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BALANCING A BINARY TREE
A. Colin Day

Computer Centre
University College London
London.

Author’s Note: ‘
Ordered binary trees are very useful tools when performing a search.

A datum is compared with the data at successive nodes of the tree.
When used for such a purpose, the greatest efficiency is obtained
when the tree is most regular, i.e. when all routes through the tree
(from root to leaf) are approximately the same length. Regularising
a tree in this way is here referred to as balancing the tree. Algorithms
have been described for dynamically balancing a tree to which nodes
are continually being added (Knuth, 1973). However, the algorithm
described here balances a fixed tree, and so is of use when the search
tree is available in its entirety at the outset of the operation.

The terminology used here differs in some respect from Knuth’s,
so the terms must be defined at the start. A complete tree is one whose
routes are all the same length. An example is shown in Fig. 1 of a
complete tree of height 3, i.e. the length of every route through the
tree is 3. A balanced tree is one for which no route differs in length
from any other route by more than 1. Given a fixed number of nodes,
the balanced tree is the tree of minimum height which can be
constructed. A balanced tree is said to be of height » if its routes are
of length n or n — 1. Fig. 2 gives an example of a balanced tree of
height 4. Note that a complete tree of height » may by this definition
be considered a balanced tree of height » or a balanced tree of height
n+ 1.

The purpose of this algorithm is to produce a balanced binary tree
from any input binary tree, using no extra workspace, and main-
taining the order within the nodes of the tree. It can thus be used
after the binary tree has been used to sort the data at the nodes into
some (alphabetic or numeric) order. One important aspect of the
algorithm is that the data forming the nodes of the tree are not moved
around; only the pointers are changed.

The first step is to strip the nodes from the tree in order, keeping
them chained together by means of their right pointers. The input
tree must have positive pointers in the vectors ILPT and IRPT giving
the left and right pointers respectively. It must also have negative
pointers representing backtracks (as in Day, 1972). Stripping a tree
in this way is well known and described, so no further description
of the process will be given here. (Note that although the input tree
is threaded by means of the negative backtrack pointers, the output
tree produced by this algorithm is not threaded.)

The list of nodes chained by their right pointers may now be
represented as in Fig. 4(a). This will be termed the backbone. The
balancing algorithm works by applying to pairs of nodes in the
backbone the transformation shown in Fig. 3. This transformation is
accomplished in three steps:

1. Make the predecessor of B point to D

2. Make the right pointer of B point to C

3. Make the left pointer of D point to B.

Note that if 4 and C are both complete trezs of height #, then B will
become a complete tree of height n + 1.

This transformation will not affect the (alphabetic or numeric)
order of the items within the tree. This order is revealed by stripping
the tree, for each node taking first the left subtree, then the item at
the node, then the right subtree. Stripping each side of Fig. 3 gives
the order ABCD. ) )

The operation of applying the transformation to adjacent pairs of
nodes on the backbone is known as a pass. Several passes are made.
After the first one, the nodes of the backbone point (via their left
pointers) to complete trees of height 1, as in Fig. 4(b). After the
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Fig. 1 A complete tree (height 3)
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Fig. 2 A balanced tree (height 4)
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Fig. 3 The transformation

/W00 dno-olWwspese//:sdny woJj papeojumoq

second pass, the nodes of the backbone point to complete trees ofS
height 2. After the nth pass, the nodes point to complete trees ofg-

level n.

apply the transformation within each pass? This is controlled by
adjusting the length of the backbone. The algorithm may be stated
in words as follows:

1.

The crucial question for the algorithm is; How many times do we=:
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Reduce the length of the backbone by 1

2. Divide the length of the backbone by 2 to find the number of: g

3.

