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ABSTUACT

I() this paper we present a uniform framework for the implementation
and study of halanced tree algorithms. \Ve show how to imhcd in this

framework the best known halanced tree tecilIliques and thell usc the
framework to deVl'lop new al1~orithJlls which perform the update and
rebalancing in one pass, Oil the way down towards a leaf. \Ve
conclude with a study of performance issues and concurrent updating.

O. Introduction

I1alanced trees arc arnong the oldest and tnost widely used data
stnlctures for searching. These trees allow a wide variety of
operations, such as search, insertion, deletion, tnerging, and splitting
to be performed in tinK GOgN), where N denotes the size of the tree
[AHU], [KtJ]. (Throughout the paper 19 will denote log to the base 2.)

A number of different types of balanced trees have been proposed,
and while the related algorithms are oftcn conceptually sin1ple, they
have proven cumbersome to irnp1cn1ent in practice. Also, the variety
of such trees and the lack of good analytic results describing their
performance has made it difficult to decide which is best in a given
situation.

In this paper we present a uniform fratnework for the
imp1crnentation and study of balanced tree algorithrns. 'Inc
fratTIework deals exclusively with binary trecs which contain two
kinds of nodes: internal and external. Each internal node contains a
key (chosen frorn a linear order) and has two links to other nodes
(internal or external). External nodes contain no keys and haye null
links. If such a tree is traversed in sYlnn1etlic order [Knl then the
internal nodes will be visited in increasing order of their keys. A
second defining feature of the frarncwork is U1at it allows one bit per
node, called the color of the node, to store balance infonnation. We
will use red and black as the two colors. In section 1 we further
elaborate upon this dichrornatic framework and show how to imbed
in it the best known balanced tree algorithms. In doing so, we will
discover suprising new and efficient implementations of these
techniques.

In section 2 we use the frarnework to develop new balanced tree
algorithms which perform the update and rebalancing in one pass, on
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the way down towards a leaf. As we will see, this has a number of
significant advantages ovcr the older methods. We shall cxamine a
numhcr of variations on a common theme and exhibit full
implementations which are notable for their brcvity. One
imp1cn1entation is exatnined carefully, and some properties about its
behavior are proved.

]n both sections 1 and 2 particular attention is paid to practical
implementation issues, and cOlnplcte impletnentations are given for
all of the itnportant algorithms. '1l1is is significant because one
measure under which balanced tree algorithtns can differ greatly is
the amount of code required to actually implement them.

Section 3 deals with the analysis of the algorithlns. New results are
givcn for the worst case perfonnance, and a technique for studying
the average case is described. While no balanced tree algorithm has
yet satisfactorily subtnitted to an average case analysis, empirical
results arc given which show U1at the valious algorithms differ only
slightly in perfonnance. One irllplication of this is Ulat the top-down
algorithms of section 2 can be recommended for most applications
because of their simplicity.

Finally, in section 4, we discuss some other properties of the trees. In
particular, a one-pass top down deletion algorithm is presented. In
addition, we consider how to decouple the balancing from the
updating operations and we explore parallel updating.

1. The lJnifoml Franlcwork

In this section we present a unifonn frarnework for describing
balanced trees. We show how to ernbed in this framework the nlost
widely used balanced tree schemes, narnely B-trecs [UaMe], and AVL
trees [AVL]. In fact this ernbedding will give us interesting and novel
irnplclnentations of these two schemes.

We consider rebalancing transfonnations which maintain the
symrnetric order of the keys and which arc local to a s1na11 portion of
the tree f()r obvious efficiency reasons. These transformations will
changc the structure of thc tree in the salnc way as the single and
double rotations used by AVL trees [Kn]. '111c differencc between the
various algorithms we discuss arises in the decision of when to rotate,
and in the tnanipulation of the node colors.

For our first cxample, let us consider the itnp1cmentation of 2~3

trees, the simplest type of B-tree. Recall that a 2-3 tree consists of 2­
nodes, which have one key and t\\'o sons, 3-nodes, which have two
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keys and three sons, and external nodes which have no keys and no

sons. Inserting a new key into a 2-3 tree involves first doing an

unsuccessful search which terminates at an external node, then

inserting the new key into the father of that node. If this is a 3-node,

it must be split into two 2-nodes, and the overflow key inserted into

its father, and so on. The "balance" in the tree comes from the fact

that all paths starting at an internal nodc and cnding at an external

node have thc same length.

A natural way to rcpresent a 2-3 tree as a binary trce is to make the

cxplicit links of the tree black and to "binarizc" the 3-nodes by

connecting their two keys with a red link, as shown in Fig. 1. (It is

Inore convenient to draw colored links than colored nodes, so we

establish the convention that the color of a node is equivalent to the

color of the link which points to it. In our figures heavy lincs will

indicate red links.) Note that this cOffeponds to keeping track of the

total number of key cOlnparisons involved when traversing such a
node.

