUARIUS, ARIES, CANCER, CAPRICORN, GEMINI, LEO, ... ) VIRGO 

if we traverse the tree in symmetric order (see Section 2.3.1), since symmetric 
order is based on traversing the left subtree of each node just before that node, 
then traversing the right subtree. 

The following algorithm spells out the searching and insertion processes in 
detail. 

Algorithm T (Tree search and insertion). Given a table of records that form a 
binary tree as described above, this algorithm searches for a given argument K. 
If K is not in the table, a new node containing K is inserted into the tree in the 
appropriate place. 
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The nodes of the tree are assumed to contain at least the following fields: 

KEY (P) = key stored in NODE (P); 

LLINK (P) = pointer to left subtree of NODE (P); 

RLINK (P) =pointer to right subtree of NODE(P). 

Null subtrees (the external hodes in Fig. 10) are represented by the null pointer A. 
The variable ROOT points to the root of the tree. For convenience, we assume 
that the tree is not empty (that is, ROOT #- A), since the necessary operations 
are trivial when ROOT = A. 
Tl. [Initialize.] Set P +-ROOT. (The pointer variable P will move down the tree.) 
T2. (Compare.] If K < KEY (P), go to T3; if K > KEY (P), go to T4; and if 

K =KEY (P), the search terminates successfully. 
T3. (Move left.] If LLINK (P) -j. A, set P +- LLINK (P) and go back to T2. 

Otherwise go to T5. 
T4. (Move right.] If RLINK (P) -j. A, set P +- RLINK (P) and go back to T2. 
T5. [Insert into tree.] (The search is unsuccessful; we will now put K into the 

tree.) Set Q ¢:: AVAIL, the address of a new node. Set KEY(Q) +- K, 
LLINK (Q) +- RLINK (Q) +- A. (In practice, other fields of the new node 
should also be initialized.) If K was less than KEY(P), set LLINK(P) +- Q, 
otherwise set RLINK (P) +- Q. (At this point we could set P +- Q and 
terminate the algorithm successfully.) I 

LLINK=A 

Tl. Initialize 

> 

SUCCESS 

T4. Move right 

RLINK=A 
T5. Insert into tree 

Fig. 11. Tree search and insertion. 

This algorithm lends itself to a convenient machine language implementa-
tion. We may assume, for example, that the tree nodes have the form 

+ 0 LLINK RLINK 

KEY 

followed perhaps by additional words of INFO. Using an AVAIL list for the free 
storage pool, as in Chapter 2, we can write the following MIX program: 
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Program T (Tree search and insertion). rA K, rll P, rl2 Q. 
01 LLINK EQU 2:3 
02 RLINK EQU 4:5 
03 START LDA K 1 Tl. Initialize. 
04 LD1 ROOT 1 P 
05 JMP 2F 1 
06 4H LD2 0,1(RLINK) C2 T4. Move right. Q RLINK (P). 
07 J2Z 5F C2 To T5 if Q =A. 
08 1H ENT1 0,2 C-1 p Q. 
09 2H CMPA 1,1 c T2. Comp_are. 
10 JG 48 c To T4 if K > KEY(P). 
11 JE SUCCESS Cl Exit if K = KEY(P). 
12 LD2 0,1(LLINK) Cl-S T3. Move left. Q LL INK (P). 
13 J2NZ 18 Cl-S To T2 if Q j A. 
14 5H LD2 AVAIL 1- s TS. Insert into tree. 
15 J2Z OVERFLOW 1- s 
16 LDX 0,2(RLINK) 1- s 
17 STX AVAIL l-S Q-¢= AVAIL. 
18 STA 1,2 l-S KEY(Q) K. 
19 STZ 0,2 l-S LLINK(Q) RLINK(Q) 
20 JL 1F 1- s Was K < KEY(P)? 
21 ST2 0,1(RLINK) A RLINK(P) Q. 
22 JMP *+2 A 
23 1H ST2 0,1(LLINK) l-S-A LLINK(P) Q. 
24 DONE EQU * l-S Exit after insertion. I 

The first 13 lines of this program do the search; the last 11 lines do the 
insertion. The running time for the searching phase is (7C + Cl - 38 + 4) u, 
where 

C = number of comparisons made; 
Cl = number of times K KEY (P); 
C2 = number of times K > KEY (P); 

8 = [search is successful] . 

On the average we have Cl = ( C + 8), since Cl + C2 = C and Cl - 8 has 
the same probability distribution as C2; so the running time is about (7.5C -
2.58 + 4) u. This compares favorably with the binary search algorithms that use 
an implicit tree (see Program 6.2.lC). By duplicating the code as in Program 
6.2. lF we could effectively eliminate line 08 of Program T, reducing the running 
time to (6.5C - 2.58 + 5)u. If the search is unsuccessful, the insertion phase of 
the program costs an extra 14u or 15u. 

Algorithm T can conveniently be adapted to variable-length keys and vari-
able-length records. For example, if we allocate the available space sequentially, 
in a last-in-first-out manner, we can easily create nodes of varying size; the first 
word of ( 1) could indicate the size. Since this is an efficient use of storage, 
symbol table algorithms based on trees are often especially attractive for use in 
compilers, assemblers, and loaders. 
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But what about the worst case? Programmers are often skeptical of Algo-
rithm T when they first see it. If the keys of Fig. 10 had been entered into 
the tree in alphabetic order AQUARIUS, ... , VIRGO instead of the calendar order 
CAPRICORN, ... , SCORPIO, the algorithm would have built a degenerate tree that 
essentially specifies a sequential search. All LLINKs would be null. Similarly, if 
the keys come in the uncommon order 

AQUARIUS, VIRGO, ARIES, TAURUS, CANCER, SCORPIO, 
CAPRICORN, PISCES, GEMINI, LIBRA, LEO 

we obtain a "zigzag" tree that is just as bad. (Try it!) 
On the other hand, the particular tree in Fig. 10 requires only 3 1

2
1 com-

parisons, on the average, for a successful search; this is just a little higher than 
the minimum possible average number of comparisons, 3, achievable in the best 
possible binary tree. 

When we have a fairly balanced tree, the search time is roughly propor-
tional to log N, but when we have a degenerate tree, the search time is roughly 
proportional to N. Exercise 2.3.4.5-5 proves that the average search time would 
be roughly proportional to y'J\f if we considered each N-node binary tree to be 
equally likely. What behavior can we really expect from Algorithm T? 

Fortunately, it turns out that tree search will require only about 2 ln N 
1.386 lg N comparisons, if the keys are inserted into the tree in random order; 
well-balanced trees are common, and degenerate trees are very rare. 

There is a surprisingly simple proof of this fact. Let us assume that each of 
the N! possible orderings of the N keys is an equally likely sequence of insertions 
for building the tree. The number of comparisons needed to find a key is exactly 
one more than the number of comparisons that were needed when that key was 
entered into the tree. Therefore if C N is the average number of comparisons 
involved in a successful search and Cfv is the average number in an unsuccessful 
search, we have 

C Cb+ + · · · + Cfv _1 
N = 1+ N 

But the relation between internal and external path length tells us that 

CN = ( 1 + Cfv - 1; (3) 

this is Eq. 6.2.1-(2). Putting (3) together with (2) yields 

( N + 1) Cfv = 2N + Cb + + · · · + Cfv _ 1. 

This recurrence is easy to solve. Subtracting the equation 

NCfv_ 1 = 2(N - 1) +Cb+ + · · · + Cfv_2 , 

we obtain 

(N + l)Cfv - NCfv_ 1 = 2 + Cfv_ 1 , hence Cfv = Cfv_ 1 +2/(N+1). 
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Since Cb= 0, this means that 

= 2HN+I - 2. 

Applying (3) and simplifying yields the desired result 

CN=2(1+ (6) 

Exercises 6, 7, and 8 below give more detailed information; it is possible to 
compute the exact probability distribution of CN and not merely the average 
values. 

Tree insertion sorting. Algorithm T was developed for searching, but it can 
also be used as the basis of an internal sorting algorithm; in fact, we can view 
it as a natural generalization of list insertion, Algorithm 5.2.11. When properly 
programmed, its average running time will be only a little slower than some of the 
best algorithms we discussed in Chapter 5. After the tree has been constructed 
for all keys, a symmetric tree traversal (Algorithm 2.3.1 T) will visit the records 
in sorted order. 

A few precautions are necessary, however. Something different needs to be 
done if K = KEY (P) in step T2, since we are sorting instead of searching. One 
solution is to treat K = KEY (P) exactly as if K > KEY (P); this leads to a stable 
sorting method. (Equal keys will not necessarily be adjacent in the tree; they will 
only be adjacent in symmetric order.) But if many duplicate keys are present, 
this method will cause the tree to get badly unbalanced, and the sorting will 
slow down. Another idea is to keep a list, for each node, of all records having 
the same key; this requires another link field, but it will make the sorting faster 
when a lot of equal keys occur. 

Thus if we are interested only in sorting, not in searching, Algorithm T isn't 
the best, but it isn't bad. And if we have an application that combines searching 
with sorting, the tree method can be warmly recommended. 

It is interesting to note that there is a strong relation between the analysis 
of tree insertion sorting and the analysis of quicksort, although the methods 
are superficially dissimilar. If we successively insert N keys into an initially 
empty tree, we make the same average number of comparisons between keys as 
Algorithm 5.2.2Q does, with minor exceptions. For example, in tree insertion 
every key gets compared with K 1 , and then every key less than K 1 gets compared 
with the first key less than K 1 , etc.; in quicksort, every key gets compared to 
the first partitioning element K and then every key less than K gets compared 
to a particular element less than K, etc. The average number of comparisons 
needed in both cases is NCN - N. (However, Algorithm 5.2.2Q actually makes 
a few more comparisons, in order to speed up the inner loops.) 

Deletions. Sometimes we want to make the computer forget one of the table 
entries it knows. We can easily delete a node in which either LLINK or RLINK = A; 
but when both subtrees are nonempty, we have to do something special, since 
we can't point two ways at once. 
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For example, consider Fig. 10 again; how could we delete the root node, 
CAPRICORN? One solution is to delete the alphabetically next node, which always 
has a null LLINK, then reinsert it in place of the node we really wanted to delete. 
For example, in Fig. 10 we could delete GEMINI, then replace CAPRICORN by 
GEMINI. This operation preserves the essential left-to-right order of the table 
entries. The following alg<?rithm gives a detailed description of such a deletion 
process. 

Algorithm D (Tree deletion). Let Q be a variable that points to a node of a 
binary search tree represented as in Algorithm T. This algorithm deletes that 
node, leaving a binary search tree. (In practice, we will have either Q ROOT or 
Q LLINK(P) or RLINK (P) in some node of the tree. This algorithm resets the 
value of Q in memory, to reflect the deletion.) 

Dl. [Is RLINK null?] Set T Q. If RLINK(T) =A, set Q LLINK(T) and go 
to D4. (For example, if Q RLINK(P) for some P, we would set RLINK(P) 
LLINK(T) .) 

D2. [Find successor.] Set R RLINK (T). If LLINK (R) = A, set LLINK (R) 
LLINK (T) , Q R, and go to D4. 

D3. [Find null LLINK.] Set S LLINK(R). Then if LLINK(S) i- A, set R S 
and repeat this step until LLINK(S) = A. (At this point S will be equal 
to Q$, the symmetric successor of Q.) Finally, set LLINK (S) LL INK (T), 
LL INK (R) RLINK (S), RLINK (S) RLINK (T), Q S. 

D4. [Free the node.] Set AVAIL<= T, thus returning the deleted node to the free 
storage pool. I 

The reader may wish to try this algorithm by deleting AQUARIUS, CANCER, 
and CAPRICORN from Fig. 10; each case is slightly different. An alert reader may 
have noticed that no special test has been made for the case RLINK (T) i- A, 
LL INK (T) = A; we will defer the discussion of this case until later, since the 
algorithm as it stands has some very interesting properties. 

Since Algorithm D is quite unsymmetrical between left and right, it stands 
to reason that a sequence of deletions will make the tree get way out of balance, 
so that the efficiency estimates we have made will be invalid. But deletions don't 
actually make the trees degenerate at all! 

Theorem H (T. N. Hibbard, 1962). After a random element is deleted from a 
random tree by Algorithm D, the resulting tree is still random. 

[Nonmathematical readers, please skip to (10).] This statement of the theo-
rem is admittedly quite vague. We can summarize the situation more precisely 
as follows: Let T be a tree of n elements, and let P(T) be the probability that 
T occurs if its keys are inserted in random order by Algorithm T. Some trees 
are more probable than others. Let Q(T) be the probability that T will occur if 
n+ 1 elements are inserted in random order by Algorithm T and then one of these 
elements is chosen at random and deleted by Algorithm D. In calculating P(T), 
we assume that the n! permutations of the keys are equally likely; in calculating 
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Q (T), we assume that the ( n + 1) ! ( n + 1) permutations of keys and selections 
of the doomed key are equally likely. The theorem states that P(T) = Q(T) 
for all T. 

Proof. We are faced with the fact that permutations are equally probable, not 
trees, and therefore we shall prove the result by considering permutations as the 
random objects. We shall define a deletion from a permutation, and then we 
will prove that "a random element deleted from a random permutation leaves a 
random permutation." 

Let ai a 2 ... an+i be a permutation of {1, 2, ... , n+l}; we want to define the 
operation of deleting ai, so as to obtain a permutation bi b2 ... bn of {1, 2, ... , n }. 
This operation should correspond to Algorithms T and D, so that if we start 
with the tree constructed from the sequence of insertions ai, a 2, ... , an+ i and 
delete ai, renumbering the keys from 1 ton, we obtain the tree constructed from 
bi b2 · ·. bn. 

It is not hard to define such a deletion operation. There are two cases: 
Case 1: ai = n + 1, or ai + 1 = aj for some j < i. (This is essentially the 

condition "RLINK (aJ = A.") Remove ai from the sequence, and subtract unity 
from each element greater than ai. 

Case 2: ai + 1 = aj for some j > i. Replace ai by aj, remove aj from its 
original place, and subtract unity from each element greater than ai. 

For example, suppose we have the permutation 4 6 1 3 5 2. If we circle the 
element to be deleted, we have 

Ci) 6 1 3 5 2 

4@1 3 5 2 

4 6(D3 5 2 

4 5 1 3 2 

4 1 3 5 2 

3 5 1 2 4 

4 6 1@5 2 

4 6 1 3@2 

3 5 1 4 2 

4 5 1 3 2 

4 6 1 3 5 ®= 3 5 1 2 4 

Since there are (n + 1)! (n + 1) possible deletion operations, the theorem will be 
established if we can show that every permutation of {1, 2, ... , n} is the result 
of exactly ( n + 1) 2 deletions. 

Let bi b2 ... bn be a permutation of {1, 2, ... , n }. We shall define (n + 1)2 

deletions, one for each pair i, j with 1 ::; i, j :::; n + 1, as follows: 
If i < j, the deletion is 

Here, as below, stands for either bk or bk + 1, depending on whether or not 
bk is less than the circled element. This deletion corresponds to Case 2. 

If i > j, the deletion is 

... ... (8) 
this deletion fits the definition of Case 1. 

Finally, if i = j, we have another Case 1 deletion, namely 

... ... (g) 
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As an example, let n = 4 and consider the 25 deletions that map into 3 1 4 2: 

i = 1 i=2 i=3 i=4 i = 5 

j = 1 @3 1 4 2 4@1 5 2 4 1@5 2 4 1 5@2 4 1 5 2@ 
j=2 @4 1 5 2 3@1 4 2 4 2(D5 3 4 2 5(D3 4 2 5 3(D 
j=3 @1 4 5 2 4(D2 5 3 3 1@4 2 3 1 5@2 3 1 5 2@ 
j=4 @1 5 4 2 4(D5 2 3 3 1@5 2 3 1 4@2 4 1 5 3@ 
j=5 @1 5 2 4 4(D5 3 2 3 1@2 5 4 1 5@3 3 1 4 2® 

The circled element is always in position i, and for fixed i we have con-
structed n + 1 different deletions, one for each j; hence ( n + 1) 2 different deletions 
have been constructed for each permutation b1 b2 ... bn. Since only (n + 1)2n! 
deletions are possible, we must have found all of them. I 

The proof of Theorem H not only tells us about the result of deletions, it 
also helps us analyze the running time in an average deletion. Exercise 12 shows 
that we can expect to execute step D2 slightly less than half the time, on the 
average, when deleting a random element from a random table. 

Let us now consider how often the loop in step D3 needs to be performed: 
Suppose that we are deleting a node on level l, and that the external node 
immediately following in symmetric order is on level k. For example, if we are 
deleting CAPRICORN from Fig. 10, we have l = 0 and k = 3 since node [I] is on 
level 3. If k = l + 1, we have RLINK(T) =A in step Dl; and if k > l + 1, we will 
set S LL INK (R) exactly k - l - 2 times in step D3. The average value of l is 
(internal path length)/N; the average value of k is 

(external path length - distance to leftmost external node)/ N. 

The distance to the leftmost external node is the number of left-to-right minima 
in the insertion sequence, so it has the average value HN by the analysis of 
Section 1.2.10. Since external path length minus internal path length is 2N, the 
average value of k - l - 2 is -HN/N. Adding to this the average number of 
times that k - l - 2 is -1, we see that the operation S LLINK (R) in step D3 
is performed only 

times, on the average, in a random deletion. This is reassuring, since the worst 
case can be pretty slow (see exercise 11). 

Although Theorem His rigorously true, in the precise form we have stated it, 
it cannot be applied, as we might expect, to a sequence of deletions followed 
by insertions. The shape of the tree is random after deletions, but the relative-
distribution of values in a given tree shape may change, and it turns out that the 
first random insertion after deletion actually destroys the randomness property 
on the shapes. This startling fact, first observed by Gary Knott in 1972, must 
be seen to be believed (see exercise 15). Even more startling is the empirical 
evidence gathered by J. L. Eppinger [CACM 26 (1983), 663-669, 27 (1984), 
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235], who found that the path length decreases slightly when a few random 
deletions and insertions are made, but then it increases until reaching a steady 
state after about n2 deletion/insertion operations have been performed. This 
steady state is worse than the behavior of a random tree, when N is greater 
than about 150. Further study by Culberson and Munro [Comp. J. 32 (1989), 
68-75; Algorithmica 5 (1990), 295-311] has led to a plausible conjecture that 
the average search time in the steady state is asymptotically y'2N/97r. However, 
Eppinger also devised a simple modification that alternates between Algorithm D 
and a left-right reflection of the same algorithm; he found that this leads to an 
excellent steady state in which the path length is reduced to about 88% of its 
normal value for random trees. A theoretical explanation for this behavior is 
still lacking. 