4. Returnto 1.
Note that the division in step (2) rounds down if the length is notQ

9

transformations, m 2
If m is zero, exit; otherwise perform m transformations on the
backbone

nb Ag

even. After the transformations have been made, the length of theo

backbone must be reduced by m to allow for the nodes which have
been removed from it by the m transformations.
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In order to demonstrate that the algorithm does in fact produce a«jcj>

balanced tree, the method of mathematical induction will be used. S
The symbols shown in Fig. § will be used for complete trees and
balanced trees of height n. After n passes have been made, let us§
suppose that the situation may be represented as in Fig. 6. The dotted

line shows the limit of the backbone. According to step (1) of the
algorithm, we reduce the length of the backbone by 1, giving us Fig.
7(a). It will be obvious that this is exactly the same as Fig. 7(b). We
now make one more pass (the n + 1th). If the length of the backbone
is even, then the resulting situation is as in Fig. 8(a). If it was odd,
then one node will not be paired off and will not enter into the
transformation, so the result will be as in Fig. 8(b). However, a
complete tree of height n or a complete tree of height » + 1 are both
equivalent to a balanced tree of height n + 1, since the latter may
have routes through it of length n or n + 1. Therefore both 8(a) and
8(b) are equivalent to Fig. 9, which is homomorphous with Fig. 6.

Two matters still remain. It must be shown that at the lowest level
we have a state of affairs which can be represented by Fig. 6, and the
exit condition must be considered. The first of these is trivial. If
n is 0, and if the backbone covers every node, then Fig. 6 is identical
to Fig. 4(a).
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Fig. 4 (a) Before first pass (b) After first pass (c) After second pass
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The exit condition arises when m is 0. This happens when the length
of the backbone is 1, and is represented by Fig. 7(b) if the backbone
begins at point P, and everything above and to the left of P does not
exist. In this case it is obvious that we are left with a balanced tree of
height #n + 2, and therefore the algorithm terminates only when the
tree is balanced.
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SUBROUTINE BALNCE(ILPT, IRPT, N, I1ROOT)

c
c BALANCES A TREE OF N ITEMS.
[¢] ILPT(N) = LEFT POINTERS
(o] IRPT(N) - RIGHT POINTERS
c IROOT = ROOT OF TREE (CHANGED BY SUBROUTINE)
c
DIMENSION ILPT(N), IRPT(N)
[
c STRIP ITEMS FROM TREE AS LIST
c
IF (N .LE. 1) RETURN
ISTRT = 0
J = IROOT
GO TO 20

C FOLLOW LEFT POINTERS
10 J = ILPT(J)
20 IF (ILPT(J) .GT. 0) GO TO 10
C THIS ITEM IS TO BE STRIPPED
IF (ISTRT .GT. 0) GO TO 30
C FIRST ITEM - KEEP TRACK OF START
ISTRT = J
GO TO 40
C NOT FIRST =~ CHAIN TOGETHER
30 IRPT(LAST) = J
40 ILPT(J) =0
LAST = J
C TEST FOR BACKTRACK, END OR RIGHT BRANCII
J = IRPT(J)
IF (J) 50, 60, 20
C BACKTRACK
5 J = =J
GO TO 30

C
Cc FORM BALANCED TREE
C
C

SET LENGTH OF BACKBONE
60 NBACK = N - 1
C FIND NO. OF TRANSFORMATIONS
70 M = NBACK / 2
IF (M .LE. 0) RETURN
C INITIALISE FOR LOOP
J = IROOT
L=J
C MOVE ON ROOT IN ANTICIPATION
IROOT = IRPT(IROOT)
C PERFORM TRANSFORMATIONS
DO 8 I =1, N

K = IRPT(J)
IRPF(L) = K
IRPT(J) = ILPT(K)
ILPT(K) = J
L=K

80 J = IRPT(K)
C AMEND LENGTH OF BACKBONE
NBACK = NBACK - M - 1
GO TO 70
END
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Algorithm 92

THE DRAWING OF DASHED LINES
G. Berry,
MRC Pneumoconiosis Unit,
Penarth, S. Glamorgan, CF6 1XW

Author’s note:

When producing figures on a graph plotter it is frequently required
to be able to draw lines in dashed form instead of as unbroken lines.
This not only eases the interpretation of the plotter output but also
allows the plotter to be used to produce figures which are up to
publication standard, or may easily be brought up to this standard by
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Fig. 1 Examples of output from GPDASH. (a) Continuous line.
(b) Line 8-5 inches long on original plot with specified segment lengths
0-45, 0-3, 0-15, 0-15 inches (these lengths were multiplied by 8-5/8-25
to give complete segment at end). (c) As (b) with specified segment
lengths all 0-3 inch (multiplied by 8-5/8-7). (d) Quadrant and radii of
circle of radius 4 inches drawn starting from centre in one sequence,
specified segment lengths 0-6, 0-4, 0-6, 0-4 inches. (¢) As (d) except
that each radius and the arc were drawn by separate calls.

touching up, with a consequent saving of effort and increase in
accuracy.

In this FORTRAN algorithm, GPDASH, the term dashed line is
used to denote a line consisting of four segments repeated in
sequence. These segments are a dash of length d1, a blank of length
b1, a dash of length d2 and a blank of length b2. The simplest form of
dashed line may be produced by making these four lengths identical.
Secondly, all the dashes could be of the same length with the blanks
having a different length. Thirdly, a double dashed line may be
produced by putting d1 # d2 and/or b1 # b2. An unbroken line may
be drawn by putting any one of the four lengths as zero. Thus
GPDASH allows many possibilities enabling quite complicated
figures to be produced clearly.

The algorithm joins a sequence of points by straight lines and in
order to give a curve, approximated by a series of short straight
lines, the appearance of having been drawn in one sweep rather than
piecemeal, unfinished dashes or blanks at the end of a join are
finished at the beginning of the next join.

GPDASH has no provision for interpolation (other than linear)
between successive points so that if it is being used to draw a curve
the data points provided must be sufficiently close to produce a
visually acceptable curve. This is in contrast to QUARC
(McConalogue, 1971) in which points are joined by arcs having
given slopes at their end points. A dashed curve may be drawn by
QUARC but only in the simplest form, i.e. di = b1 = d2 = ba.

In order to ensure that the last point of the sequence is visible the
lengths of the dashes and blanks are modified so that the sequence
of lines finishes with a complete dash. This is achieved by calculating
the total length of the sequence of lines at entry, and then either
multiplying or dividing all the dash- and blank- lengths by a constant.
This constant is chosen to be as close to unity as possible. Apart
from the first and last points, points may occur within tlanks. If the
curve is continuous and has a continuous derivative this is as would
be required, but if there is a discontinuity of slope at some point then
this may be emphasised by splitting the sequence of points into two
parts, the first part ending, and the second part starting, at the point
of discontinuity.

GPDASH calls an auxiliary algorithm, PENTO(K, X, Y). This
algorithm must be supplied so that a call causes the pen to move in
a straight line from its current position to the point (X, Y), the pen
being raised up above the paper if K = 1 or down in contact with the
paper if K = 2. Before the first call of GPDASH an origin and axes
should have been established. Throughout, all co-ordinates should
be supplied in data units, and the scale of the graph is defined by the
scale factors XS and YS.

Some of the possible types of dashed line which may be produced
by the algorithm are illustrated in Fig. 1. In the lower part a continu-
ous line and two types of dashed line are drawn. Above are two
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quadrants of a circle with radii, where the arcs are approximated by
13 equally spaced points. The quadrant and radii on the right were
drawn as one sequence of 15 points, whereas on the left the two radii
and the arc were drawn by three separate calls of the algorithm. The
latter shows the change in direction at the end of the radii more
clearly.
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SUBROUTINE GPDASH

PURPOSE )
FOR USE WITH PLOTTER TO JOIN A SEQUENCE OF POINTS BY A
DASHED LINE, CONSISTING OF FOUR SEGMENTS, DASH1, BLANK1,
DASH2, BLANK2, REPEATED AS NECESSARY.