~ •Q ""r"po"d'to ~. '\.~ .~

¢ •Q 'm"',"md"o \ .} .~ .~

Figllre 3. Inser110n into a J-node

An implementation of search and insertion for 2-3 trees within this

framework is given in Prograrn 1. For convenience, this

iInplcmentation uses the nonnal technique of including two artificial

nodes: a "head" node (h) whose right link points to the root of the

trec, and a special node (z) which represents all external nodes. The

key being sought is first stored in z, so that the search always

tenninates successfully. If the search terminates at z, then the search

was really unsuccessful, and an insertion is perfonned. A stack is

used to keep track of the path traversed on the way down the tree.

(The stack could be eliIninated by remeInbcring tile last 2-node

encountered, but we shall see better rnetilods of doing so later.) 'Ibe

single and double rotations arc handled with a single procedure

called "balance", which is given in Program 2. 'Illis procedure takes

as input links to four consecutive nudes down the path and changes

the structure of the tree to locally bJ]ance tile bottom three of these

nodes, as shown in I~'ig. 5. (Only the two cases with f as a right link

arc diagralnll1ed: the cases with f as a len link arc symmetric.) Also,

the colors of the nodes pointed to by the g and f links after the

structural transfoImations are interchanged. It is easily checked that if

the f and x links arc bOtil red then this procedure performs exact.ly

the second Jnd third transformations of Fig. 3. (The program is more

gencral than seerns necessary because we shall have occasion to use it

within several other algorithms.)

The irnplcInentatlon rrwkes obvious an extension to 2-3-4 trees,

which also fit nicely into the dichrolnatic framework. The idea is to

allow 4-nodes (nodes with three keys and four sons), which are

represented as in Fig. 6. Now splitting only has to be done upon

insertion illto a 4-node, and the split corresponds to simply
cornplemcnt111g the colors of the tllfee nodes involved, as shown in

Fig. 7. (We shall refer to this operation as a "color flip".) Insertion

into a 3-node may require a single or double rotation to convert it
into a 4-node: the neccssary transformations arc exactly the

transformations of Fig. 3 without the color flips. Fig. 8 shows the

sequence of 2-3-4 trees corresponding to Fig. 4. '1l1C irnplementation

of this metil0d corresponds to rnoving the test for "balance" out of

the splitting loop, as shown in Program 3. Inscrtion into a 2-3-4 tree

involves a sequence of color flips and at most one rotation: insertion

into a 2-3 trce Inay involve many rotations. 'll1ese trees have been

called "sylnmetric binary D-trees" by R. J3ayer [8a].

or

corresponds to

corresponds to

Figure 1. The binarization of a 3-node

corresponds to

To describe the dynalnic aspects of the iInpleInentation, it is

sufficicnt to consider insertion into 2- and 3-nodes. Insertion into a

2-node gives a 3-nnde in the obvious way, as shown in Fig. 2.

Insertion into a 3-node requires rnore work, as diagranlmed in Fig. 3.
(This diagram assumes th;lt the J-Jlodc "kans" to the right: the other
case is obviously synlmetric.) 'n1e Uuce cascs herc are quite different.

With respect to tile structure of the tree, the first case is a simple

inscrtion, the second is a so-called "single rotation", and the third is

a "double rotation". In all three cases, tile color of the top node is

eventually changed to red, with its sons and grandsons JIl black. lbis

corresponds to splitting the 3-nodc into two 2-nodes: the rcd link is

the mcssage tllat an insertion needs to be performed into the node

abovc, using the same method.

Fig. 4. shows the sequence of 2-3 trees tilat results when this method

is used to insert the keys 1, 9, 2, 8, 3, 7, 4, 6, and 5 in this order into

an initially empty tree. (This sequence is a well-known example

which produces a completely unbalanced "zigzag" tree if no

balancing at all is done.) Note that inserting the 2 causes a double

rotation, the 3 causes a single rotation, the 4 causes two double

rotations, and the 5 causes a single rotation.

Figure 2. Insertion into a 2-node

9

Let us now rr:ake a few observations about these implementations.