As mentioned above, Algorithm D does not test for the case LLINK (T) = A, 
although this is one of the easy cases for deletion. We could add a new step 
between Dl and D2, namely, 

(Is LLINK null?) If LLINK(T) =A, set Q RLINK(T) and go to D4. 
Exercise 14 shows that Algorithm D with this extra step always leaves a tree 
that is at least as good as the original Algorithm D, in the path-length sense, and 
sometimes the result is even better. When this idea is combined with Eppinger's 
symmetric deletion strategy, the steady-state path length for repeated random 
deletion/insertion operations decreases to about 86% of its insertion-only value. 

Frequency of access. So far we have assumed that each key was equally likely 
as a search argument. In a more general situation, let Pk be the probability that 
we will search for the kth element inserted, where p1 + · · · + PN = 1. Then a 
straightforward modification of Eq. (2), if we retain the assumption of random 
order so that the shape of the tree stays random and Eq. (5) holds, shows that 
the average number of comparisons in a successful search will be 

N N 
1 + LPk(2Hk - 2) = 2 LPkHk - 1. (11) 

k=l k=l 

For example, if the probabilities obey Zipf's law, Eq. 6.1-(8), the average 
number of comparisons reduces to 

if we insert the keys in decreasing order of importance. (See exercise 18.) This 
is about half as many comparisons as predicted by the equal-frequency analysis, 
and it is fewer than we would make using binary search. 

Fig. 12 shows the tree that results when the most common 31 words of 
English are entered in decreasing order of frequency. The relative frequency is 
shown with each word, using statistics from Cryptanalysis by H. F. Gaines (New 
York: Dover, 1956), 226. The average number of comparisons for a successful 
search in this tree is 4.042; the corresponding binary search, using Algorithm 
6.2.lB or 6.2.lC, would require 4.393 comparisons. 
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Fig. 12. The 31 most common English words, inserted in decreasing order of frequency. 

Optimum binary search trees. These considerations make it natural to ask 
about the best possible tree for searching a table of keys with given frequencies. 
For example, the optimum tree for the 31 most common English words is shown 
in Fig. 13; it requires only 3.437 comparisons for an average successful search. 

Let us now explore the problem of finding the optimum tree. When N = 3, 
for example, let us assume that the keys K 1 < K 2 < K 3 have respective 
probabilities p, q, r. There are five possible trees: 

I ll ill N V 

Cost: 3p+2q+r 2p+3q+r 2p+q+2r p+3q+2r p+2q+3r 

Figure 14 shows the ranges of p, q, r for which each tree is optimum; the balanced 
tree is best about 45 percent of the time, if we choose p, q, r at random (see 
exercise 21). 

Unfortunately, when N is large there are 

(2;) /(N + 1) 4Nj(fo N3/2) 

binary trees, so we can't just try them all and see which is best. Let us therefore 
study the properties of optimum binary search trees more closely, in order to 
discover a better way to find them. 
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Fig. 13. An optimum search tree for the 31 most common English words. 

' (0,0,1) 

Fig. 14. If the relative frequencies of ( K 1 , K 2, K 3 ) are (p, q, r), this graph shows which 
of the five trees in ( 13) is best. The fact that p + q + r = 1 makes the graph two-
dimensional although there are three coordinates. 

So far we have considered only the probabilities for a successful search; in 
practice, the unsuccessful case must usually be considered as well. For example, 
the 31 words in Fig. 13 account for only about 36 percent of typical English text; 
the other 64 percent will certainly influence the structure of the optimum search 
tree. 

Therefore let us set the problem up in the following way: We are given 2n+ 1 
probabilities Pi,P2, ... ,Pn and qo, qi, ... , qn, where 

Pi = probability that Ki is the search argument; 
qi = probability that the search argument lies between Ki and Ki+i · 

(By convention, q0 is the probability that the search argument is less than Ki, 
and qn is the probability that the search argument is greater than Kn.) Thus, 
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P1 + P2 + · · · + Pn + qo + qi + · · · + qn = 1, and we want to find a binary tree 
that minimizes the expected number of comparisons in the search, namely 

n n LPj (level( CJ))+ 1) + L qk level( rn), 
j=l k=O 

where CD is the jth internal node in symmetric order and rn is the (k + 1)st 
external node, and where the root has level zero. Thus the expected number of 
comparisons for the binary tree 

is 2q0 + 2p1 + 3q1 + 3p2 + 3q2 + p3 + q3. Let us call this the cost of the tree; and 
let us say that a minimum-cost tree is optimum. In this definition there is no 
need to require that the p's and q's sum to unity; we can ask for a minimum-cost 
tree with any given sequence of "weights" (P1, ... , Pn; qo, ... , qn). 

We have studied Huffman's procedure for constructing trees with minimum 
weighted path length, in Section 2.3.4.5; but that method requires all the p's to 
be zero, and the tree it produces will usually not have the external node weights 
( q0, ... , qn) in the proper symmetric order from left to right. Therefore we need 
another approach. 

What saves us is that all subtrees of an optimum tree are optimum. For 
example, if (i5) is an optimum tree for the weights (P1,p2,p3; qo, qi, q2, q3), 
then the left subtree of the root must be optimum for (p1, P2; q0 , q1, q2); any 
improvement to a subtree leads to an improvement in the whole tree. 

This principle suggests a computation procedure that systematically finds 
larger and larger optimum subtrees. We have used much the same idea in Sec-
tion 5.4.9 to construct optimum merge patterns; the general approach is known 
as "dynamic programming," and we shall consider it further in Section 7.7. 

Let c(i,j) be the cost of an optimum subtree with weights (pi+1, ... ,pj; 
qi, ... , qj); and let w(i,j) = Pi+l + · · · + Pj +qi+···+ qj be the sum of all those 
weights; thus c( i, j) and w( i, j) are defined for 0 :::; i :::; j :::; n. It follows that 

c(i,i) = 0, 
c(i,j) = w(i,j) + .min.(c(i, k-1) + c(k,j)), 

i<k5'J 
for i < j, 

since the minimum possible cost of a tree with root ® is w ( i, j) + c( i, k-1) + 
c( k, j). When i < j, let R( i, j) be the set of all k for which the minimum is 
achieved in ( 16); this set specifies the possible roots of the optimum trees. 

Equation (i6) makes it possible to evaluate c(i,j) for j - i = 1, 2, ... , n; 
there are about such values, and the minimization operation is carried out 
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for about values of k. This means we can determine an optimum tree in 
O(n3 ) units of time, using O(n2 ) cells of memory. 

A factor of n can actually be removed from the running time if we make 
use of a monotonicity property. Let r( i, j) denote an element of R( i, j); we need 
not compute the entire set R( i, j), a single representative is sufficient. Once we 
have found r(i,j-1) and r(i+l,j), the result of exercise 27 proves that we may 
always assume that 

r(i, j-1):::; r(i,j):::; r(i+l, j) 
when the weights are nonnegative. This limits the search for the minimum, since 
only r( i + 1, j) - r( i, j-1) + 1 values of k need to be examined in ( 16) instead of 
j-i. The total amount of work when j-i = dis now bounded by the telescoping 
series 

L (r(i+l, j) - r(i, j-1) + 1) = r(n-d+l, n) - r(O, d-1) + n - d + 1 < 2n; 
d'.Sj:Sn 
i=j-d 

hence the total running time is reduced to O(n2 ). 

The following algorithm describes this procedure in detail. 

Algorithm K (Find optimum binary search trees). Given 2n + 1 nonnegative 
weights (p1, ... , Pn; q0 , ... , qn), this algorithm constructs binary trees t( i, j) that 
have minimum cost for the weights (Pi+l, ... , Pj; qi, ... , qj) in the sense defined 
above. Three arrays are computed, namely 

c[i, j], 
r[i, j), 

w[i,j], 

for 0 :::; i :::; j :::; n, 
for 0 :::; i < j :::; n, 
for 0 :::; i :::; j :::; n, 

the cost oft( i, j); 
the root oft( i, j); 
the total weight of t( i, j). 

The results of the algorithm are specified by the r array: If i = j, t(i,j) is null; 
otherwise its left subtree is t(i, r[i,j]-1) and its right subtree is t(r[i,j], j). 
Kl. (Initialize.] For 0 :::; i :::; n, set c[i, i] 0 and w[i, i] qi and w[i, j] 

w [ i, j -1] + p j + qj for j = i + 1, ... , n. Then for 1 :::; j :::; n set c[j -1, j] 
w[j-1,j] and r[j-1,j] j. (This determines all the 1-node optimum 
trees.) 

K2. [Loop on d.] Do step K3 for d = 2, 3, ... , n, then terminate the algorithm. 
K3. [Loop on j.] (We have already determined the optimum trees of fewer than 

d nodes. This step determines all the d-node optimum trees.) Do step K4 
for j = d, d + 1, ... , n. 

K4. [Find c[i,j], r[i,j].] j - d. Then set 

c[i, j] w[i, j] + minr(i,j-1]'.Sk'.Sr(i+l,j] ( c[i, k-1] + c[k, jl), 

and set r[i, j] to a value of k for which the minimum occurs. (Exercise 22 
proves that r[i,j-1]:::; r[i+l,j].) I 
As an example of Algorithm K, consider Fig. 15, which is based on a "key-

word-in-context" (KWIC) indexing application. The titles of all articles in the 
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first ten volumes of the Journal of the ACM were sorted to prepare a concordance 
in which there was one line for every word of every title. However, certain words 
like "THE" and "EQUATION" were felt to be sufficiently uninformative that they 
were left out of the index. These special words and their frequency of occurrence 
are shown in the internal nodes of Fig. 15. Notice that a title such as "On the 
solution of an equation (or a certain new problem" would be so uninformative, 
it wouldn't appear in the index at all! The idea of KWIC indexing is due to 
H. P. Luhn, Amer. Documentation 11 (1960), 288-295. (See W. W. Youden, 
JACM 10 (1963), 583-646, where the full KWIC index appears.) 

Fig. 15. An optimum binary search tree for a KWIC indexing application. 

When preparing a KWIC index file for sorting, we might want to use a 
binary search tree in order to test whether or not each particular word is to be 
indexed. The other words fall between two of the unindexed words, with the 
frequencies shown in the external nodes of Fig. 15; thus, exactly 277 words that 
are alphabetically between "PROBLEMS" and "SOLUTION" appeared in the JACM 
titles during 1954-1963. 

Figure 15 shows the optimum tree obtained by Algorithm K, with n = 35. 
The computed values of r[O, j] for j = 1, 2, ... , 35 are (1, 1, 2, 3, 3, 3, 3, 8, 8, 8, 
8, 8, 8, 11, 11, ... , 11, 21, 21, 21, 21, 21, 21); the values of r[i, 35] for i = 0, 1, ... , 34 
are (21,21, ... ,21,25,25,25,25,25,25,26,26,26,30,30,30,30,30,30,30,33,33, 
33, 35, 35). 

The "betweenness frequencies" qj have a· noticeable effect on the optimum 
tree structure; Fig. 16(a) shows the optimum tree that would have been obtained 
with the qj set to zero. Similarly, the internal frequencies Pi are important; 
Fig. 16(b) shows the optimum tree when the Pi are set to zero. Considering the 
full set of frequencies, the tree of Fig. 15 requires only 4.15 comparisons, on the 
average, while the trees of Fig. 16 require, respectively, 4.69 and 4.55. 
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a) 

b) 

0 "' 

Fig. 16. Optimum binary search trees based on half of the data of Fig. 15: (a) external 
frequencies suppressed; (b) internal frequencies suppressed. 

Since Algorithm K requires time and space proportional to n 2 , it becomes 
impractical when n is very large. Of course we may not really want to use binary 
search trees for large n, in view of the other search techniques to be discussed 
later in this chapter; but let's assume anyway that we want to find an optimum 
or nearly optimum tree when n is large. 

We have seen that the idea of inserting the keys in order of decreasing 
frequency can tend to make a fairly good tree, on the average; but it can also be 
very bad (see exercise 20), and it is not usually very near the optimum, since it 
makes no use of the qj weights. Another approach is to choose the root k so that 
the resulting maximum subtree weight, max(w(O,k-1), w(k,n)), is as small as 
possible. This approach can also be fairly poor, because it may choose a node 
with very small Pk to be the root; however, Theorem M below shows that the 
resulting tree will not be extremely far from the optimum. 
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Fig. 17. Behavior of the cost as a function of the root, k. 

A more satisfactory procedure can be obtained by combining these two 
methods, as suggested by W. A. Walker and C. C. Gotlieb [Graph Theory and 
Computing (Academic Press, 1972), 303-323): Try to equalize the left-hand and 
right-hand weights, but be prepared to move the root a few steps to the left or 
right to find a node with relatively large Pk. Figure 17 shows why this method is 
reasonable: If we plot c(O, k-1) + c(k, n) as a function of k, for the KWIC data 
of Fig. 15, we see that the result is quite sensitive to the magnitude of Pk. 

A top-down method such as this can be used for large n to choose the root 
and then to work on the left and the right subtrees. When we get down to 
a sufficiently small subtree we can apply Algorithm K. The resulting method 
yields fairly good trees (reportedly within 2 or 3 percent of the optimum), and it 
requires only O(n) units of space, O(nlogn) units of time. In fact, M. Fredman 
has shown that O(n) units of time suffice, if suitable data structures are used 
[STOC 7 (1975), 240-244]; see K. Mehlhorn, Data Structures and Algorithms 1 
(Springer, 1984), Section 4.2. 

Optimum trees and entropy. The minimum cost is closely related to a 
mathematical concept called entropy, which was introduced by Claude Shannon 
in his seminal work on information theory [Bell System Tech. J. 27 (1948), 379-
423, 623-656]. If p 1 , P2, ... , Pn are probabilities with P1 + P2 + · · · + Pn = 1, we 
define the entropy H(p1 ,p2, ... ,Pn) by the formula 

n 1 
H(p1 ,p2, · · · ,pn) = L Pk lg-. 

k=l Pk 

Intuitively, if n events are possible and the kth event occurs with probability Pk, 
we can imagine that we have received lg(l/pk) bits of information when the kth 
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event has occurred. (An event of probability gives 5 bits of information, etc.) 
Then H(p1,p2, ... ,pn) is the expected number of bits of information in a random 
event. If Pk = 0, we define Pk lg(l/pk) = 0, because 

1 1 
lim E lg - = lim - lg m = 0. 

E-+0+ E m-+oo m 

This convention allows us to use (18) when some of the probabilities are zero. 
The function xlg(l/x) is concave; that is, its second derivative, -1/(xln2), 

is negative. Therefore the maximum value of H(p1, P2, ... ,Pn) occurs when 
P1 = P2 = · · · = Pn = 1/n, namely 

H ( _!_ , _!_ , ... , _!_) = lg n. 
n n n 

In general, if we specify P1, ... , Pn-k but allow the other probabilities Pn-k+i, 
.... , Pn to vary, we have 

H(p1, ·. · ,Pn-k,Pn-k+I, · · · ,Pn) H(p1, · · · ,Pn-k, · ·., 

= H(P1, ... ,Pn-k, q) + q lg k, (20) 

H(p1' ... ,Pn-k,Pn-k+l, ... ,Pn) H(p1' ... ,Pn-k, q, 0, ... '0) 
= H(p1, ... ,Pn-k, q), (21) 

where q = 1 - (P1 + · · · + Pn-k)· 
Consider any not-necessarily-binary tree in which probabilities have been 

assigned to the leaves, say 

P2 P3 P4 

Here Pk represents the probability that a search procedure will end at leaf 
Then the branching at each internal (nonleaf) node corresponds to a local prob-
ability distribution based on the sums of leaf probabilities below each branch. 
For example, at node @ the first, second, and third branches are taken with 
the respective probabilities 

(P1 + P2 + P3 + P4, Ps, P6 + P1 + PB + pg), 

and at node @ the probabilities are 

(p1,P2,p3 + p4)/(P1 + P2 + p3 + p4). 
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Let us say that each internal node has the entropy of its local probability 
distribution; thus 

1 
H(A) = (p1 +P2+p3+p4) lg-----

P1 +p2+p3+p4 
1 1 

+ p5 lg - + (p5+p1+PB+pg) lg + + + , p5 P6 p7 PB pg 

H(B) = P1 lg P1 +P2+p3+p4 + P2 lg P1 +P2+p3+p4 
P1+P2+p3+p4 PI P1+P2+p3+p4 P2 

p3+p4 l P1 +P2+p3+p4 + g ' P1 +P2+p3+p4 p3+p4 

H ( C) = P2 lg P2 , 
P2 P2 

H(D) = P3 lg p3+p4 + p4 lg p3+p4 
p3 +p4 p3 p3 +p4 p4 

H(E) = P6 lg P6+P1+PB+Pg + P1 lg P6+P1+PB+Pg 
P6+P1+PB+Pg P6 P6+P1+PB+Pg P1 
+ PB lg P6+P1+PB+Pg + pg lg P6+P1+PB+Pg 

P6+P1+PB+Pg PB P6+P1+PB+Pg pg 

Lemma E. The sum of p(a)H(a) over all internal nodes a of a tree, where 
p(a) is the probability of reaching node a and H(a) is the entropy of a, equals 
the entropy of the probability distribution on the leaves. 

Proof. It is easy to establish this identity by induction from bottom to top. For 
example, we have 

H(A) + (P1 +P2 +p3 +p4) H ( B) +P2 H ( C) + (p3 +p4)H (D) + (P6 +P1+PB +pg) H( E) 
1 1 1 

= P1 lg - + P2 lg - + · · · +pg lg -
P1 P2 pg 

with respect to the formulas above; all terms involving lg(p1 + p 2 + p3 + p4 ), 

lg(p3 + p4), and lg(p5 + P1 +PB+ pg) cancel out. I 
As a consequence of Lemma E, we can use entropy to establish a convenient 

lower bound on the cost of any binary tree. 