USAGE
CALL GPDASH(N, X, Y, XS, YS, D1, B1, D2, B2)

DESCRIPTION OF PARAMETERS
N - NUMBER OF POINTS TO BE JOINED.
X - INPUT VECTOR OF ABSCISSAE OF POINTS (IN DATA UNITS).
Y - INPUT VECTOR OF ORDINATES OF POINTS.
XS - ABSCISSA SCALE FACTOR (PLOT LENGTH PER DATA UNIT).
YS - ORDINATE SCALE FACTOR.

D1 - LENGTH OF FIRST DASH (IN PLOT LENGTH UNITS).
B1 = LENGTH OF FIRST BLANK.
D2 - LENGTH OF SECOND DASH.
B2 = LENGTH OF SECOND BLANK.
REMARKS

SUBROUTINE PENTO(K, X, Y) MUST BE SUPPLIED TO TAKE

ACTION: IF K=1 MOVE PEN TO (X,Y), PEN UP IN MOTION
IF K=2 MOVE PEN TO (X,Y), PEN DOWN IN MOTION.

EPS SHOULD BE SET AS MINIMUM STEP LENGTH OF PLOTTER.

IF ANY OF D1,B1,D2,B2 IS LESS THAN EPS AN UNBROKEN
LINE WILL BE PRODUCED.

IF N IS LESS THAN 2 OR EITHER XS OR YS IS ZERO OR
NEGATIVE THE ALGORITHM WILL TAKE NO ACTION.

METHOD
THE SEQUENCE OF POINTS ARE JOINED BY STRAIGHT LINES,
WITH DASHES OR BLANKS UNFINISHED AT THE END OF A JOIN
FINISHED AT THE BEGINNING OF THE NEXT JOIN. THE LENGTHS
OF THE DASHES AND BLANKS ARE SCALED SO THAT THE SEQUENCE
FINISHES WITH A COMPLETE DASH.

NcoOO0O000OOOOO0OOO0O0O0000000000CO0000000000000Q0

SUBROUTINE GPDASH (N, X, Y, XS, YS, D1, B1, D2, B2)
DIMENSION X(N), Y(N),DL(4)
DATA EPS /0.01/

C SETS INITIAL CONDITIONS
IF(N.LE.1.OR.XS.LE.0.0.OR. YS.LE.0.0) GO TO 140

L=2

J=1

CALL PENTO(1,X(1),Y(1))

IF(B1.LT. EPS. OR. B2. LT. EPS. OR. D1.LT. EPS. OR, D2, LT, EPS) GO TO
M=1

XSS=XS*XS

YSS=YS*YS
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C CALCULATES TOTAL LENGTH OF DASHED LINE

D=D1+B1+D2+B2
W=0.0

10 I=J

20 IF(J.EQ.N) GO TO 30
J=J+1
U=xX(J)-Xx(1)
V=Y (J)=-Y(I)
U=SQRT (U*U*XSS+V*V*YSS)
IF(U.LT. EPS. AND. J.NE.N) GO TO 20
W=W+U
GO TO 10

ADJUSTS LENGTHS OF DASHES AND BLANKS SO THAT THE LAST
JOIN WILL FINISH WITH A COMPLETE DASH.

[eNoNoNe!
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30 IF(W.LT.EPS) GO TO 130
J=W/D
V=FLOAT(J)*D
U=W-v
IF(U.LE.D1) GO TO 50
IF(U.GT. (D-B2)) GO TO 40
V=V+D1
Z=B1+D2
GO TO 60

40 V=V+D

50 V=v-B2
Z=B2+D1

60 U=(V-W)*(V+W)+V*Z
IF(U.LT.0.0) V=V+Z
w=w/v
DL(1)=D1*W
DL(2)=B1*W
DL(3)=D2*W
DL (4)=B2*W
D=DL(1)
J=1
GO TO 80

70 DL(1)=0.0

aon

ENTERS PLOTTING SECTION.