First, notc tilat if we start with an internal node and follow any two
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Figure 4. Constructing a 2-3 tree

Figure 5. I,oGd balancing transfonnations
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record node (color rn~ reference (node) I, r; integer k):
reference (node) h, z;
reference (node) array p(0: :50); integer i:

procedure initialize;
begin Z ... node(black, , ,); h'" node(black, z, z, -00); end;

procedure search and insert (integer value v; reference (node) h);
begin reference (node) x~ logical success;
x ... h; k(z) ... v; i'" 0; success'" true;
loop until v = k(x):

P(i) ... x; i'" i+ 1; if v < k(x) then x ... l(x) else x ... rex) endie;
repeat;
if x = Z

then P(i) ... x ... node(black, Z, z, v); m(z) ... red; success'" false;
if v ( k(P(i-1» then I(P(i-1» ... x else r(p(i-1» ... x endif;
loop while m(l(p(i») = m(r(p(z)) = red:

m(l(p(i») ... m(r(p(i») ... black; m(p(z)'" red; i'" i- 2;
if m(p(i+ 1» = red then balance(p(i-1), P(z), p(i+ 1), p(i+ 2»

else i ... i+ 1 endif;

corresponds to

repeat;
endif;
m(r(h» ... black;
retum(x, success);
end "search and insert"

Program 1. 2-3 trees.

Figure 6. The binarization of a 4-node

paths to cxtenlal nodes, then the nUlnber of black arcs on these two
paUls will be the same. cnlis follows from the defining property of
the trees.) Next observe that two consecutive red links never appear
on any path. (This follows from the implementation which keeps the
red links "inside" the internal nodes.) In fact, an alternate way to
view the algorithms is that they make exactly the transformations
necessary to maintain both these properties.

A variety of balanced tree algorithms can be described in tenns of
these simple transformations on dichromatic binary trees. In general,
we shall consider families of trees which satisfy the following two
conditions:

1. External nodes are black~ internal nodes may be red or black.

2. For each internal node, all paths from it to external nodes
contain the same number of black arcs.

There will further be a third condition, depending on the family of
trees we consider, which expresses the "balance" property. In essence

10

Figure 7. Insertion into a 4-node

this condition will restrict the size of connected red subtrees that can
arise. Such conditions can often be expressed in many equivalent
forms. For 2-3-4 trees, as we have seen, an appropriate condition is

3. (2-3-4) No path from an internal node to an external node
contains two red links in a row.

Another way to express this condition is

3'. (2-3-4) rIlle only allowed connected red subtrees are those
shown in Fig. 9.

It is straightforward to check that any binary tree satisfying
conditions 1, 2, and 3 (or 3') can be uniquely ltdecoded" into a 2-3.4
tree. (However, not all such trees can be produced by Program 3.)
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Figure 8. Constructing a 2~3~4 tree

procedure initialize;
begin Y ... node(red, , ,); z ... node(black,Y.y. );

P(-l) .. }z .. node(black, Z, Z, -00); end;

Figure 9. The allowed red subtrees in a 2-3-4 tree

procedure balance (reference (node) value result gg, g, f, x);
begin
if (v < k(g» * (v < k(f)
then if v < k(j} then l(f) ... 1{x); 1{x) ... f else r(f) ... l(x); l(x) ... f eDdif;

f'" x;
endif;
if v < k(g) then l(g) ... r(j); r(f) ... g else r{g) ... l(j}; l(f) .. g endif;
g ... f, m(j) ++ m(g);
jf v < k(gg) then l(gg) ... g else r(gg) ... g endif;
end "balance"

Program 2. Local balancing.

Note that since no two reds can appear in a row, the "binarized" 2­
3-4 tree satisfies the property that from any node the ratio of the
shortest to the longest path is at most 2 (take one all black path and
another alternating between red and black.) From this it follows
immediately that if the tree has N internal nodes, then the length of
the longest path is O(lgN) (in fact ~ 21gN), and so a search or
insertion takes logarithmic time in the worst case. All of the
algorithms that we discuss have this property.

For another example. consider the extension of the above properties
to handle general B-trees. An appropriate "balance condition" is:

3'. (B-tree of order m). The only allowed connected red subtrees are
perfectly balanced trees with Lm/2 J -1 to m-1 nodes.

Yne implementation of a D-tree of order m involves representing a
node with x sons by a perfectly balanced subtree of x leaves. As in
the 2-3-4 case, insertions into such a subtree will sometimes require
generalized rotations to keep it perfectly balanced. When the red
subtree grows to have m+ 1 leaves, it "splits" by perfonning a color
flip at the root, thus giving rise to two smaller red subtrees. We have
not yet precisely defined the teon "perfectly balanced", and this
leaves some flexibility in the implementation. If we .defined a
"perfectly balanced" tree as one in which, for each node, the number
of nodes in the left subtree differs by at most one from the number
of nodes in the right subtree. then we get the standard B-tree
implementation. Another plausible definition is to calt a tree
"perfectly balanced" if all its external nodes appear on the bottom
two levels. This way requires fewer transfonnations to maintain, but

11

loop while m(l(p(r)) = m(r(p(z)) = red:
m(l(p(l)) .. m(r{p(z)) ... black; m(p(l)" red; i" i - 2;

repeat;
if m(p(i+l» = m(p(i+2» then balance(p(i~l), p(t), p(i+l), p(/+2» eDdif;

Program 3. 2-3-4 trees (new initialization and balancing loop for Program 1).

it will not generally "split" nodes exactly in half, without an
accompanying generalized rotation. In either case. an implied but
weaker (equivalent when m is a power of 2) condition is

3. (B-tree of order m). No path from an internal node to an
external node contains more than LlgmJ -1 consecutive red
links.