Theorem B. Let (p1 , ... , Pn; qo, ... , qn) be nonnegative weights as in Algo-
rithm K, normalized so that P1 + · · · +Pn +qo + · · · +qn = 1, and let P = P1 + · · · +Pn 
be the probability of a successful search. Let 

H = H(p1,··· ,pn,qO,··· ,qn) 

be the entropy of the corresponding probability distribution, and let C be the 
minimum cost, (i4). Then if H 2'.: 2P/e we have 

eH 
C > H - P lg - . ( 23) 2P 
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Proof. Take a binary tree of cost C and assign the probabilities qk to its leaves. 
Also add a middle branch below each internal node, leading to a new leaf that 
has probability Pk· Then C = 2".:p(a), summed over the internal nodes a of the 
resulting ternary tree, and H = 2".:p(a)H(a) by Lemma E. 

The entropy H(a) corresponds to a three-way distribution, where one of the 
probabilities is Pj / p( a) if a is internal node Ci). Exercise 35 proves that 

H (p, q, r) p lg x + 1 + lg ( 1 + ( 24) 

for all x > 0, whenever p + q + r = 1. Therefore we have the inequality 

n 1 
H = LP(a)H(a) lgx + ( 1+lg(1 + 2x)) C 

a J=l 

for all positive x. Choosing 2x = H / P now leads to the desired result, since 

1 ( H) C> H-Plg-
- 1 + lg( 1 + p I H) 2P 

1 (H PI ) p 1 eH 
1 + lg(l + P / H) + g e - 1 + lg(l + P / H) g 2P 

eH 
>H-Plg-- 2P' 

because lg(l + y) :::; y lg e for all y > 0. I 

Eq. (23) does not necessarily hold when the entropy is extremely low. But 
the restriction to cases where H 2: 2P / e is not severe, since_ the value of H is 
usually near lg n; see exercise 37. Notice that the proof doesn't actually use the 
left-to-right order of the nodes; the lower bound (23) holds for any binary search 
tree that has internal node probabilities Pj and external node probabilities qk in 

"' any order. 
Entropy calculations also yield an upper bound that is not too far from (23), 

even when we do stick to the left-to-right order: 

Theorem M. Under the assumptions of Theorem B, we also have 

C < H+2-P. 

Proof. Form the n+l sums so= s1 = qo+P1 s2 = qo+P1 +q1 
... , Sn= qo+P1 + · · · +qn-1 +Pn + we may assume that so< s1 <···<Sn 
(see exercise 38). Express each sk as a binary fraction, writing Sn= (.111 ... )2 
if Sn = 1. Then let the string (]'k be the leading bits of s k, retaining just enough 
bits to distinguish sk from Sj for j -j. k. For example, we might haven= 3 and 

So= (.0000001)2 
S1 = (.0000101)2 
S2 = (.0001011)2 
S3 = ( .1100000)2 

(]'o = 00000 
(J'l = 00001 
(]'2 = 0001 
(]'3 = 1 
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Construct a binary tree with n + 1 leaves, in such a way that (]'k corresponds to 
the path from the root to [!] for 0 k n, where 'O' denotes a left branch 
and 'l' denotes a right branch. Also, if (J'k-1 has the form ak0f3k and (]'k has the 
form ak 1 /k for some ak, f3k, and /k, let the internal node ® correspond to the 
path ak. Thus we would have 

in the example above. There may be some internal nodes that are still nameless; 
replace each of them by their one and only child. The cost of the resulting tree 
is at most + 1) + 

We have 

Pk +Pk + = Sk - Sk-1 2-lak I, (26) 

because sk (.ak)2 + 2-lakl and sk-1 (.akh· Furthermore, if qk 2-t we 
have sk sk-l + 2-t-l and sk+l sk + 2-t-l, hence l(]'k I t + 1. It follows 
that qk < 2-lak 1+2 , and we have constructed a binary tree of cost 

n n n 1 n 1 L Pk (1 + lak I) + L qk l(]'k I L Pk ( 1 + lg -) + L qk ( 2 + lg -) 
k=l k=O k=l Pk k=O qk 

= P + 2(1 - P) + H = H + 2 - P. I 
In the KWIC indexing application of Fig. 15, we have P = 1304/3288 

0.39659, and H(p1, ... ,p35, qo, ... , q3s) 5.00635. Therefore Theorem B tells us 
that C 3.3800, and Theorem M tells us that C < 6.6098. 

*The Garsia-Wachs algorithm. An amazing improvement on Algorithm K 
is possible in the special case that P1 = · · · = Pn = 0. This case, in which 
only the leaf probabilities (qo, qi, ... , qn) are relevant, is especially important 
because it arises in a several significant applications. Let us therefore assume 
in the remainder of this section that the probabilities Pj are zero. Notice that 
Theorems B and M reduce to the inequalities 

H(qo, q1, ... , qn) C(qo, qi,···, qn) < H(qo, qi, ... , qn) + 2 (27) 
in this case; and the cost function ( 14) simplifies to 

n 

c = :Lqkzk, lk = the level of [!]. 
k=O 

The key property that makes a simpler algorithm possible is the following 
observation: 
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Lemma W. If qk-l > qk+l then lk lk+l in every optimum tree. If qk.,-1 = 
qk+l then lk lk+l in some optimum tree. 

Proof. Suppose qk-l qk+l and consider a tree in which lk > lk+l· Then [!] 
must be a right child, and its left sibling Lis a subtree of cost c qk-l· Replace 
the parent of[!] by L; replace I k+l I by a node whose children are [!] and I k+l I. 
This changes the overall cost by -c - qk(lk - lk+1 - 1) + qk+1 qk+l - qk-1· 
So the given tree was not optimum if qk-l > qk+1, and it has been transformed 
into another optimum tree if qk-l = qk+l · In the latter case a sequence of such 
transformations will make lk lk+l · I 

A deeper analysis of the structure tells us considerably more. 

Lemma X. Suppose j and k are indices such that j < k and we have 
i) qi-1 > qi+l for 1 i < k; 

ii) qk-1 qk+l; 
iii) qi < qk-l + qk for j i < k - 1; and 
iv) qj-1 qk-1 + qk. 
Then there is an optimum tree in which lk-1 = lk and either 
a) l j = l k - 1, or 
b) lj = lk and [lJ is a left child. 

Proof. By reversing left and right in Lemma W, we see that (ii) implies the 
existence of an optimum tree in which lk-l lk. But Lemma W and (i) also 
imply that l1 l2 · · · lk. Therefore lk-1 = lk. 

Suppose ls < lk - 1 l8 +1 for some s with j s < k. Let t be the smallest 
index < k such that lt = lk· Then ls+l = · · · = lt-1 = lk - 1, and I s+l I is a 
left child; hence t- s is odd, and node ITJ is a left child for i = s + 1, s + 3, ... , t. 
Replace the parent of ITJ by I t+ 1 I ; replace ITJ by I i+ 1 I for s < i < t; and 
replace the external node 0 by an internal node whose children are 0 and 
ls+l I. This changes the cost qs - qt - qt+1 qs - qk-1 - qk, so it is an 
improvement if q8 < qk-l + qk. Therefore, by (iii), lj lk - 1. 

We still have not used hypothesis (iv). If lj = lk and IJJ is not a left 
child, [lJ must be the right sibling of jj + 1 I. Replace their parent by jj + 1 I; 
then replace leaf ITJ by I i+l j for j < i < k; and replace the external node 
[!] by an internal node whose children are I k+ 1 I and [!]. This changes the 
cost by -qj-l + qk-l + qk 0, so we obtain an optimum tree satisfying (b ). I 
Lemma Y. Let j and k be as in Lemma X, and consider the modifi.ed probabil-
ities (qb, ... = (q0, ... ,qj_1,qk-l +qk,qj, ... ,qk_2,qk+1, ... ,qn) obtained 
by removing qk-l and qk and inserting qk-1 + qk after qj-l · Then 

· · ·, ( qk-1 + qk) + C( qo, · · ·, qn) · (29) 
Proof. It suffices to show that any optimum tree for (q0, ... , qn) can be trans-
formed into a tree of the same cost in which I k-1 I and [!] are siblings and the 
leaves appear in permuted order 
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We start with the tree constructed in Lemma X. If it is of type (b), we simply 
rename the leaves, sliding I k-1 I and [!] to the left by k - 1 - j places. If it is 
of type (a), suppose ls-l = lk - 1 and ls= lk; we proceed as follows: First slide 
lk-11 and[!] left by k-1-s places; then replace their (new) parent by lk-21; 
finally replace IJJ by a node whose children are I k-1 I and [!], and replace node 
ITJ by I i-1 I for j < i < k - 1. I 

Lemma Z. Under the hypotheses of Lemma Y, equality holds in (29). 

Proof. Every tree for (qb, ... , corresponds to a tree with leaves (30) in 
which the two out-of-order leaf nodes I k-1 I and [!] are siblings. Let internal 
node @ be their parent. We want to show that any optimum tree of that type 
can be converted to a tree of the same cost in which the leaves appear in normal 
order @] ... 

There is nothing to prove if j = k - 1. Otherwise we have 1 > 1 for 
j i < k - 1, because qj-l 2: qk-l + qk > qj. Therefore by Lemma W we have 
lx lj · · · lk-2, where lx is the level of @ and li is the level of ITJ for 
j i < k - 1. If lx = lk_2, we simply slide node @ to the right, replacing the 
sequence G) IJJ . . . I k-2 I by IJJ ... I k-2 I @; this straightens out the leaves 
as desired. 

Otherwise suppose ls = lx and ls+l > lx. We first replace G) IJJ ... 0 
by []] ... 0 @; this makes l ls+l · · · lk-2, where l = lx + 1 is the 
common level of nodes I k-1 I and [!]. Finally replace nodes 

lk-11 [!] ls+ll ... lk-21 
by the cyclically shifted sequence 

ls+ll ... lk-21 lk-ll [!]. 

Exercise 40 proves that this decreases the cost, unless lk-2 = l. But the cost 
cannot decrease, because of Lemma Y. Therefore lk-2 = l, and the proof is 
complete. I 

These lemmas show that the problem for n + 1 weights q0, q1 , ... , qn can 
be reduced to an n-weight problem: We first find the smallest index k with 
qk-1 qk+1; then we find the largest j < k with qj-l 2: qk-l + qk; then we 
remove qk-1 and qk from the list, and insert the sum qk-l + qk just after qj-l· 

In the special cases j = 0 or k = n, the proofs show that we should proceed as 
if infinite weights q_ 1 and qn+l were present at the left and right. The proofs 
also show that any optimum tree T' that is obtained from the new weights 
(qb, ... , can be rearranged into a tree T that has the original weights 
( qo, ... , qn) in the correct left-to-right order; moreover, each weight will appear 
at the same level in both T and T'. 

For example, Fig. 18 illustrates the construction when the weights qk are 
the relative frequencies of the characters u, A, B, ... , Z in English text. The first 
few weights are 

186, 64, 13, 22, 32, 103, ... 
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and we have 186 > 13, 64 > 22, 13 :::; 32; therefore we replace "13, 22" by 35. In 
the new sequence 

186, 64, 35, 32, 103, ... 

we replace "35, 32" by 67 and slide 67 to the left of 64, obtaining 

186, 67, 64, 103, .... 

Then "67, 64" becomes 131, and we begin to examine the weights that follow 103. 
After the 27 original weights have been combined into the single weight 1000, the 
history of successive combinations specifies a binary tree whose weighted path 
length is the solution to the original problem. 

But the leaves of the tree in Fig. 18 are not at all in the correct order, 
because they get tangled up when we slide Qk-l +qk to the left (see exercise 41). 
Still, the proof of Lemma Z guarantees that there is a tree whose leaves are in 
the correct order and on exactly the same levels as in the tangled tree. This 
untangled tree, Fig. 19, is therefore optimum; it is the binary tree output by the 
Garsia-Wachs algorithm. 

Algorithm G (Garsia-Wachs algorithm for optimum binary trees). Given a 
sequence of nonnegative weights wo, w1 , ... , Wn, this algorithm constructs a 
binary tree with n internal nodes for which wklk is minimum, where lk is 
the distance of external node (I] from the root. It uses an array of 2n + 2 nodes 
whose addresses are Xk for 0 :::; k :::; 2n + 1; each node has four fields called 
WT, LLINK, RLINK, and LEVEL. The leaves of the constructed tree will be nodes 
Xo ... Xn; the internal nodes will be Xn+1 ... X2n; the root will be X2n; and X2n+1 
is used as a temporary sentinel. The algorithm also maintains a working array 
of pointers Po, P1, ... , Pt, where t:::; n + 1. 

G 1. (Begin phase 1.] Set WT (Xk) +- Wk and LLINK (Xk) +- RLINK (Xk) +- A for 
0 :::; k :::; n. Also set Po +- X2n+ 1, WT (Po) +- oo, P1 +- X0 , t +- 1, m +- n. 
Then perform step G2 for j = 1, 2, ... , n, and go to G3. 

G2. [Absorb Wj.] (At this point we have the basic condition 

for 1 :::; i < t; 
in other words, the weights in the working array are "2-descending.") Per-
form Subroutine C below, zero or more times, until WT(Pt_ 1 ) > Wj. Then 
set t +- t + 1 and Pt +- X j . 

G3. [Finish phase 1.] Perform Subroutine C zero or more times, until t = 1. 

G4. [Do phase 2.] (Now P1 = X2n is the root of a binary tree, and WT (P1) 
wo+· · ·+wn.) Set lk to the distance of node Xk from node P1 , for 0:::; k:::; n. 
(See exercise 43. An example is shown in Fig. 18, where level numbers 
appear at the right of each node.) 

G5. [Do phase 3.] By changing the links of Xn+1, ... , X2n, construct a new binary 
tree having the same level numbers lk, but with the leaf nodes in symmetric 
order X0 , ... , Xn. (See exercise 44; an example appears in Fig. 19.) I 
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Subroutine C (Combination). This subroutine is the heart of the Garsia-
Wachs algorithm. It combines two weights, shifts them left as appropriate, and 
maintains the 2-descending condition (31). 

Cl. [Initialize.] Set k +- t. 
C2. [Create a new node.] .(At this point we have k 2.) Set m +- m + 1, 

LLINK(Xm) +- Pk-1, RLINK(Xm) +-Pk, WT(Xm) +- WT(Pk-1) + WT(Pk). 

C3. [Shift the following nodes left.] Sett+- t - 1, then Pj+1 +- Pj fork::; j ::; t. 
C4. [Shift the preceding nodes right.] Set j +- k-2; then while WT (Pj) <WT (Xm) 

set PJ+I +- Pj and j +- j - 1. 

C5. [Insert the new node.] Set Pj+l +- Xm· 

C6. [Done?] If j > 0 and WT(Pj_ 1)::; WT(Xm), set k +- j and return to C2. I 

As stated, Subroutine C might need D(n) steps to create and insert a new 
node, because it uses sequential memory instead of linked lists. Therefore the 
total running time of Algorithm G might be D(n2 ). But more elaborate data 
structures can be used to guarantee that phase 1 will require at most 0( n log n) 
steps (see exercise 45). Phases 2 and 3 need only O(n) steps. 

Kleitman and Saks [SIAM J. Algeb. Discr. Methods 2 (1981), 142-146] 
proved that the optimum weighted path length never exceeds the value of the 
optimum weighted path length that occurs when the q's have been rearranged 
in "sawtooth order": 

Qo::; Q2::; q4::; · · ·::; Q2Ln/2j ::; Q2fn/2l-l ::; · · ·::; q3::; Q1 · (32) 

(This is the inverse of the organ-pipe order discussed in exercise 6.1-18.) In 
the latter case the Garsia-Wachs algorithm essentially reduces to Huffman's 
algorithm on the weights q0 + q1 , Q2 + q3, ... , because the weights in the working 
array will actually be nonincreasing (not merely "2-descending" as in (31)). 
Therefore we can improve the upper bound of Theorem M without knowing 
the order of the weights. 

The optimum binary tree in Fig. 19 has an important application to coding 
theory as well as to searching: Using 0 to stand for a left branch in the tree and -
1 to stand for a right branch, we obtain the following variable-length codewords: 

u 00 I 1000 R 11001 
A 0100 J 1001000 s 1101 
B 010100 K 1001001 T 1110 
c 010101 L 100101 u 111100 
D 01011 M 10011 v 111101 (33) 
E 0110 N 1010 w 111110 
F 011100 0 1011 x 11111100 
G 011101 p 110000 y 11111101 
H 01111 Q 110001 z 1111111 
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Thus a message like "RIGHT ON" would be encoded by the string 

1100110000111010111111100010111010. 

Decoding from left to right is easy, in spite of the variable length of the codewords, 
because the tree structure tells us when one codeword ends and another begins. 
This method of coding preserves the alphabetical order of messages, and it uses 
an average of about 4.2 bits per letter. Thus the code could be used to compress 
data files, without destroying lexicographic order of alphabetic information. (The 
figure of 4.2 bits per letter is minimum over all binary tree codes, although it 
could be reduced to 4.1 bits per letter if we disregarded the alphabetic ordering 
constraint. A further reduction, preserving alphabetic order, could be achieved 
if pairs of letters instead of single letters were encoded.) 

History and bibliography. The tree search methods of this section were 
discovered independently by several people during the 1950s. In an unpublished 
memorandum dated August 1952, A. I. Durney described a primitive form of 
tree insertion in the following way: 

Consider a drum with 2n item storages in it, each having a binary 
address. 

Follow this program: 
1. Read in the first item and store it in address 2n-i, i.e., at the 

halfway storage place. 
2. Read in the next item. Compare it with the first. 
3. If it is larger, put it in address 2n-l + 2n-2. It it is smaller, put it 

at 2n-2 .... 

Another early form of tree insertion was introduced by D. J. Wheeler, who 
actually allowed multiway branching similar to what we shall discuss in Section 
6.2.4; and a binary tree insertion technique was devised by C. M. Berners-Lee 
[see Comp. J. 2 (1959), 5]. 

The first published descriptions of tree insertion were by P. F. Windley 
[Comp. J. 3 (1960), 84-88], A. D. Booth and A. J. T. Colin [Information and 
Control 3 (1960), 327-334], and Thomas N. Hibbard [JACM 9 (1962), 13-28]. 
Each of these authors seems to have developed the method independently of 
the others, and each paper derived the average number of comparisons (6) in 
a different way. The individual authors also went on to treat different aspects 
of the algorithm: Windley gave a detailed discussion of tree insertion sorting; 
Booth and Colin discussed the effect of preconditioning by making the first 2n -1 
elements form a perfectly balanced tree (see exercise 4); Hibbard introduced the 
idea of deletion and showed the connection between the analysis of tree insertion 
and the analysis of quicksort. 