80 I=J

90 IF(J.EQ.N) GO TO 130
J=J+1 .
IF(DL(1).LT.EPS) GO TO 120
U=X(J)-x(1)
V=Y(J)-Y(I)
W=SQRT (U*U*XSS+V*V*YSS)

1F(W.LT, EPS) GO TO 90
DINTX=U/W

DINTY=V/W

w=w*w

CALCULATE INCREMENTS TO COMPLETE DASH OR BLANK NOT
FINISHED IN LAST JOIN.

[eNeoNeoNel

DX=DINTX*D
DY=DINTY*D
IF((DX*DX*XSS+DY*DY*YSS).GE.W) GO TO 110
XX=X (I)+DX
YY=Y(I)+DY

CALL PENTO(L, XX, YY)
L=3-L

M=M+1

IF(M. EQ.5) M=1
DX=DX+DINTX*DL (M)
DY=DY+DINTY*DL (M)
GO TO 100

CALCULATES LENGTH OF UNFINISHED DASH OR BLANK.

(@]

U=X(I)-X(J)+DX
v=Y(1)-Y(J)+DY
D=SQRT (U*U*XSS+V*V*YSS)

110

COMPLETES PRESENT JOIN.

OO0

120 CALL PENTO(L,X(J), Y(J))
GO TO 80 :

130 CALL PENTO(2,X(N),Y(N))
140 RETURN

END

Algorithms supplement—Statement of Policy

A contribution to the Supplement may consist of an Algorithm, a
Note on a previous algorithm, or an item under the heading of
Correspondence.

Because the aim is to facilitate the interchange of algorithms, these
should normally be submitted in one of the standard high level
programming languages, namely ALGOL 60 (1), ALGOL 68 (2),
FORTRAN (3), COBOL (4). In this case the algorithms must
conform to the appropriate standard. If algorithms are submitted in
other programming languages, the reference document for that
language must be stated.

Algorithms must be self-contained. This means that an algorithm
must consist of one or more complete segments, and that an algor-
ithm must not use any non-local identifiers other than standard
function names. COMMON areas are permitted in FORTRAN,
but their use must be clearly described.

The algorithm must be written for publication in the appropriate
reference language, and preceded by an appropriate Author’s Note.
It must be submitted in duplicate and be typewritten double-spaced.
Where material is to appear in bold face it should be underlined in
black. Where the appropriate character does not exist on a type-
writer, it should be inserted neatly by hand in black and not be
replaced by a similar composite character (e.g. < should not be
inserted as <).

An algorithm must be accompanied by a computer printout of a
driver program testing it (possibly against test data) and producing
test results. The machine, compiler and operating system used
should be indicated. A computer readable copy of the algorithm, the
test driver and any test data will be requested later, but should not be
sent in the first instance. The Author’s Note should include the theory
of the method, with references, and also explain any tests used to
verify the algorithm.

The algorithm must be syntactically correct, produce the results
claimed and use computer resources as efficiently as possible.
Constructions whose results may depend on the compiler used
should be avoided (e.g. y := x + f(x) where f(b) is a function
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which alters the value of ). Comments should be used wherever
appropriate to clarify the logic. Cases of failure should be clearly
anticipated and handled. Approximate numerical constants must be
given with as much accuracy as is appropriate. Numerical labels
should be in ascending order.

Every effort is made to see that published algorithms are completely
reliable. In particular all algorithms are submitted to independent
referees and extensively checked. However, Notes or Correspondence
which point out defects in or suggest improvements to previously
published algorithms are welcomed. To help in preventing printing
mistakes, galley proofs will be sent to authors where possible.

Whilst every effort is made to publish correct algorithms, no
liability is assumed by any contributor, the Editor or The Computer
Journal in connection therewith.

The copyright of all published algorithms remains with The
Computer Journal. Nevertheless the reproduction of algorithms is
explicitly permitted without charge provided that where the algorithm
is used in another publication, reference is made to the author and to
The Computer Journal.

In the event of the formation of a National Algorithm Library, all
algorithms which have appeared in The Computer Journal will be
made available to this Library.
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