The idea of optimum binary search trees was first developed for the special 
case P1 = · · · = Pn = 0, in the context of alphabetic binary encodings like 
(33). A very interesting paper by E. N. Gilbert and E. F. Moore [Bell System 
Tech. J. 38 (1959), 933-968] discussed this problem and its relation to other 
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coding problems. Gilbert and Moore proved Theorem M in the special case 
P = 0, and observed that an optimum tree could be constructed in O(n3 ) steps, 
using a method like Algorithm K but without making use of the monotonicity 
relation (i7). K. E. Iverson [A Programming Language (Wiley, 1962), 142-144] 
independently considered the other case, when all the q's are zero. He suggested 
that an optimum tree wou!d be obtained if the root is chosen so as to equalize the 
left and right subtree probabilities as much as possible; unfortunately we have 
seen that this idea doesn't work. D. E. Knuth [Acta Informatica 1 (1971), 14-25, 
270] subsequently considered the case of general p and q weights and proved that 
the algorithm could be reduced to O(n2 ) steps; he also presented an example 
from a compiler application, where the keys in the tree are "reserved words" in 
an ALGOL-like language. T. C. Hu had been studying his own algorithm for the 
case Pj = 0 for several years; a rigorous proof of the validity of that algorithm 
was difficult to find because of the complexity of the problem, but he eventually 
obtained a proof jointly with A. C. Tucker [SIAM J. Applied Math. 21 (1971), 
514-532]. Simplifications leading to Algorithm G were found several years later 
by A. M. Garsia and M. L. Wachs, SICOMP 6 (1977), 622-642, although their 
proof was still rather complicated. Lemmas W, X, Y, and Z above are due to 
J. H. Kingston, J. Algorithms 9 (1988), 129-136. See also the paper by Hu, 
Kleitman, and Tamaki, SIAM J. Applied Math. 37 (1979), 246-256, for an 
elementary proof of the Hu-Tucker algorithm and some generalizations to other 
cost functions. 

Theorem Bis due to Paul J. Bayer, report MIT/LCS/TM-69 (Mass. Inst. 
of Tech., 1975), who also proved a slightly weaker form of Theorem M. The 
stronger form above is due to K. Mehlhorn, SICOMP 6 (1977), 235-239. 

EXERCISES 
1. [ 15] Algorithm T has been stated only for nonempty trees. What changes should 

be made so that it works properly for the empty tree too? 
2. [20] Modify Algorithm Tso that it works with right-threaded trees. (See Section 

2.3.1; symmetric traversal is easier in such trees.) 

3. [20] In Section 6.1 we found that a slight change to the sequential search Algo-
rithm 6.lS made it faster (Algorithm 6.lQ). Can a similar trick be used to speed up 
Algorithm T? 

4. [M24] (A. D. Booth and A. J. T. Colin.) Given N keys in random order, suppose 
that we use the first 2n - 1 to construct a perfectly balanced tree, placing 2k keys on 
level k for 0 ::;; k < n; then we use Algorithm T to insert the remaining keys. What is 
the average number of comparisons in a successful search? [Hint: Modify Eq. ( 2).] 

5. [M25] There are 11! = 39,916,800 different orders in which the names CAPRICORN, 
AQUARIUS, etc. could have been inserted into a binary search tree. 

a) How many of these arrangements will produce Fig. 10? 
b) How many of these arrangements will produce a degenerate tree, in which LLINK 

or RLINK is A in each node? 

6. [M26] Let Pnk be the number of permutations ai a2 ... an of {1, 2, ... , n} such 
that, if Algorithm T is used to insert ai, a2, ... , an successively into an initially empty 
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tree, exactly k comparisons are made when an is inserted. (In this problem, we will 
ignore the comparisons made when a 1 , ... , an-I were inserted. In the notation of the 
text, we have = (Z::=k kPnk)/n!, since this is the average number of comparisons 
made in an unsuccessful search of a tree containing n - 1 elements.) 

a) Prove that P(n+l)k = 2Pn(k-l) + (n- l)Pnk· [Hint: Consider whether or not an+l 
falls below an in the tree.] 

b) Find a simple formula for the generating function Gn(z) = Lk PnkZk, and use 
your formula to express P nk in terms of Stirling numbers. 

c) What is the variance of this distribution? 

7. [M25] (S. R. Arora and W. T. Dent.) After n elements have been inserted into 
an initially empty tree, in random order, what is the average number of comparisons 
needed by Algorithm T to find the mth largest element, given the key of that element? 

8. [ M38] Let p( n, k) be the probability that k is the total internal path length of a 
tree built by Algorithm T from n randomly ordered keys. (The internal path length is 
the number of comparisons made by tree insertion sorting as the tree is being built.) 

a) Find a recurrence relation that defines the corresponding generating function. 
b) Compute the variance of this distribution. [Several of the exercises in Section 1.2. 7 

may be helpful here.] 
9. [41] We have proved that tree search and insertion requires only about 2 lnN 

comparisons when the keys are inserted in random order; but in practice, the order 
may not be random. Make empirical studies to see how suitable tree insertion really is 
for symbol tables within a compiler and/or assembler. Do the identifiers used in typical 
large programs lead to fairly well-balanced binary search trees? 

10. [22] (R. W. Floyd.) Perhaps we are not interested in the sorting property of 
Algorithm T, but we expect that the input will come in nonrandom order. Devise a 
way to keep tree search efficient, by making the input "appear to be" in random order. 

11. [20] What is the maximum number of times the assignment S +- LLINK(R) might 
be performed in step D3, when deleting a node from a tree of size N? empirical data 

12. [ M22] When making a random deletion from a random tree of N items, how often 
does step Dl go to D4, on the average? (See the proof of Theorem H.) 

13. [ M23] If the root of a random tree is deleted by Algorithm D, is the resulting tree 
still random? 
14. [ 22] Prove that the path length of the tree produced by Algorithm D with step 

added is never more than the path length of the tree produced without that step. 
Find a case where step actually decreases the path length. 

15. [23] Let ai a2 a 3 a4 be a permutation of {1, 2, 3, 4}, and let j = 1, 2, or 3. Take the 
one-element tree with key ai and insert a2, a3 using Algorithm T; then delete aj using 
Algorithm D; then insert a4 using Algorithm T. How many of the 4! x 3 possibilities 
produce trees of shape I, II, III, IV, V, respectively, in (i3)? 

16. [25] Is the deletion operation commutative? That is, if Algorithm D is used to 
delete X and then Y, is the resulting tree the same as if Algorithm D is used to delete 
Y and then X? 
1 7. [ 25] Show that if the roles of left and right are completely reversed in Algorithm D, 
it is easy to extend the algorithm so that it deletes a given node from a right-threaded 
tree, preserving the necessary threads. (See exercise 2.) 

18. [M21] Show that Zipf's law yields (i2). 
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19. [M23] What is the approximate average number of comparisons, (n), when the 
input probabilities satisfy the 80-20 law defined in Eq. 6.l-(11)? 

20. [ M20] Suppose we have inserted keys into a tree in order of decreasing frequency 
Pi 2': P2 2': · · · 2': Pn· Can this tree be substantially worse than the optimum search 
tree? 

21. [M20] If p, q, r are proba'bilities chosen at random, subject to the condition that 
p + q + r = 1, what are the probabilities that trees I, II, III, IV, V of (i3) are optimal, 
respectively? (Consider the relative areas of the regions in Fig. 14.) 

22. [M20] Prove that r[i, j-1] is never greater than r[i+l, j] when step K4 of Algo-
rithm K is performed. 

23. [M23] Find an optimum binary search tree for the case N = 40, with weights 
Pi = 9, p2 = p3 = · · · = P4o = 1, qo =qi = · · · = q4o = 0. (Don't use a computer.) 

24. [M25] Given that Pn = qn = 0 and that the other weights are nonnegative, prove 
that an optimum tree for (pi, ... ,pn; qo, ... , qn) may be obtained by replacing 

by 

in any optimum tree for (p1, ... ,Pn-1; qo, ... , qn-1). 

25. [M20] Let A and B be nonempty sets of real numbers, and define A ::;: B if the 
following property holds: 

(a E A, b E B, and b < a) implies (a E B and b E A). 

a) Prove that this relation is transitive on nonempty sets. 
b) Prove or disprove: A ::;: B if and only if A :S A U B ::;: B. 

26. [M22] Let (p1, ... ,pn; qo, ... , qn) be nonnegative weights, where Pn + qn = x. 
Prove that as x varies from 0 to oo, while (p1 , ... , Pn-1 ; qo, ... , qn-1) are held constant, 
the cost c(O, n) of an optimum binary search tree is a concave, continuous, piecewise 
linear function of x with integer slopes. In other words, prove that there exist positive 
integers lo > li > · · · > lrn and real constants 0 = xo < xi < · · · < Xrn < Xrn+i = oo 
and yo <Yi··· < Yrn such that c(O, n) = Yh + lhx when xh :S x :S xh+1, for 0::;: h::;: m. 

27. [M33] The object of this exercise is to prove that the sets of roots R(i,j) of 
optimum binary search trees satisfy 

R(i,j-1) :S R(i,j) :S R(i+l,j), for j - i 2': 2, 

in terms of the relation defined in exercise 25, when the weights (p1 , •.. , Pn; q0 , ••• , qn) 
are nonnegative. The proof is by induction on j-i; our task is to prove that R(O, n-1)::;: 
R(O, n), assuming that n 2': 2 and that the stated relation holds for j - i < n. [By 
left-right symmetry it follows that R(O, n) ::;: R(l, n).] 

a) Prove that R(O, n - 1) :S R(O, n) if Pn = qn = 0. (See exercise 24.) 
b) Let Pn + qn = x. In the notation of exercise 26, let Rh be the set R(O, n) of 

optimum roots when Xh < x < Xh+1, and let be the set of optimum roots when 
x = Xh· Prove that 
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Hence by part (a) and exercise 25 we have R(O, n-1) ::;; R(O, n) for all x. [Hint: 
Consider the case x = Xh, and assume that both the trees 

t(O, r-1) t(r, n) t(O, s-1) t(s, n) 

G at level l G at level l' 

are optimum, with s < r and l 2': l'. Use the induction hypothesis to prove that 
there is an optimum tree with root (r) such that is at level l', and an optimum 
tree with root 0 such that is at level Z.] 

28. [24] Use some macro language to define a "optimum binary search" macro, whose 
parameter is a nested specification of an optimum binary tree. 

29. [40] What is the worst possible binary search tree for the 31 most common English 
words, using the frequency data of Fig. 12? 

30. [ M34] Prove that the costs of optimum binary search trees satisfy the "quadrangle 
inequality" c(i, j) - c(i, j-1) 2': c(i+l, j) - c(i+l, j-1) when j 2': i + 2. 

31. [M35] (K. C. Tan.) Prove that, among all possible sets of probabilities (p1, ... ,pn; 
qo, ... , qn) with P1 + · · · + Pn + qo + · · · + qn = 1, the most expensive minimum-cost 
tree occurs when Pi= 0 for all i, qj = 0 for all even j, and qj = 1/f n/21 for all odd j. 

· 32. [ M25] Let n + 1 = 2rn + k, where 0 :S k :S 2rn. There are exactly (2:) binary 
trees in which all external nodes appear on levels m and m + 1. Show that, among all 
these trees, we obtain one with the minimum cost for the weights (p1, ... ,pn; qo, ... , qn) 
if we apply Algorithm K to the weights (p1, ... , Pn; M +qo, ... , M +qn) for sufficiently 
large M. 

33. [M41] In order to find the binary search tree that minimizes the running time of 
Program T, we should minimize the quantity 7C +Cl instead of simply minimizing 
the number of comparisons C. Develop an algorithm that finds optimum binary search 
trees when different costs are associated with left and right branches in the tree. 
(Incidentally, when the right cost is twice the left cost, and the node frequencies are all 
equal, the Fibonacci trees turn out to be optimum; see L. E. Stanfel, JACM 17 (1970), 
508-517. On machines that cannot make three-way comparisons at once, a program 
for Algorithm T will have to make two comparisons in step T2, one for equality and 
one for less-than; B. Sheil and V. R. Pratt have observed that these comparisons need 
not involve the same key, and it may well be best to have a binary tree whose internal 
nodes specify either an equality test or a less-than test but not both. This situation 
would be interesting to explore as an alternative to the stated problem.) 

34. [ HM21] Show that the asymptotic value of the multinomial coefficient 

(p1N, ... , PnN) 

as N -+ oo is related to the entropy H (p1, p2, ... , Pn). 

35. [HM22] Complete the proof of Theorem B by establishing the inequality (24). 

36. [ HM25] (Claude Shannon.) Let X and Y be random variables with finite ranges 
{ X1, ... , Xrn} and {y1, ... , Yn}, and let Pi = Pr(X = Xi), qj = Pr(Y = Yi), rij = 
Pr(X =Xi and Y = Y1)· Let H(X) = H(p1, ... ,prn) and H(Y) = H(q1, ... , qn) be the 
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respective entropies of the variables singly, and let H(XY) = H(r11, ... , Tmn) be the 
entropy of their joint distribution. Prove that 

H(X) :S H(XY) :S H(X) + H(Y). 

[Hint: If f is any concave function, we have Ef(X) :S /(EX).] 
37. [HM26] (P. J. Bayer, 1Q75.) Suppose (Pi, ... , Pn) is a random probability distri-
bution, namely a random point in the ( n - 1 )-dimensional simplex defined by Pk 2: O 
for 1 :S k ::; n and Pi + · · · + Pn = 1. (Equivalently, (Pi, ... , Pn) is a set of random 
spacings, in the sense of exercise 3.3.2-26.) What is the expected value of the entropy 
H(Pi, ... , Pn)? 
38. [ M20] Explain why Theorem M holds in general, although we have only proved 
it in the case so < s1 < s2 < · · · < Sn· 

39. [M25] Let w 1 , ••• , Wn be nonnegative weights with W1 + · · · + Wn = 1. Prove 
that the weighted path length of the Huffman tree constructed in Section 2.3.4.5 is less 
than H ( w1 , •.• , Wn) + 1. Hint: See the proof of Theorem M. 
40. [M26] Complete the proof of Lemma Z. 
41. [21] Fig. 18 shows the construction of a tangled binary tree. List its leaves in 
left-to-right order. 
42. [23] Explain why Subroutine C preserves the 2-descending condition (31). 
43. [20] Explain how to implement phase 2 of the Garsia-Wachs algorithm efficiently. 
44. [25] Explain how to implement phase 3 of the Garsia-Wachs algorithm efficiently: 
Construct a binary tree, given the levels lo, Z 1, ... , ln of its leaves in symmetric order. 
45. [30] Explain how to implement Subroutine C so that the total running time of 
the Garsia-Wachs algorithm is at most O(n log n). 
46. [M30] (C. K. Wong and Shi-Kuo Chang.) Consider a scheme whereby a binary 
search tree is constructed by Algorithm T, except that whenever the number of nodes 
reaches a number of the form 2n - 1 the tree is reorganized into a perfectly balanced 
uniform tree, with 2k nodes on level k for 0 :S k < n. Prove that the total number of 
comparisons made while constructing such a tree is N lg N +O(N) on the average. (It is 
not difficult to show that the amount of time needed for the reorganizations is O(N).) 
47. [M40] Generalize Theorems Band M from binary trees to t-ary trees. If possible, 
also allow the branching costs to be nonuniform as in exercise 33. 
48. [M4 7] Carry out a rigorous analysis of the steady state of a binary search tree 
subjected to random insertions and deletions. 
49. [HM42] Analyze the average height of a random binary search tree. 

6.2.3. Balanced Trees 
The tree insertion algorithm we have just learned will produce good search 
trees, when the input data is random, but there is still the annoying possibility 
that a degenerate tree will occur. Perhaps we could devise an algorithm that 
keeps the tree optimum at all times; but unfortunately that seems to be very 
difficult. Another idea is to keep track of the total path length, and to completely 
reorganize the tree whenever its path length exceeds 5N lg N, say. But such an 
approach might require about VNJ2 reorganizations as the tree is being built. 



6.2.3 BALANCED TREES 459 

A very pretty solution to the problem of maintaining a good search tree 
was discovered in 1962 by two Russian mathematicians, G. M. Adelson-Velsky 
and E. M. Landis [Doklady Akademiia Nauk SSSR 146 (1962), 263-266; English 
translation in Soviet Math. 3, 1259-1263]. Their method requires only two extra 
bits per node, and it never uses more than O(log N) operations to search the 
tree or to insert an item. In fact, we shall see that their approach also leads to a 
general technique that is good for representing arbitrary linear lists of length N, 
so that each of the following operations can be done in only O(log N) units of 
time: 

i) Find an item having a given key. 

ii) Find the kth item, given k. 

iii) Insert an item at a specified place. 

iv) Delete a specified item. 

If we use sequential allocation for linear lists, operations (i) and (ii) are efficient 
but operations (iii) and (iv) take order N steps; on the other hand, if we use 
linked allocation, operations (iii) and (iv) are efficient but operations (i) and (ii) 
take order N steps. A tree representation of linear lists can do all four operations 
in O(log N) steps. And it is also possible to do other standard operations 
with comparable efficiency, so that, for example, we can concatenate a list of 
M elements with a list of N elements in 0 (log( M + N)) steps. 

The method for achieving all this involves what we shall call balanced trees. 
(Many authors also call them AVL trees, where the AV stands for Adelson-Velsky 
and the L stands for Landis.) The preceding paragraph is an advertisement for 
balanced trees, which makes them sound like a universal panacea that makes all 
other forms of data representation obsolete; but of course we ought to have a 
balanced attitude about balanced trees! In applications that do not involve all 
four of the operations above, we may be able to get by with substantially less 
overhead and simpler programming. Furthermore, there is no advantage to bal-
anced trees unless N is reasonably large; thus if we have an efficient method that 
takes 64 lg N units of time and an inefficient method that takes 2N units of time, 
we should use the inefficient method unless N is greater than 256. On the other 
hand, N shouldn't be too large, either; balanced trees are appropriate chiefly for 
internal storage of data, and we shall study better methods for external direct-
access files in Section 6.2.4. Since internal memories seem to be getting larger and 
larger as time goes by, balanced trees are becoming more and more important. 

The height of a tree is defined to be its maximum level, the length of the 
longest path from the root to an external node. A binary tree is called balanced 
if the height of the left subtree of every node never differs by more than ±1 from 
the height of its right subtree. Figure 20 shows a balanced tree with 17 internal 
nodes and height 5; the balance factor within each node is shown as +, • , or -
according as the right subtree height minus the left subtree height is +1, 0, or -1. 
The Fibonacci tree in Fig. 8 (Section 6.2.1) is another balanced binary tree of 
height 5, having only 12 internal nodes; most of the balance factors in that tree 
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Fig. 20. A balanced binary tree. 

are -1. The zodiac tree in Fig. 10 (Section 6.2.2) is not balanced, because the 
height restriction on subtrees fails at both the AQUARIUS and GEMINI nodes. 

This definition of balance represents a compromise between optimum binary 
trees (with all external nodes required to be on two adjacent levels) and arbitrary 
binary trees (unrestricted). It is therefore natural to ask how far from optimum 
a balanced tree can be. The answer is that its search paths will never be more 
than 45 percent longer than the optimum: 

Theorem A (Adelson-Velsky and Landis). The height of a balanced tree with 
N internal nodes always lies between lg(N + 1) and l.4404lg(N + 2) - 0.3277. 

Proof. A binary tree of height h obviously cannot have more than 2h external 
nodes; so N + 1 2h, that is, h 2: flg(N + l)l in any binary tree. 

In order to find the maximum value of h, let us turn the problem around and 
ask for the minimum number of nodes possible in a balanced tree of height h. 
Let Th be such a tree with fewest possible nodes; then one of the subtrees of 
the root, say the left subtree, has height h - 1, and the other subtree has height 
h-1 or h- 2. Since we want Th to have the minimum number of nodes, we may 
assume that the left subtree of the root is Th-I, and that the right subtree is 
Th-2· This argument shows that the Fibonacci tree of order h + 1 has the fewest 
possible nodes among all possible balanced trees of height h. (See the definition 
of Fibonacci trees in Section 6.2.1.) Thus 

N 2: Fh+2 - 1 > c/>h+ 2j J5 - 2, 

and the stated result follows as in the corollary to Theorem 4.5.3F. I 
The proof of this theorem shows that a search in a balanced tree will require 

more than 25 comparisons only if the tree contains at least F 28 - 1 = 317,810 
nodes. 

Consider now what happens when a new node is inserted into a balanced 
tree using tree insertion (Algorithm 6.2.2T). In Fig. 20, the tree will still be 
balanced if the new node takes the place of 8J , [}] , [1J , [2J , [!2J , or , but 



6.2.3 BALANCED TREES 461 

some adjustment will be needed if the new node falls elsewhere. The problem 
arises when we have a node with a balance factor of +1 whose right subtree 
got higher after the insertion; or, dually, if the balance factor is -1 and the left 
subtree got higher. It is not difficult to see that trouble arises only in two cases: 

Case 1 (3 I I Case 2 t (i) 
(3 

h 
h+l h-1 t l i "---- h 

' ' t 
' ' ' ' ' ' ' ' , ____ 1 •----· 

(Two other essentially identical cases occur if we reflect these diagrams, in-
terchanging left and right.) In these diagrams the large rectangles a, {3, "'(, 6 
represent subtrees having the respective heights shown. Case 1 occurs when a 
new element has just increased the height of node B's right subtree from h to 
h + 1, and Case 2 occurs when the new element has increased the height of B's 
left subtree. In the second case, we have either h = 0 (so that X itself was the 
new node), or else node X has two subtrees of respective heights ( h-1, h) or 
(h,h-1). 

Simple transformations will restore balance in both of these cases, while 
preserving the symmetric order of the tree nodes: 

I I Case 1 t a (3 Case 2 t a (3 I 8 (2) 
h+l 

h l h 

t t ,..--- .. ,..--- .. 
' ' ' ' ' ' ' ' ' ' ' ' 1 ____ 1 

• ----· 

In Case 1 we simply "rotate" the tree to the left, attaching {3 to A instead of B. 
This transformation is like applying the associative law to an algebraic formula, 
replacing a(f3"'!) by (a{3)"'!. In Case 2 we use a double rotation, first rotating 
(X, B) right, then (A, X) left. In both cases only a few links of the tree need to 
be changed. Furthermore, the new trees have height h + 2, which is exactly the 
height that was present before the insertion; hence the rest of the tree (if any) 
that was originally above node A always remains balanced. 

For example, if we insert a new node into position [!I] of Fig. 20 we obtain 
the balanced tree shown in Fig. 21, after a single rotation (Case 1). Notice that 
several of the balance factors have changed. 

The details of this insertion procedure can be worked out in several ways. 
At first glance an auxiliary stack seems to be necessary, in order to keep track 
of which nodes will be affected, but the following algorithm gains some speed by 
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Fig. 21. The tree of Fig. 20, rebalanced after a new key R has been inserted. 

exploiting the fact that the balance factor of node B in ( 1) was zero before the 
insertion. 

Algorithm A (Balanced tree search and insertion). Given a table of records 
that form a balanced binary tree as described above, this algorithm searches for 
a given argument K. If K is not in the table, a new node containing K is inserted 
into the tree in the appropriate place and the tree is rebalanced if necessary. 

The nodes of the tree are assumed to contain KEY, LL INK, and RLINK fields 
as in Algorithm 6.2.2T. We also have a new field 

B (P) = balance factor of NODE (P) , 

the height of the right subtree minus the height of the left subtree; this field 
always contains either + 1, 0, or -1. A special header node also appears at the 
top of the tree, in location HEAD; the value of RLINK(HEAD) is a pointer to the 
root of the tree, and LLINK(HEAD) is used to keep track of the overall height of 
the tree. (Knowledge of the height is not really necessary for this algorithm, but 
it is useful in the concatenation procedure discussed below.) We assume that 
the tree is nonempty, namely that RLINK(HEAD) =j:. A. 

For convenience in description, the algorithm uses the notation LINK (a, P) 
as a synonym for LLINK(P) if a= -1, and for RLINK(P) if a= +l. 
Al. (Initialize.] Set T +-HEAD, S +- P +- RLINK(HEAD). (The pointer variable P 

will move down the tree; Swill point to the place where rebalancing may 
be necessary, and T always points to the parent of S.) 

A2. [Compare.] If K < KEY(P), go to A3; if K > KEY(P), go to A4; and if 
K = KEY (P) , the search terminates successfully. 

A3. [Move left.] Set Q +- LLINK(P). If Q =A, set Q ¢:AVAIL and LLINK(P) +- Q 
and go to step A5. Otherwise if B (Q) =j:. 0, set T +- P and S +- Q. Finally 
set P +- Q and return to step A2. 

A4. [Move right.] Set Q +- RLINK(P). If Q =A, set Q ¢:AVAIL and RLINK(P) +- Q 
and go to step A5. Otherwise if B (Q) =j:. 0, set T +- P and S +- Q. Finally set 
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Fig. 22. Balanced tree search and insertion. 
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P +- Q and return to step A2. (The last part of this step may be combined 
with the last part of step A3.) 

A5. [Insert.] (We have just linked a new node, NODE(Q), into the tree, and its 
fields need to be initialized.) Set KEY(Q) +- K, LLINK(Q) +-RLINK(Q) +-A, 
and B (Q) +- 0. 

A6. [Adjust balance factors.] (Now the balance factors on nodes between S 
and Q need to be changed from zero to ± 1.) If K < KEY ( S) set a +- -1, 
otherwise set a +- + 1. Then set R +- P +- LINK (a, S) , and repeatedly do 
the following operations zero or more times until P = Q: If K < KEY (P) set 
B(P) +- -1 and P +- LLINK(P); if K > KEY(P), set B(P) +- +1 and P +-
RLINK (P). (If K = KEY (P), then P = Q and we proceed to the next step.) 

A 7. [Balancing act.] Several cases now arise: 
i) If B(S) = 0 (the tree has grown higher), set B(S) +- a, LLINK(HEAD) 

+- LLINK(HEAD) + 1, and terminate the algorithm. 
ii) If B ( S) = - a (the tree has gotten more balanced), set B ( S) +- 0 and 

terminate the algorithm. 
iii) If B ( S) = a (the tree has gotten out of balance), go to step A8 if 

B(R) =a, to A9 if B(R) =-a. 
(Case (iii) corresponds to the situations depicted in (i) when a= +1; 
Sand R point, respectively, to nodes A and B, and LINK(-a,S) points 
to a, etc.) 
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A8. (Single rotation.] Set P +- R, LINK (a, S) +-LINK (-a, R), LINK (-a, R) +- S, 
B (S) +- B (R) +- 0. Go to AlO. 

A9. (Double rotation.] Set P +- LINK(-a,R), LINK(-a,R) +- LINK(a,P), 
LINK(a,P) +- R, LINK(a,S) +- LINK(-a,P), LINK(-a,P) +- S. Now set 

{

(-a, 0), if B(P) = a; 
(B(S),B(R)) +- ( 0,0), ifB(P) = O; 

( 0, a), if B(P) =-a; 
(3) 

and then set B (P) +- 0. 

AlO. [Finishing touch.] (We have completed the rebalancing transformation, 
taking ( 1) to ( 2), with P pointing to the new subtree root and T pointing 
to the parent of the old subtree root S.) If S = RLINK (T) then set 
RLINK (T) +- P, otherwise set LLINK (T) +- P. I 

This algorithm is rather long, but it divides into three simple parts: Steps 
Al-A4 do the search, steps A5-A7 insert a new node, and steps A8-A10 rebal-
ance the tree if necessary. Essentially the same method can be used if the tree 
is threaded (see exercise 6.2.2-2), since the balancing act never needs to make 
difficult changes to thread links. 

We know that the algorithm takes about Clog N units of time, for some C, 
but it is important to know the approximate value of C so that we can tell how 
large N should be in order to make balanced trees worth all the trouble. The 
following MIX implementation gives some insight into this question. 

Program A (Balanced tree search and insertion). This program for Algorithm A 
uses tree nodes having the form 

B LLINK RLINK 

KEY 

rA K, rll P, rl2 Q, rl3 R, rl4 S, rl5 T. The code for steps A7-A9 
is duplicated so that the value of a appears implicitly (not explicitly) in the 
program. 

01 B EQU 0:1 
02 LLINK EQU 2:3 
03 RLINK EQU 4:5 
04 START LDA K 1 Al. Initialize. 
05 ENT5 HEAD 1 T +--HEAD. 
06 LD2 0,5(RLINK) 1 Q +-- RLINK (HEAD) . 
01 JMP 2F 1 To A2 with S +-- P +-- Q. 
08 4H LD2 0,1(RLINK) 02 A4. Move right. Q +-- RLINK(P). 
09 J2Z 5F 02 To A5 if Q =A. 
10 1H LDX 0,2(B) 0-1 rX +-- B(Q). 
11 JXZ *+3 0-1 Jump if B(Q) = 0. 
12 ENT5 0,1 D-l T +-- P. 
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13 2H ENT4 0,2 D sf- Q. 

14 ENT1 0,2 c pf- Q. 

15 CMPA 1, 1 c A2. Compare. 
16 JG 4B c To A4 if K > KEY(P). 

11 JE SUCCESS Cl Exit if K = KEY(P). 

18 LD2 0,1(LLINK) Cl-S A3. Move left. Q +- LLINK (P). 

19 J2NZ 1B Cl-S Jump if Q f. A. 
20 5H LD2 AVAIL l-S A5. Insert. 
21 J2Z OVERFLOW l-S 
22 LDX 0,2(RLINK) l-S 
23 STX AVAIL l-S Q ¢:AVAIL. 

24 STA 1,2 l-S KEY(Q) +- K 
25 STZ 0,2 l-S LLINK(Q) +- RLINK(Q) +-A. 
26 JL 1F l-S Was K < KEY(P)? 
21 ST2 0,1(RLINK) A RLINK(P) +- Q. 
28 JMP *+2 A 
29 1H ST2 0,1(LLINK) l-S-A LLINK(P) +- Q. 
30 6H CMPA 1,4 l-S A6. Ad;ust balance factors. 
31 JL *+3 l-S Jump if K < KEY(S). 
32 LD3 0,4(RLINK) E R +- RLINK(S). 
33 JMP *+2 E 
34 LD3 0,4(LLINK) l-S-E R +- LLINK(S). 
35 ENT1 0,3 l-S p +- R. 
36 ENTX -1 l-S rX t- -1. 
31 JMP 1F l-S To comparison loop. 
38 4H JE 7F F2+1- S To A7 if K = KEY(P). 
39 STX 0,1(1:1) F2 B(P) +- +l (it was +o). 
40 LD1 0,1(RLINK) F2 P +- RLINK (P). 

41 1H CMPA 1, 1 F+l-S 
42 JGE 4B F+ l-S Jump if K 2: KEY(P). 

43 STX 0,1(B) Fl B(P) +- -1. 

44 LD1 0,1(LLINK) Fl P +- LLINK (P). 

45 JMP 1B Fl To comparison loop. 
46 7H LD2 0,4(B) l-S A7. Balancing act. rl2 +- B (S). 

41 STZ 0,4(B) l-S B(S) +- 0. 

48 CMPA 1,4 l-S 
49 JG A7R l-S To a= +l routine if K > KEY(S). 
50 A7L J2P DONE Ul Exit if rl2 = -a. 
51 J2Z 7F Gl + Jl Jump if B (S) was zero. 
52 ENT1 0,3 Gl p +- R. 
53 LD2 0,3(B) Gl rl2 +- B(R). 

54 J2N ASL Gl To A8 if rl2 = a. 
55 A9L LD1 0,3(RLINK) Hl A9. Double rotation. 
56 LDX 0,1(LLINK) Hl LINK(a,P +- LINK(-a,R)) 
51 STX 0,3(RLINK) Hl -7 LINK(-a,R). 
58 ST3 0,1(LLINK) Hl LINK(a,P) +- R. 
59 LD2 0,1(B) Hl rl2 +- B(P). 
60 LDX T1,2 Hl -a, 0 or 0 
61 STX 0,4(B) Hl -7B(S). 
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62 LDX T2,2 Hl 0, 0, or a 
63 STX 0,3(B) Hl -7 B(R). 

64 ASL LDX 0,1(RLINK) Gl A8. Single rotation. 
65 STX 0,4(LLINK) Gl LINK(a,S) +- LINK(-a,P). 

66 ST4 0,1(RLINK) Gl LINK(-a,P) +- S. 

61 JMP SF Gl Join up with the other branch. 

68 A7R J2N DONE . U2 Exit if rl2 = -a. 
69 J2Z 6F G2+ J2 Jump ifB(S) was zero. 

10 ENT1 0,3 G2 p +- R. 
11 LD2 0,3(B) G2 rl2 +- B(R). 
12 J2P ASR G2 To A8 if rl2 =a. 
13 A9R LD1 0,3(LLINK) H2 A9. Double rotation. 
14 LDX 0,1(RLINK) H2 LINK(a,P +- LINK(-a,R)) 

15 STX 0,3(LLINK) H2 -7 LINK(-a,R). 

16 ST3 0,1(RLINK) H2 LINK(a,P) +- R. 
11 LD2 0,1(B) H2 rl2 +- B(P). 
18 LDX T2,2 H2 -a, 0 or 0 
19 STX 0,4(B) H2 -7B(S). 
80 LDX T1,2 H2 0, O, or a 
81 STX 0,3(B) H2 -7 B(R). 
82 ASR LDX 0,1(LLINK) G2 A8. Single rotation. 
83 STX 0,4(RLINK) G2 LINK(a,S) +- LINK(-a,P). 

84 ST4 0,1(LLINK) G2 LINK(-a,P) +- S. 
85 SH STZ 0,1(B) G B(P) t-0. 
86 A10 CMP4 0,5(RLINK) G AlO. Finishing touch. 
81 JNE *+3 G Jump if RLINK(T) =f. S. 
88 ST1 0,5(RLINK) G3 RLINK(T) +- P. 
89 JMP DONE G3 Exit. 
90 ST1 0,5(LLINK) G4 LLINK(T) +- P. 
91 JMP DONE G4 Exit. 
92 CON +1 
93 T1 CON 0 Table for (3). 
94 T2 CON 0 
95 CON -1 
96 6H ENTX +1 J2 rX +- +1. 
91 7H STX 0,4(B) J B(S) t-a. 
98 LDX HEAD(LLINK) J LLINK(HEAD) 
99 INCX 1 J +1 

100 STX HEAD(LLINK) J -7 LL INK (HEAD) . 
101 DONE EQU * l-S Insertion is complete. I 

Analysis of balanced tree insertion. [Nonmathematical readers, please skip 
to (io).] In order to figure out the running time of Algorithm A, we would like 
to know the answers to the following questions: 

• How many comparisons are made during the search? 
• How far apart will nodes Sand Q be? (In other words, how much adjustment 

is needed in step A6?) 
• How often do we need to do a single or double rotation? 
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It is not difficult to derive upper bounds on the worst case running time, using 
Theorem A, but of course in practice we want to know the average behavior. 
No theoretical determination of the average behavior has been successfully com-
pleted as yet, since the algorithm appears to be quite complicated, but several 
interesting theoretical and empirical results have been obtained. 

In the first place we can ask about the number Bnh of balanced binary trees 
with n internal nodes and height h. It is not difficult to compute the generating 
function Bh(z) = Ln>o BnhZn for small h, from the relations 

Bo(z) = 1, B1(z) = z, 

(See exercise 6.) Thus 

B2(z) = 2z2 + z3, 
B3(z) = 4z4 + 6z5 + 4z6 + z1 , 

B4(z) = 16z7 + 32z8 + 44z9 + · · · + 8z14 + z15 , 

and in general B h ( z) has the form 

(5) 

2Fh+1-1 zFh+2-1 + 2Fh+1-2 Lh-1zFh+2 +complicated terms+ 2h-1 z2h-2 + z2h-1 
(6) 

for h 2 3, where Lk = Fk+l +Fk-l· (This formula generalizes Theorem A.) The 
total number of balanced trees with height h is Bh = Bh(l), which satisfies the 
recurrence 

Bo= B 1 =1, (7) 
so that B2 = 3, B3 = 3 · 5, B4 = 32 · 5 · 7, B5 = 33 · 52 · 7 · 23; and, in general, 

B _ AFh AFh-1 AF1 AF0 
h - 0 1 . . . h-1 h ' (8) 

where Ao = 1, A1 = 3, A2 = 5, A3 = 7, A4 = 23, A5 = 347, ... , Ah = 
Ah-1Bh-2 + 2. The sequences Bh and Ah grow very rapidly; in fact, they are 
doubly exponential: Exercise 7 shows that there is a real number () 1.43687 
such that 

(g) 

If we consider each of the Bh trees to be equally likely, exercise 8 shows that the 
average number of nodes in a tree of height h is 

This indicates that the height of a balanced tree with N nodes is usually much 
closer to log2 N than to log¢ N. 

Unfortunately, these results don't really have much to do with Algorithm A, 
since the mechanism of that algorithm makes some trees significantly more 
probable than others. For example, consider the case N = 7, where 17 balanced 
trees are possible. There are 7! = 5040 possible orderings in which seven keys 



468 SEARCHING 6.2.3 

can be inserted, and the perfectly balanced "complete" tree 

(11) 

is obtained 2160 times. By contrast, the Fibonacci tree 

occurs only 144 times, and the similar tree 

occurs 216 times. Replacing the left subtrees of (12) and (13) by arbitrary four-
node balanced trees, and then reflecting left and right, yields 16 different trees; 
the eight generated from ( 12) each occur 144 times, and those generated from 
(13) each occur 216 times. It is surprising that (13) is more common than (12). 

The fact that the perfectly balanced tree is obtained with such high prob-
ability-together with ( 10 ), which corresponds to the case of equal probabili-
ties - makes it plausible that the average search time for a balanced tree should 
be about lg N + c comparisons for some small constant c. But R. W. Floyd 
has observed that the coefficient of lg N is unlikely to be exactly 1, because the 
root of the tree would then be near the median, and the roots of its two subtrees 
would be near the quartiles; then single and double rotation could not easily keep 
the root near the median. Empirical tests indicate that the true average number 
of comparisons needed to insert the Nth item is approximately 1.01 lg N + 0.1, 
except when N is small. 

In order to study the behavior of the insertion and re balancing phases of 
Algorithm A, we can classify the external nodes of balanced trees as shown 
in Fig. 23. The path leading up from an external node can be specified by a 
sequence of +'sand -'s (+for a right link, - for a left link); we write down the 
link specifications until reaching the first node with a nonzero balance factor, 
or until reaching the root, if there is no such node. Then we write A or B 
according as the new tree will be balanced or unbalanced when an internal node 
is inserted in the given place. Thus the path up from [}] is ++-B, meaning 
"right link, right link, left link, unbalance." A specification ending in A requires 
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i:o i:o i:o i:o 
I I I I 
I I + + 
I + I + 

i:o i:o i:o i:o i:o i:o i:o i:o 
I I I I + + + + 
I + I + + + + + + + + + 

I I + + 
I + I + 

Fig. 23. Classification codes that specify the behavior of Algorithm A after insertion. 

no rebalancing after insertion of a new node; a specification ending in ++B or --B 
requires a single rotation; and a specification ending in +-B or -+B requires a 
double rotation. When k links appear in the specification, step A6 has to adjust 
exactly k- 1 balance factors. Thus the specifications give the essential facts that 
govern the running time of steps A6 to AlO. 

Empirical tests on random numbers for 100 N 2000 gave the approxi-
mate probabilities shown in Table 1 for paths of various types; apparently these 
probabilities rapidly approach limiting values as N --+ oo. Table 2 gives the 
exact probabilities corresponding to Table 1 when N = 10, considering the 10! 
permutations of the input as equally probable. (The probabilities that show up 
as .143 in Table 1 are actually equal to 1/7, for all N 2 7; see exercise 11. Single 
and double rotations are equally likely when N 15, but double rotations occur 
slightly less often when N 2 16.) 

Table 1 
APPROXIMATE PROBABILITIES FOR INSERTING THE NTH ITEM 

Path length k No rebalancing Single rotation Double rotation 
1 .143 .ooo .000 
2 .152 .143 .143 
3 .092 .048 .048 
4 .060 .024 .024 
5 .036 .010 .010 

>5 .051 .009 .008 

ave 2.78 total .534 .233 .232 

From Table 1 we can see that k is 2 with probability about .143 + .153 + 
.143 + .143 = .582; thus, step A6 is quite simple almost 60 percent of the time. 
The average number of balance factors changed from 0 to ± 1 in that step is 
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Table 2 
EXACT PROBABILITIES FOR INSERTING THE lOTH ITEM 

Path length k No rebalancing Single rotation Double rotation 

1 1/7 0 0 
2 6/35 1/7 1/7 
3 4/21 2/35 2/35 
4 0 1/21 1/21 

--
ave 247 /105 53/105 26/105 26/105 

about 1.8. The average number of balanced factors changed from ±1 to 0 in 
steps A7 through AlO is approximately .534+2(.233+.232) 1.5; thus, inserting 
one new node adds about 1.8 - 1.5 = 0.3 unbalanced nodes, on the average. This 
agrees with the fact that about 68 percent of all nodes were found to be balanced 
in random trees built by Algorithm A. 

An approximate model of the behavior of Algorithm A has been proposed 
by C. C. Foster [Proc. ACM Nat. Conf. 20 (1965), 192-205.] This model is 
not rigorously accurate, but it is close enough to the truth to give some insight. 
Let us assume that p is the probability that the balance factor of a given node 
in a large tree built by Algorithm A is O; then the balance factor is + 1 with 
probability - p), and it is -1 with the same probability - p). Let us 
assume further (without justification) that the balance factors of all nodes are 
independent. Then the probability that step A6 sets exactly k-1 balance factors 
nonzero is pk- 1(1- p), so the average value of k is 1/(1 - p). The probability 
that we need to rotate part of the tree is q Inserting a new node should 
increase the number of balanced nodes by p, on the average; this number is 
actually increased by 1 in step A5, by -p / ( 1 - p) in step A6, by q in step A 7, 
and by 2q in step A8 or A9, so we should have 

p = 1 - p/(1 - p) + 3q 5/2 - p/(1 - p). 

Solving for p yields fair agreement with Table 1: 

9-V41 
p 4 0.649; 1/(1 - p) 2.851. 

The running time of the search phase of Program A (lines 01-19) is 

lOC +Cl+ 2D + 2 - 3S, 

where C, Cl, Sare the same as in previous algorithms of this chapter and D is 
the number of unbalanced nodes encountered on the search path. Empirical tests 
show that we may take D C, C 1 ( C + S), C + S 1. 0 llg N + 0 .1, so the 
average search time is approximately 11.3 lg N + 3.3 - 13. 7 S units. (If searching 
is done much more often than insertion, we could of course use a separate, faster 
program for searching, since it would be unnecessary to look at the balance 
factors; the average running time for a successful search would then be only 
about (6.6lg N - 3.4)u, and the worst case running time would in fact be better 
than the average running time obtained with Program 6.2.2T.) 
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Fig. 24. RANK fields, used for searching by position. 

The running time of the insertion phase of Program A (lines 20-45) is 8F + 
26 + (0, 1, or 2) units, when the search is unsuccessful. The data of Table 1 
indicate that F 1.8 on the average. The rebalancing phase (lines 46-101) 
takes either 16.5, 8, 27.5, or 45.5 (±0.5) units, depending on whether we increase 
the total height, or simply exit without rebalancing, or do a single or double 
rotation. The first case almost never occurs, and the others occur with the 
approximate probabilities .534, .233, .232, so the average running time of the 
combined insertion-rebalancing portion of Program A is about 63u. 

These figures indicate that maintenance of a balanced tree in memory is 
reasonably fast, even though the program is rather lengthy. If the input data 
are random, the simple tree insertion algorithm of Section 5.2.2 is roughly 50u 
faster per insertion; but the balanced tree algorithm is guaranteed to be reliable 
even with nonrandom input data. 

One way to compare Program A with Program 6.2.2T is to consider the 
worst case of the latter. If we study the amount of time necessary to insert N 
keys in increasing order into an initially empty tree, it turns out that Program A 
is slower for N :::; 26 and faster for N 27. 

Linear list representation. Now let us return to the claim made at the 
beginning of this section, that balanced trees can be used to represent linear 
lists in such a way that we can insert items rapidly (overcoming the difficulty 
of sequential allocation), yet we can also perform random accesses to list items 
(overcoming the difficulty of linked allocation). 

The idea is to introduce a new field in each node, called the RANK field. The 
field indicates the relative position of that node in its subtree, namely one plus 
the number of nodes in its left subtree. Figure 24 shows the RANK values for the 
binary tree of Fig. 23. We can eliminate the KEY field entirely; or, if desired, we 
can have both KEY and RANK fields, so that it is possible to retrieve items either 
by their key value or by their relative position in the list. 

Using such a RANK field, retrieval by position is a straightforward modifica-
tion of the search algorithms we have been studying. 
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Algorithm B (Tree search by position). Given a linear list represented as a 
binary tree, this algorithm finds the kth element of the list (the kth node of the 
tree in symmetric order), given k. The binary tree is assumed to have LL INK 
and RLINK fields and a header as in Algorithm A, plus a RANK field as described 
above. 
Bl. [Initialize.] Set M +--- k, P +--- RLINK(HEAD). 

B2. [Compare.] If P = A, the algorithm terminates unsuccessfully. (This can 
happen only if k was greater than the number of nodes in the tree, or 
k:::; 0.) Otherwise if M < RANK(P), go to B3; if M > RANK(P), go to B4; and 
if M = RANK (P), the algorithm terminates successfully (P points to the kth 
node). 

B3. [Move left.] Set P +--- LLINK (P) and return to B2. 

B4. [Move right.] Set M +--- M-RANK (P) and P +--- RLINK (P) and return to B2. I 
The only new point of interest in this algorithm is the manipulation of Min 

step B4. We can modify the insertion procedure in a similar way, although the 
details are somewhat trickier: 

Algorithm C (Balanced tree insertion by position). Given a linear list repre-
sented as a balanced binary tree, this algorithm inserts a new node just before 
the kth element of the list, given k and a pointer Q to the new node. If k = N + 1, 
the new node is inserted just after the last element of the list. 

The binary tree is assumed to be nonempty and to have LLINK, RLINK and 
B fields and a header, as in Algorithm A, plus a RANK field as described above. 
This algorithm is merely a transcription of Algorithm A; the difference is that 
it uses and updates the RANK fields instead of the KEY fields. 

Cl. [Initialize.] Set T +---HEAD, S +--- P +--- RLINK (HEAD), U +--- M +--- k. 

C2. [Compare.] If M :=:; RANK (P), go to C3, otherwise go to C4. 

C3. [Move left.] Set RANK (P) +---RANK (P) + 1 (we will be inserting a new node 
to the left of P). Set R +--- LLINK(P). If R =A, set LLINK(P) +--- Q and go 
to C5. Otherwise if B (R) =f. 0 set T +--- P, S +--- R, and U +--- M. Finally set 
P +---Rand return to C2. 

C4. [Move right.] Set M +--- M - RANK(P), and R +--- RLINK(P). If R = A, set 
RLINK (P) +--- Q and go to C5. Otherwise if B (R) =f. 0 set T +--- P, S +--- R, and 
U +--- M. Finally set P +--- R and return to C2. 

C5. [Insert.] Set RANK (Q) +--- 1, LLINK (Q) +--- RLINK (Q) +--- A, B (Q) +--- 0. 

C6. [Adjust balance factors.] Set M +--- U. (This restores the former value of M 
when P was S; all RANK fields are now properly set.) If M < RANK ( S) , set 
R +-P +--- LLINK(S) and a+--- -1; otherwise set R +--- P +--- RLINK(S), a+---
+ 1, and M +--- M - RANK (S). Then repeatedly do the following operations 
until P = Q: If M < RANK (P), set B (P) +--- -1 and P +--- LLINK (P); if 
M > RANK(P), set B(P) +--- +1 and M +--- M- RANK(P) and P +--- RLINK(P). 
(If M = RANK(P), then P = Q and we proceed to the next step.) 

C7. [Balancing act.] Several cases now arise. 
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i) If B (S) = 0, set B (S) +--- a, LLINK (HEAD) +--- LLINK (HEAD) + 1, and 
terminate the algorithm. 

ii) If B (S) = -a, set B (S) +--- 0 and terminate the algorithm. 

iii) If B(S) =a, go to step C8 if B(R) =a, to C9 if B(R) =-a. 
C8. (Single rotation.] Set P = R, LINK(a,S) +--- LINK(-a,R), LINK(-a,R) +--- S, 

B(S) +--- B(R) +--- 0. If a= +1, set RANK(R) +--- RANK(R) + RANK(S); if 
a= -1, set RANK(S) +--- RANK(S) - RANK(R). Go to ClO. 

C9. [Double rotation.] Do all the operations of step A9 (Algorithm A). Then 
if a = +1, set RANK(R) +--- RANK(R) - RANK(P), RANK(P) +--- RANK(P) + 
RANK (S); if a = -1, set RANK (P) +---RANK (P) +RANK (R), then RANK (S) +-
RANK (S) - RANK(P). 

ClO. [Finishing touch.] If S = RLINK (T) then set RLINK (T) +--- P, otherwise set 
LLINK(T) +-P. I 

+=Deletion, concatenation, etc. It is possible to do many other things to 
balanced trees and maintain the balance, but the algorithms are sufficiently 
lengthy that the details are beyond the scope of this book. We shall discuss 
the general ideas here, and an interested reader will be able to fill in the details 
without much difficulty. 

The problem of deletion can be solved in O(log N) steps if we approach it 
correctly [C. C. Foster, "A Study of AVL Trees," Goodyear Aerospace Corp. 
report GER-12158 (April 1965)]. In the first place we can reduce deletion of 
an arbitrary node to the simple deletion of a node P for which LLINK (P) or 
RLINK(P) is A, as in Algorithm 6.2.2D. The algorithm should also be modified 
so that it constructs a list of pointers that specify the path to node P, namely 

(Po, ao), ... ' 

where Po = HEAD, a0 = +1; LINK(ai ,Pi) = Pi+1, for 0 :::; i < l; P1 = P; and 
LINK Ca1, P1) = A. This list can be placed on an auxiliary stack as we search down 
the tree. The process of deleting node P sets LINK (a1-1, P1_ 1) +---LINK (-a1, P1), 
and we must adjust the balance factor at node P1_ 1. Suppose that we need to 
adjust the balance factor at node Pk, because the ak subtree of this node has 
just decreased in height; the following adjustment procedure should be used: If 
k = 0, set LLINK (HEAD) +--- LLINK (HEAD) - 1 and terminate the algorithm, since 
the whole tree has decreased in height. Otherwise look at the balance factor 
B(Pk); there are three cases: 

i) B(Pk) = ak· Set B(Pk) +--- 0, decrease k by 1, and repeat the adjustment 
procedure for this new value of k. 

ii) B(Pk) = 0. Set B(Pk) to -ak and terminate the deletion algorithm. 
iii) B(Pk) = -ak· Rebalancing is required! 
The situations that require rebalancing are almost the same as we met in the 
insertion algorithm; referring again to ( 1), A is node Pk, and B is the node 
LINK ( -ak , Pk), on the opposite branch from where the deletion has occurred. 
The only new feature is that node B might be balanced; this leads to a new 
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Case 3, which is like Case 1 except that {3 has height h + 1. In Cases 1 
and 2, rebalancing as in (2) means that we decrease the height, so we set 
LINK(ak_1,Pk_1) to the root of (2), decrease k by 1, and restart the adjustment 
procedure for this new value of k. In Case 3 we do a single rotation, and this 
leaves the balance factors of both A and B nonzero without changing the overall 
height; after making LINJ$(ak_ 1,Pk-1) point to node B, we therefore terminate 
the algorithm. 

The important difference between deletion and insertion is that deletion 
might require up to log N rotations, while insertion never needs more than one. 
The reason for this becomes clear if we try to delete the rightmost node of a 
Fibonacci tree (see Fig. 8 in Section 6.2.1). But empirical tests show that only 
about 0.21 rotations per deletion are actually needed, on the average. 

The use of balanced trees for linear list representation suggests also the 
need for a concatenation algorithm, where we want to insert an entire tree L 2 to 
the right of tree L 1, without destroying the balance. An elegant algorithm for 
concatenation was first devised by Clark A. Crane: Assume that height(L1) 2: 
height ( L2); the other case is similar. Delete the first node of L2, calling it the 
juncture node J, and let be the new tree for L2 \ { J}. Now go down the right 
links of L1 until reaching a node P such that 

height(P) - = 0 or 1; 

this is always possible, since the height changes by 1 or 2 each time we go down 

one level. Then replace © by 

and proceed to adjust L1 as if the new node J had just been inserted by 
Algorithm A. 

Crane also solved the more difficult inverse problem, to split a list into two 
parts whose concatenation would be the original list. Consider, for example, 
the problem of splitting the list in Fig. 20 to obtain two lists, one containing 
{A, ... , I} and the other containing {J, ... , Q}; a major reassembly of the subtrees 
is required. In general, when we want to split a tree at some given node P, the 
path to P will be something like that in Fig. 25. We wish to construct a left 
tree that contains the nodes of a 1, P1, a4, P4, a6, P6, a 7 , P 7 , a, P in symmetric 
order, and a right tree that contains {3, Ps, f3s, P5, {35, P3, {33, P2, {32. This can be 
done by a sequence of concatenations: First insert P at the right of a, then 
concatenate {3 with {38 using Ps as juncture node, concatenate a 7 with aP using 
P1 as juncture node, a6 with a1P1aP using P6, f3Psf3s with {35 using P5, etc.; the 
nodes Ps, P 7 , ... , P 1 on the path to P are used as juncture nodes. Crane proved 
that this splitting algorithm takes only O(log N) units of time, when the original 
tree contains N nodes; the essential reason is that concatenation using a given 
juncture node takes O(k) steps, where k is the difference in heights between the 
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a {3 

Fig. 25. The problem of splitting a list. 

trees being concatenated, and the values of k that must be summed essentially 
form a telescoping series for both the left and right trees being constructed. 

All of these algorithms can be used with either KEY or RANK fields or both 
(although in the case of concatenation the keys of L2 must all be greater than 
the keys of L 1 . For general purposes it is often preferable to use a triply linked 
tree, with UP links as well as LLINKs and RLINKs, together with a new one-bit 
field that specifies whether a node is the left or right child of its parent. The 
triply linked tree representation simplifies the algorithms slightly, and allows us 
to specify nodes in the tree without explicitly tracing the path to that node; we 
can write a subroutine to delete NODE (P), given P, or to delete the node that 
follows NODE(P) in symmetric order, or to find the list containing NODE(P), etc. 
In the deletion algorithm for triply linked trees it is unnecessary to construct the 
list ( 16), since the UP links provide the information we need. Of course, a triply 
linked tree requires us to change a few more links when insertions, deletions, and 
rotations are being performed. The use of a triply linked tree instead of a doubly 
linked tree is analogous to the use of two-way linking instead of one-way: We can 
start at any point and go either forward or backward. A complete description of 
list algorithms based on triply linked balanced trees appears in Clark A. Crane's 
Ph.D. thesis (Stanford University, 1972). 

Alternatives to AVL trees. Many other ways have been proposed to organize 
trees so that logarithmic accessing time is guaranteed. For example, C. C. Foster 
[CACM 16 (1973), 513-517) considered the binary trees that arise when we allow 
the height difference of subtrees to be at most k. Such structures have been called 
HB ( k) (meaning "height-balanced"), so that ordinary balanced trees represent 
the special case HB(l). 
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The interesting concept of weight-balanced trees has been studied by J. Nie-
vergelt, E. Reingold, and C. K. Wong. Instead of considering the height of trees, 
they stipulate that the subtrees of all nodes must satisfy 

In left weight In 
y L, - 1 < < y 2 + 1, . right weight 

where the left and right weights count the number of external nodes in the 
left and right subtrees, respectively. It is possible to show that weight balance 
can be maintained under insertion, using only single and double rotations for 
rebalancing as in Algorithm A (see exercise 25). However, it may be necessary 
to do many rebalancings during a single insertion. It is possible to relax the 
conditions of ( 1 7), decreasing the amount of rebalancing at the expense of 
increased search time. 

Weight-balanced trees may seem at first glance to require more memory 
than plain balanced trees, but in fact they sometimes require slightly less! If we 
already have a RANK field in each node, for the linear list representation, this is 
precisely the left weight, and it is possible to keep track of the corresponding right 
weights as we move down the tree. However, it appears that the bookkeeping 
required for maintaining weight balance takes more time than Algorithm A, and 
the elimination of two bits per node is probably not worth the trouble. 

Why don't you pair 'em up in threes? 
- attributed to YOGI BERRA (c. 1970) 

Another interesting alternative to AVL trees, called "2-3 trees," was intro-
duced by John Hopcroft in 1970 [see Aho, Hopcroft, and Ullman, The Design 
and Analysis of Computer Algorithms (Reading, Mass.: Addison-Wesley, 1974), 
Chapter 4]. The idea is to have either 2-way or 3-way branching at each node, 
and to stipulate that all external nodes appear on the same level. Every internal 
node contains either one or two keys, as shown in Fig. 26. 

Fig. 26. A 2-3 tree. 

Insertion into a 2-3 tree is somewhat easier to explain than insertion into an 
AVL tree: If we want to put a new key into a node that contains just one key, 
we simply insert it as the second key. On the other hand, if the node already 
contains two keys, we divide it into two one-key nodes, and insert the middle key 
into the parent node. This may cause the parent node to be divided in a similar 
way, if it already contains two keys. Figure 27 shows the process of inserting a 
new key into the 2-3 tree of Fig. 26. 
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Fig. 27. Inserting the new key "M" into the 2-3 tree of Fig. 26. 

Hopcroft observed that deletion, concatenation, and splitting can all be 
done with 2-3 trees, in a reasonably straightforward manner analogous to the 
corresponding operations with AVL trees. 

R. Bayer [Proc. ACM-SIGFIDET Workshop (1971), 219-235] proposed an 
interesting binary tree representation for 2-3 trees. See Fig. 28, which shows the 
binary tree representation of Fig. 26; one bit in each node is used to distinguish 
"horizontal" RLINKs from "vertical" ones. Note that the keys of the tree appear 
from left to right in symmetric order, just as in any binary search tree. It turns 
out that the transformations we need to perform on such a binary tree, while in-
serting a new key as in Fig. 27, are precisely the single and double rotations used 
while inserting a new key into an AVL tree, although we need just one version 
of each rotation, not the left-right reflections needed by Algorithms A and C. 

Fig. 28. The 2-3 tree of Fig. 26 represented as a binary search tree. 

Elaboration of these ideas has led to many additional flavors of balanced 
trees, most notably the red-black trees, also called symmetric binary B-trees or 
half-balanced trees [R. Bayer, Acta Informatica 1 (1972), 290-306; L. Guibas 
and R. Sedgewick, FOCS 19 (1978), 8-21; H. J. Olivie, RAIRO Informatique 
Theorique 16 (1982), 51-71; R. E. Tarjan, Inf Proc. Letters 16 (1983), 253-257; 
T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms 
(MIT Press, 1989), Chapter 14; R. Sedgewick, Algorithms in C (Addison-Wesley, 
1997), §13.4]. There is also a strongly related family called hysterical B-trees or 
(a, b)-trees, notably (2, 4)-trees [D. Maier and S. C. Salveter, Inf Proc. Letters 12 
(1981), 199-202; S. Huddleston and K. Mehlhorn, Acta Informatica 17 (1982), 
157-184]. 
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When some keys are accessed much more frequently than others, we want 
the important ones to be relatively close to the root, as in the optimum binary 
search trees of Section 6.2. 2. Dynamic trees that make it possible to maintain 
weighted balance within a constant factor of the optimum, called biased trees, 
have been developed by S. W. Bent, D. D. Sleator, and R. E. Tarjan, SICOMP 
14 (1985), 545-568; J. Feigenbaum and R. E. Tarjan, Bell System Tech. J. 62 
(1983), 3139-3158. The algorithms are, however, quite complicated. 

A much simpler self-adjusting data structure called a splay tree was devel-
oped subsequently by D. D. Sleator and R. E. Tarjan [JACM 32 (1985), 652-686], 
based on ideas like the move-to-front and transposition heuristics discussed in 
Section 6.1; similar techniques had previously been explored by B. Allen and 
I. Munro [JACM 25 (1978), 526-535] and by J. Bitner [SICOMP 8 (1979), 
82-110]. Splay trees, like the other kinds of balanced trees already mentioned, 
support the operations of concatenation and splitting as well as insertion and 
deletion, and in a particularly simple way. Moreover, the time needed to access 
data in a splay tree is known to be at most a small constant multiple of the access 
time of a statically optimum tree, when amortized over any series of operations. 
Indeed, Sleator and Tarjan conjectured that the total splay tree access time is 
at most a constant multiple of the optimum time to access data and to perform 
rotations dynamically by any binary tree algorithm whatsoever. 

Randomization leads to methods that appear to be even simpler and faster 
than splay trees. Jean Vuillemin [CACM 23 (1980), 229-239] introduced Car-
tesian trees, in which every node has two keys (x, y). The x parts are ordered 
from left to right as in binary search trees; the y parts are ordered from top to 
bottom as in the priority queue trees of Section 5.2.3. C. R. Aragon and R. G. 
Seidel gave this data structure the more colorful name treap, because it neatly 
combines the notions of trees and heaps. Exactly one treap can be formed with 
n given key pairs (x 1 , y1 ), ... , (xn, Yn), if the x's and y's are distinct. One way to 
obtain it is to insert the x's by Algorithm 6.2.2T according to the order of the y's; 
but there is also a simple algorithm that inserts any new key pair directly into any 
treap. Aragon and Seidel observed [FOCS 30 (1989), 540-546] that if the x's are 
ordinary keys while the y's are chosen at random, we can be sure that the treap 
has the shape of a random binary search tree. In particular, a treap with random 
y values will always be reasonably well balanced, except with exponentially small 
probability (see exercise 5.2.2-42). Aragon and Seidel also showed that treaps 
can readily be biased so that, for example, a key x with relative frequency f 
will appear suitably near the root when it is associated with y = U 11 f, where 
U is a random number between 0 and 1. Treaps performed consistently better 
than splay trees in some experiments conducted by D. E. Knuth relating to the 
calculation of convex hulls [Lecture Notes in Comp. Sci. 606 (1992), 53-55]. 

A new Section 6.2.5 devoted to randomized data structures is planned for 
Y the next edition of the present book. It will discuss "skip lists" [W. Pugh, 
CACM 33 (1990), 668-676} and "randomized binary search trees" [S. Roura and 
C. Martinez, Lecture Notes in Comp. Sci. 1136 (1996), 91-106} as well as treaps. 
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EXERCISES 
1. [ 01] In Case 2 of ( 1), why isn't it a good idea to restore the balance by simply 

interchanging the left subtrees of A and B? 
2. [ 16] Explain why the tree has gotten one level higher if we reach step A 7 with 

B(S) = 0. 

3. [ M25] Prove that a balanced tree with N internal nodes never contains more than 
(¢ - l)N::::::: 0.61803N nodes whose balance factor is nonzero. 

4. [ M22] Prove or disprove: Among all balanced trees with Fh+1 - 1 internal nodes, 
the Fibonacci tree of order h has the greatest internal path length. 

5. [M25] Prove or disprove: If Algorithm A is used to insert the keys K2, ... , KN 
successively in increasing order into a tree that initially contains only the single key 
K 1, where K 1 < K 2 < · · · < KN, then the tree produced is always optimum (that is, 
it has minimum internal path length over all N-node binary trees). 

6. [ M21] Prove that Eq. ( 5) defines the generating function for balanced trees of 
height h. 

7. [M27] (N. J. A. Sloane and A. V. Aho.) Prove the remarkable formula (g) for the 
number of balanced trees of height h. [Hint: Let Cn = Bn + Bn-1, and use the fact 
that log( is exceedingly small for large n.] 

8. [M24] (L.A. Khizder.) Show that there is a constant f3 such that Bh(l) = 
2hf3 - 1+0(2h/ Bh-1) ash--+ oo. 

9. [ Jllv.[44] What is the asymptotic number of balanced binary trees with n internal 
nodes, Lh?O Bnh? What is the asymptotic average height, Lh?O hBnh/ Lh?O Bnh? 
10. [ 27] (R. C. Richards.) Show that the shape of a balanced tree can be constructed 
uniquely from the list of its balance factors B(l)B(2) ... B(N) in symmetric order. 
11. [M24] (Mark R. Brown.) Prove that when n 2 6 the average number of external 
nodes of each of the types +A, -A, ++B, +-B, -+B, --Bis exactly (n + 1)/14, in a random 
balanced tree of n internal nodes constructed by Algorithm A. 
12. [24] What is the maximum possible running time of Program A when the eighth 
node is inserted into a balanced tree? What is the minimum possible running time for 
this insertion? 
13. [ 05] Why is it better to use RANK fields as defined in the text, instead of simply 
to store the index of each node as its key (calling the first node "1", the second node 
"2", and so on)? 
14. [ 11] Could Algorithms 6.2.2T and 6.2.2D be adapted to work with linear lists, 
using a RANK field, just as the balanced tree algorithms of this section have been so 
adapted? 
15. [18] (C. A. Crane.) Suppose that an ordered linear list is being represented as 
a binary tree, with both KEY and RANK fields in each node. Design an algorithm that 
searches the tree for a given key, K, and determines the position of K in the list; that is, 
it finds the number m such that K is the mth smallest key. 
16. [20] Draw the balanced tree that is obtained after node E and the root node Fare 
deleted from Fig. 20, using the deletion algorithm suggested in the text. 
1 7. [ 21] Draw the balanced trees that are obtained after the Fibonacci tree ( 12) 
is concatenated (a) to the right, (b) to the left, of the tree in Fig. 20, using the 
concatenation algorithm suggested in the text. 
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18. [22] Draw the balanced trees that are obtained after Fig. 20 is split into two parts 
{A, ... , I} and { J, ... , Q}, using the splitting algorithm suggested in the text. 
19. [26] Find a way to transform a given balanced tree so that the balance factor at 
the root is not -1. Your transformation should preserve the symmetric order of the 
nodes; and it should produce another balanced tree in 0(1) units of time, regardless of 
the size of the original tree. 
20. [40] Explore the idea of using the restricted class of balanced trees whose nodes 
all have balance factors of 0 or + 1. (Then the length of the B field can be reduced to 
one bit.) Is there a reasonably efficient insertion procedure for such trees? 
21. [30] (Perfect balancing.) Design an algorithm to construct N-node binary trees 
that are optimum in the sense of exercise 5. Your algorithm should use O(N) steps and 
it should be "online," in the sense that it inputs the nodes one by one in increasing order 
and builds partial trees as it goes, without knowing the final value of N in advance. (It 
would be appropriate to use such an algorithm when restructuring a badly balanced 
tree, or when merging the keys of two trees into a single tree.) 
22. [M20] What is the analog of Theorem A, for weight-balanced trees? 
23. [ M20] (E. Reingold.) Demonstrate that there is no simple relation between 
height-balanced trees and weight-balanced trees: 

a) Prove that there exist height-balanced trees that have an arbitrarily small ratio 
(left weight)/ (right weight) in the sense of ( 1 7). 

b) Prove that there exist weight-balanced trees that have an arbitrarily large differ-
ence between left and right subtree heights. 

24. [M22] (E. Reingold.) Prove that if we strengthen condition (i7) to 
1 left weight 

2 -2<.h .h<' ng t we1g t 
the only binary trees that satisfy this condition are perfectly balanced trees with 2n -1 
internal nodes. (In such trees, the left and right weights are exactly equal at all nodes.) 
25. [27] (J. Nievergelt, E. Reingold, C. Wong.) Show that it is possible to design 
an insertion algorithm for weight-balanced trees so that condition ( 1 7) is preserved, 
making at most 0 (log N) rotations per insertion. 
26. [40] Explore the properties of balanced t-ary trees, for t > 2. 
27. [ M23] Estimate the maximum number of comparisons needed to search in a 2-3 
tree with N internal nodes. 
28. [41] Prepare efficient implementations of 2-3 tree algorithms. 
29. [M47] Analyze the average behavior of 2-3 trees under random insertions. 
30. [26] (E. McCreight.) Section 2.5 discusses several strategies for dynamic storage 
allocation, including best-fit (choosing an available area as small as possible from among 
all those that fulfill the request) and first-fit (choosing the available area with lowest 
address among all those that fulfill the request). Show that if the available space is 
linked together as a balanced tree in an appropriate way, it is possible to do (a) best-fit 
(b) first-fit allocation in only O(logn) units of time, where n is the number of available 
areas. (The algorithms given for those methods in Section 2.5 take order n steps.) 
31. [ 34] (M. L. Fredman, 1975.) Invent a representation of linear lists with the 
property that insertion of a new item between positions m - 1 and m, given m, takes 
O(logm) units of time. 
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32. [ M27] Given two n-node binary trees, T and T', let us say that T :::S T' if T' can 
be obtained from T by a sequence of zero or more rotations to the right. Prove that 
T :::ST' if and only if rk for 1 k n, where rk and denote the respective sizes 
of the right subtrees of the kth nodes of T and T' in symmetric order. 
33. [25] (A. L. Buchsbaum.) Explain how to encode the balance factors of an AVL 
tree implicitly, thus saving two bits per node, at the expense of additional work when 
the tree is accessed. 

6.2.4. Multiway Trees 

Samuel considered the nation of Israel, tribe by tribe, 
and the tribe of Benjamin was picked by lot. 

Then he considered the tribe of Benjamin, family by family, 
and the family of Matri was picked by lot. 

Then he considered the family of Matri, man by man, 
and Saul son of Kish was picked by lot. 

But when they looked for Saul he could not be found. 
- 1 Samuel 10: 20-21 

The tree search methods we have been discussing were developed primarily for 
internal searching, when we want to look at a table that is contained entirely 
within a computer's high-speed internal memory. Let's now consider the problem 
of external searching, when we want to retrieve information from a very large 
file that appears on direct access storage units such as disks or drums. (An 
introduction to disks and drums appears in Section 5.4.9.) 

Tree structures lend themselves nicely to external searching, if we choose 
an appropriate way to represent the tree. Consider the large binary search 
tree shown in Fig. 29, and imagine that it has been stored in a disk file. (The 
LLINKs and RLINKs of the tree are now disk addresses instead of internal memory 
addresses.) If we search this tree in a naive manner, simply applying the 
algorithms we have learned for internal tree searching, we will have to make 
about lg N disk accesses before our search is complete. When N is a million, 
this means we will need 20 or so seeks. But suppose we divide the table into 
7-node "pages," as shown by the dotted lines in Fig. 29; if we access one page at 
a time, we need only about one third as many seeks, so the search goes about 
three times as fast! 

Grouping the nodes into pages in this way essentially changes the tree from 
a binary tree to an octonary tree, with 8-way branching at each page-node. If 
we let the pages be still larger, with 128-way branching after each disk access, 
we can find any desired key in a million-entry table after looking at only three 
pages. We can keep the root page in the internal memory at all times, so that 
only two references to the disk are required even though the internal memory 
never needs to hold more than 254 keys at any time. 

Of course we don't want to make the pages arbitrarily large, since the 
internal memory size is limited and also since it takes a long time to read a 
large page. For example, suppose that it takes 72.5 + 0.05m milliseconds to read 
a page that allows m-way branching. The internal processing time per page will 
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Fig. 29. A large binary search tree can be divided into "pages." 

be about a+ b lg m, where a is small compared to 72.5 ms, so the total amount 
of time needed for searching a large table is approximately proportional to lg N 
times 

(72.5 + 0.05m)/lgm + b. 

This quantity achieves a minimum when m 307; actually the minimum is 
very "broad" - a nearly optimum value is achieved for all m between 200 and 
500. In practice there will be a similar range of good values for m, based on the 
characteristics of particular external memory devices and on the length of the 
records in the table. 

W. I. Landauer [IEEE Trans. EC-12 (1963), 863-871] suggested building an 
m-ary tree by requiring level l to become nearly full before anything is allowed 
to appear on level l + 1. This scheme requires a rather complicated rotation 
method, since we may have to make major changes throughout the tree just to 
insert a single new item; Landauer was assuming that we need to search for items 
in the tree much more often than we need to insert or delete them. 

When a file is stored on disk, and is subject to comparatively few insertions 
and deletions, a three-level tree is appropriate, where the first level of branching 
determines what cylinder is to be used, the second level of branching determines 
the appropriate track on that cylinder, and the third level contains the records 
themselves. This method is called indexed-sequential file organization [see JACM 
16 (1969), 569-571]. 

R. Muntz and R. Uzgalis [Proc. Princeton Conf on Inf Sciences and Systems 
4 (1970), 345-349] suggested modifying the tree search and insertion method, 
Algorithm 6.2.2T, so that all insertions go onto nodes belonging to the same 
page as their parent node, whenever possible; if that page is full, a new page 
is started, whenever possible. If the number of pages is unlimited, and if the 
data arrives in random order, it can be shown that the average number of page 
accesses is approximately HN /(Hrn -1), only slightly more than we would obtain 
in the best possible m-ary tree. (See exercise 8.) 

B-trees. A new approach to external searching by means of multiway tree 
branching was discovered in 1970 by R. Bayer and E. McCreight [Acta Informa-



6.2.4 MULTIWAY TREES 483 

tica 1 ( 1972), 173-189], and independently at about the same time by M. Kauf-
man [unpublished]. Their idea, based on a versatile new kind of data structure 
called a B-tree, makes it possible both to search and to update a large file with 
guaranteed efficiency, in the worst case, using comparatively simple algorithms. 

A B-tree of order m is a tree that satisfies the following properties: 

i) Every node has at most m children. 

ii) Every node, except for the root and the leaves, has at least m/2 children. 

iii) The root has at least 2 children (unless it is a leaf). 

iv) All leaves appear on the same level, and carry no information. 

v) A nonleaf node with k children contains k - 1 keys. 

(As usual, a "leaf" is a terminal node, one with no children. Since the leaves 
carry no information, we may regard them as external nodes that aren't really 
in the tree, so that A is a pointer to a leaf.) 

Figure 30 shows a B-tree of order 7. Each node (except for the root and the 
leaves) has between f7 /21 and 7 children, so it contains 3, 4, 5, or 6 keys. The 
root node is allowed to contain from 1 to 6 keys; in this case it has 2. All of the 
leaves are at level 3. Notice that (a) the keys appear in increasing order from 
left to right, using a natural extension of the concept of symmetric order; and 
(b) the number of leaves is exactly one greater than the number of keys. 

B-trees of order 1 or 2 are obviously uninteresting, so we will consider only 
the case m 2_ 3. The 2-3 trees defined at the close of Section 6.2.3 are equivalent 
to B-trees of order 3. (Bayer and McCreight considered only the case that m is 
odd; some authors consider a B-tree of order m to be what we are calling a 
B-tree of order 2m + 1.) 

A node that contains j keys and j + 1 pointers can be represented as 
p 

where K1 < K2 < · · · < KJ and Pi points to the subtree for keys between 
Ki and Ki+I· Therefore searching in a B-tree is quite straightforward: After 
node ( 1) has been fetched into the internal memory, we search for the given 
argument among the keys K 1 ,K2 , ... ,Kj· (When j is large, we probably do a 
binary search; but when j is smallish, a sequential search is best.) If the search 
is successful, we have found the desired key; but if the search is unsuccessful 
because the argument lies between Ki and Ki+i, we fetch the node indicated 
by Pi and continue the process. The pointer Po is used if the argument is less 
than K 1 , and P J is used if the argument is greater than KJ. If Pi = A, the search 
is unsuccessful. 

The nice thing about B-trees is that insertion is also quite simple. Consider 
Fig. 30, for example; every leaf corresponds to a place where a new insertion 
might happen. If we want to insert the new key 337, we simply change the 
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Fig. 30. AB-tree of order 7, with all leaves 
on level 3. Every node contains 3, 4, 5, or 6 
keys. The leaf that precedes key 449 has 
been marked A; see (8). 
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appropriate node from 

to 

On the other hand, if we want to insert the new key 071, there is no room since 
the corresponding node on level 2 is already "full." This case can be handled by 
splitting the node into two parts, with three keys in each part, and passing the 
middle key up to level 1: 

..... I'-
... O") O> ... 

0 0 

becomes (3) 

In general, if we want to insert a new item into a B-tree of order m, when 
all the leaves are at level l, we insert the new key into the appropriate node on 
level l - 1. If that node now contains m keys, so t]:iat it has the form ( 1) with 
j = m, we split it into two nodes 

p p' 

and insert the key K f 111 ; 21 into the parent of the original node. (Thus the pointer 
P in the parent node is replaced by the sequence P, K f 111 ; 21 , P'.) This insertion 
may cause the parent node to contain m keys, and if so, it should be split in 
the same way. (Fig. 27 in the previous section illustrates the case m = 3.) If we 
need to split the root node, which has no parent, we simply create a new root 
node containing the single key K1111 ; 21; the tree gets one level taller in this case. 

This insertion procedure neatly preserves all of the B-tree properties; in 
order to appreciate the full beauty of the idea, the reader should work exercise 1. 
The tree essentially grows up from the top, instead of down from the bottom, 
since it gains in height only when the root splits. 

Deletion from B-trees is only slightly more complicated than insertion (see 
exercise 6). 

Upper bounds on the running time. Let us now see how many nodes have 
to be accessed in the worst case, while searching in a B-tree of order m. Suppose 
that there are N keys, and that the N + 1 leaves appear on level l. Then the 
number of nodes on levels 1, 2, 3, ... is at least 2, 2 r m/21, 2 r m/21 2 ' ... ; hence 

(5) 
In other words, 

(N + 1) l :S l+logfrn/21 2 ; (6) 
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this means, for example, that if N = 1,999,998 and m = 199, then l is at most 3. 
Since we need to access at most l nodes during a search, this formula guarantees 
that the running time is quite small. 

When a new key is being inserted, we may have to split as many as l nodes. 
However, the average number of nodes that need to be split is much less, since the 
total number of splittings· that occur while the entire tree is being constructed 
is just the total number of internal nodes in the tree, minus l. If there are p 
internal nodes, there are at least 1 + (lm/21 - l)(p - 1) keys; hence 

N-1 
/l . 

1m 2 -1 ( 7) 

It follows that the average number of times we need to split a node while building 
a tree of N keys is less than 1/ (I m/21 - 1) split per insertion. 

Refinements and variations. There are several ways to improve upon the 
basic B-tree structure defined above, by breaking the rules a little. 

In the first place, we note that all of the pointers in the level l - 1 nodes 
are A, and none of the pointers in the other levels are A. This often represents a 
significant amount of wasted space, so we can save both time and space by elim-
inating all the A's and using a different value of m for all of the "bottom" nodes. 
This use of two different m's does not foul up the insertion algorithm, since both 
halves of a node that is being split remain on the same level as the original 
node. We could in fact define a generalized B-tree of orders m 1 , m2, m3, ... by 
requiring all nonroot nodes on level l -k to have between mk/2 and mk children; 
such a B-tree has different m's on each level, yet the insertion algorithm still 
works essentially as before. 

To carry the idea in the preceding paragraph even further, we might use 
a completely different node format in each level of the tree, and we might also 
store information in the leaves. Sometimes the keys form only a small part of 
the records in a file, and in such cases it is a mistake to store the entire records 
in the branch nodes near the root of the tree; this would make m too small for 
efficient multiway branching. 

We can therefore reconsider Fig. 30, imagining that all the records of the 
file are now stored in the leaves, and that only a few of the keys have been 
duplicated in the branch nodes. Under this interpretation, the leftmost leaf 
contains all records whose key is 011; the leaf marked A contains all records 
whose key satisfies 

439 < K 449; (8) 

and so on. Under this interpretation the leaf nodes grow and split just as the 
branch nodes do, except that a record is never passed up from a leaf to the next 
level. Thus the leaves are always at least half filled to capacity. A new key 
enters the nonleaf part of the tree whenever a leaf splits. If each leaf is linked 
to its successor in symmetric order, we gain the ability to traverse the file both 
sequentially and randomly in an efficient and convenient manner. This variant 
has become known as a B+ -tree. 
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Some calculations by S. P. Ghosh and M. E. Senko [JACM 16 (1969), 
569-579] suggest that it might be a good idea to make the leaves fairly large, 
say up to about 10 consecutive pages long. By linear interpolation in the known 
range of keys for each leaf, we can guess which of the 10 pages probably contains 
a given search argument. If our guess is wrong, we lose time, but experiments 
indicate that this loss might be less than the time we save by decreasing the size 
of the tree. 

T. H. Martin [unpublished] has pointed out that the idea underlying B-trees 
can be used also for variable-length keys. We need not put bounds [m/2 .. m) on 
the number of children of each node; instead we can say merely that each node 
should be at least about half full of data. The insertion and splitting mechanism 
still works fine, even though the exact number of keys per node depends on 
whether the keys are long or short. However, the keys shouldn't be allowed to 
get extremely long, or they can mess things up. (See exercise 5.) 

Another important modification to the basic B-tree scheme is the idea 
of overflow introduced by Bayer and McCreight. The idea is to improve the 
insertion algorithm by resisting its temptation to split nodes so often; a local 
rotation is used instead. Suppose we have a node that is over-full because it 
contain m keys and m + 1 pointers; instead of splitting it, we can look first at its 
sibling node on the right, which has say j keys and j + 1 pointers. In the parent 
node there is a key Kt that separates the keys of the two siblings; schematically, 

(9) 

If j < m - 1, a simple rearrangement makes splitting unnecessary: We leave 
l(m + j)/2 J keys in the left node, we replace K1 by KLcm:+j)/ 2J+i in the parent 
node, and we put the f (m + j)/21 remaining keys (including Kt) and the 
corresponding pointers into the right node. Thus the full node "flows over" into 
its sibling node. On the other hand, if the sibling node is already full (j = m-1), 
we can split both of the nodes, making three nodes each about two-thirds full, 
containing, respectively, l(2m- 2)/3J, l(2m -1)/3J, and l2m/3j keys: 

K L(2m.+1)/3J K' L(m.-1)/3J 

p P" P' 

Ki K2 ···Km. KJ K' 
( 10) 

1 

Po P1 Pm. P' 0 P' 1 P' 
J 

If the original node has no right sibling, we can look at its left sibling in essentially 
the same way. (If the original node has both a right and a left sibling, we could 
even refrain from splitting off a new node unless both left and right siblings are 
full.) Finally if the original node to be split has no siblings at all, it must be 
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the root; we can change the definition of B-tree, allowing the root to contain as 
many as 2 l (2m - 2)/3 J keys, so that when the root splits it produces two nodes 

of l(2m - 2)/3 J keys each. 
The effect of all the technicalities in the preceding paragraph is to produce a 

superior breed of tree, say a B* -tree of order m, which can be defined as follows: 

i) Every node except root has at most m children. 

ii) Every node, except for the root and the leaves, has at least (2m - 1)/3 
children. 

iii) The root has at least 2 and at most 2 l ( 2m - 2) / 3 J + 1 children. 

iv) All leaves appear on the same level. 

v) A nonleaf node with k children contains k - 1 keys. 

The important change is condition (ii), which asserts that we utilize at least 
two-thirds of the available space in every node. This change not only uses space 
more efficiently, it also makes the search process faster, since we may replace 
f m/21 by !(2m - 1)/31 in (6) and (7)· However, the insertion process gets 
slower, because nodes tend to need more attention as they fill up; see B. Zhang 
and M. Hsu, Acta Informatica 26 (1989), 421-438, for an approximate analysis 
of the tradeoffs involved. 

At the other extreme, it is sometimes better to let nodes become less than 
half full in a tree that changes quite frequently, if insertions tend 
to outnumber deletions. This situation has been analyzed by T. Johnson and 
D. Shasha, J. Comput. Syst. Sci. 47 (1993), 45-76. 

Perhaps the reader has been skeptical of B-trees because the degree of the 
root can be as low as 2. Why should we waste a whole disk access on merely 
a 2-way decision?! A simple buffering scheme, called least-recently-used page 
replacement, overcomes this objection; we can keep several bufferloads of infor-
mation in the internal memory, so that input commands can be avoided when 
the corresponding page is already present. Under this scheme, the algorithms 
for searching or insertion issue "virtual read" commands that are translated 
into actual input instructions only when the necessary page is not in memory; 
a subsequent "release" command is issued when the buffer has been read and 
possibly modified by the algorithm. When an actual read is required, the buffer 
that has least recently been released is chosen; we write out that buffer, if its 
contents have changed since they were read in, then we read the desired page 
into the chosen buffer. 

Since the number of levels in the tree is generally small compared to the 
number of buffers, this paging scheme will ensure that the root page is always 
present in memory; and if the root has only 2 or 3 children, the first-level pages 
will almost surely stay there too. Any pages that might need to be split during 
an insertion are automatically present in memory when they are needed, because 
they will be remembered from the immediately preceding search. 

Experiments by E. McCreight have shown that this policy is quite successful. 
For example, he found that with 10 buffers and m = 121, the process of inserting 
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100,000 keys in ascending order required only 22 actual read commands, and only 
857 actual write commands; thus most of the activity took place in the internal 
memory. Furthermore the tree contained only 835 nodes, just one higher than 
the minimum possible value I 100000 / ( m - 1) l = 834; thus the storage utilization 
was nearly 100 percent. For this experiment he used the overflow technique, but 
with only 2-way node splitting as in (4), not 3-way splitting as in (io). (See 
exercise 3.) 

In another experiment, again with 10 buffers and m = 121 and the overflow 
technique, he inserted 5000 keys into an initially empty tree, in random order; 
this produced a 2-level tree with 48 nodes (87 percent storage utilization), after 
making 2762 actual reads and 2739 actual writes. Then 1000 random searches 
required 786 actual reads. The same experiment without the overflow feature 
produced a 2-level tree with 62 nodes (67 percent storage utilization), after 
making 2743 actual reads and 2800 actual writes; 1000 subsequent random 
searches required 836 actual reads. This shows not only that the paging scheme 
is effective but also that it is wise to handle overflows locally before deciding to 
split a node. 

Andrew Yao has proved that the average number of nodes after random 
insertions without the overflow feature will be 

N / ( m ln 2) + 0 ( N / m 2 ), 

for large N and m, so the storage utilization will be approximately ln 2 = 69.3 
percent [Acta Informatica 9 (1978), 159-170). See also the more detailed analyses 
by B. Eisenbarth, N. Ziviani, G. H. Gonnet, K. Mehlhorn, and D. Wood, Infor-
mation and Control 55 (1982), 125-174; R. A. Baeza-Yates, Acta Informatica 
26 (1989), 439-471. 

B-trees became popular soon after they were invented. See, for example, 
the article by Douglas Comer in Computing Surveys 11 (1979), 121-138, 412, 
which discusses early developments and describes a widely used system called 
VSAM (Virtual Storage Access Method) developed by IBM Corporation. One of 
the innovations of VSAM was to replicate blocks on a disk track so that latency 
time was minimized. 

Two of the most interesting developments of the basic B-tree strategy have 
unfortunately been given almost identical names: "SB-trees" and "SB-trees." 
The SB-tree of P. E. O'Neil [Acta Inf. 29 (1992), 241-265] is designed to min-
imize disk I/O time by allocating nearby records to the same track or cylinder, 
maintaining efficiency in applications where many consecutive records need to be 
accessed at the same time; in this case "SB" is in italic type and the S connotes 
"sequential." The SB-tree of P. Ferragina and R. Grossi [STOC 27 (1995), 693-
702; SODA 7 (1996), 373-382] is an elegant combination of B-tree structure 
with the Patricia trees that we will consider in Section 6.3; in this case "SB" 
is in roman type and the S connotes "string." SB-trees have many applications 
to large-scale text processing, and they provide a basis for efficient sorting of 
variable-length strings on disk [see Arge, Ferragina, Grossi, and Vitter, STOC 
29 (1997), 540-548]. 
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EXERCISES 
1. [ 1 O] What B-tree of order 7 is obtained after the key 613 is inserted into Fig. 30? 

(Do not use the overflow technique.) 
2. [ 15] Work exercise 1, but use the overflow technique, with 3-way splitting as 

in (10). . 
Ji>- 3. [23] Suppose we insert the keys 1, 2, 3, ... in ascending order into an initially 

empty B-tree of order 101. Which key causes the leaves to be on level 4 for the first time 
a) when we use no overflow? 
b) when we use overflow and only 2-way splitting as in (4)? 
c) when we use a B* -tree of order 101, with overflow and 3-way splitting as in (10)? 
4. [ 21] (Bayer and McCreight.) Explain how to handle insertions into a generalized 

B-tree so that all nodes except the root and leaves will be guaranteed to have at least 
m - children. 

Ji>- 5. [ 21 J Suppose that a node represents 1000 character positions of external memory. 
If each pointer occupies 5 characters, and if the keys are variable in length, between 
5 and 50 characters long but always a multiple of 5 characters, what is the minimum 
number of character positions occupied in a node after it splits during an insertion? 
(Consider only a simple splitting procedure analogous to that described in the text 
for fixed-length-key B-trees, without overflowing; move up the key that makes the 
remaining two parts most nearly equal in size.) 

6. [23] Design a deletion algorithm for B-trees. 
7. [28] Design a concatenation algorithm for B-trees (see Section 6.2.3). 

Ji>- 8. [ HM37] Consider the generalization of tree insertion suggested by Muntz and 
Uzgalis, where each page can hold M keys. After N random items have been inserted 
into such a tree, so that there are N + 1 external nodes, let be the probability that 
an unsuccessful search requires k page accesses and that it ends at an external node 
whose parent node belongs to a page containing j keys. If ( z) = I: zk is the 
corresponding generating function, prove that we have Bi3) ( z) = 8j 1 z and 

B(j) (z) = N - j - 1 B(j) (z) + j + 1 B(j-l) (z) 
N N+l N-1 N+l N-1 ' for 1 < j < M; 

B(l)( ) = N - 2 B(1) ( ) + 2z B(M) (z)· 
N z N + 1 N-1 z N + 1 N-1 ' 

B(M)(z) = N - 1 B(M) (z) + M + 1 B(M-l)(z). 
N N+l N-1 N+l N-1 

Find the asymptotic behavior of Civ = I:J'!1 (1), the average number of page 
accesses per unsuccessful search. [Hint: Express the recurrence in terms of the matrix 

-3 0 0 2z 
3 -4 0 0 
0 4 0 0 

W(z) = 

0 0 -M-1 0 
0 0 M+l -2 

and relate c;_, to an Nth degree polynomial in W(l).] 
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9. [22] Can the B-tree idea be used to retrieve items of a linear list by position 
instead of by key value? (See Algorithm 6.2.3B.) 

· 10. [ 35] Discuss how a large file, organized as a B-tree, can be used for concurrent 
accessing and updating by a large number of simultaneous users, in such a way that 
users of different pages rarely interfere with each other. 

Little is known, even for otherwise equivalent algorithms, 
about the optimization of storage a/location, 

minimization of the number of required operations, 
and so on. This area of investigation 

must draw upon the most powerful resources 
of both pure and applied mathematics 

for further progress. 
- ANTHONY G. OETTINGER (1961) 