The usual implementation of n-trees involves storing nodes as sorted
lists of keys in separate pages. This may be characterized as an
implementation which avoids explicitly storing red links. (In fact the
"perfectly balanced" condition beconlcs irrelevant in such
itnplementations. since for each node size, only one connected red
subtree is allowed, that whose shap,,~ is determined by the search
strategy within the page.)

The above characterization of n-trees in the dichromatic framework
requires balancing both to limit the size of the connected red
subtrees which arise and to keep those subtrees locally balanced. An
alternative is to not require local balancing at all. 11lis leads to fewer
transfonnations, but ones which are more complex. Also, the
resulting trees are less balanced. For the 2-3-4 case, this corresponds
to doing simple insertions to 3-nodes (thus allowing 4-nodcs to be
represented in three different ways, two of which have two red arcs
in a row), and doing the local balance upon insertion into the 4­
node.

It is much more surprising that AVL trees can also be embedded in
our dichromatic framework. These are trees in which the heights of
the subtrees rooted at the sons of each node differ by at most one.
This balance condition appears, at first sight, to be of a quite
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Figure 10. An AVL tree colored as a 2-3-4 tree
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Figure 11. The 1\ VL rotation
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Figure 12. Constructing an AVL tree

different nature than those we have been consldenng. Bayer lIlaJ
essentially showed that every AVL tree is a 2-3-4 tree: in the

dichromatic notation this can be described quite succintly. Define the

height of a node to be the length of the longest path fronl that node

to an external node. To nlake an A VL tree into a 2-3-4 tree simply

color red exactly those links which go from a node at an even. height

to a node at an odd height. Fig. 10 shows how a Fibonacci tree [Kn]
looks after coloring. Now, condition 3 above for 2-3-4 trees follows

immediately. Condition 2 can easily be proven by induction on the

height of the tree. using the stronger hypothesis that avery node of

height h has exactly Lh/2J black links on every path to an external

node. (Not every AVL tree can be viewed as a 2-3 tree, however.)

Observe that a 2-node corresponds to a node at an odd height whose

father is at an odd height (2 greater); a 3-node corresponds to a node

at an even height with one son at an odd height (1 less) and one son

at an even height (2 less): and a 4-node corresponds to a node at an

even height whose sons are both at an odd height (1 less).

Conversely we note U1at a node with two red sons is balanced; a

node with one red son and one black is heavy (in the AVL sense)

towards the red son, and a node with both black sons has a balance

factor analogously determined by the colors of its grandsons. We

need go no further, as not all grandsons can be black. (Why?)

With this corrcspondance in mind, we can transfonn our algorithm

for 2-3-4 tree insertion into an algorithm for AVL tree insertion by

the addition of a simple test. Insertion into a 4-node implies that the

height of the tw() nodes on the insertion path is incremented by 1:

the color nip of Fig. 7 is precisely the necessary transfonnalion. Let
us call the node newly painted red x. To maintain the AVL property,

it is necessary to check Ule brother of x. If the brother's height is

now two less that that of x, a rebalancing transformation is necessary.

It turns out that one local balancing transformation, a single or

double rotation as in Fig. 5, involving the three nodes above x
(along with two color changes) suffices to tenninate the insertion.

This transformation is shown in Fig. 11. (Only one case is shown~ the

other three are similar.) On the other hand, if the height of the

brother of x is now equal to or less than that of x, then we proceed

as before: the red link from the color flip is the message that the

procedure initialize;

begin y +- node(red, , ,); z +- node(black,y,y, );

P(-3) +- P(-2) +- P(-1) +- h +- node(black, z, z, -00); end;

loop while m(l(p(i») = nl(r(p(i») = red:

m(l(p(i») +- m(r(p(i») +- black~ m(p(i» +- red; i +- i- 2;
if v < k(P(i-1) then b +- 1(P(i-1) else b +- l(P(i-l» eDdif;
if m(b) = m(l(b» = m(l(b» = black and m(l(p(i» = m(r(p(i») = red

then nz(p(i+ 1» +- black: m(b) +- red; i +- i-I eDdif;
repeat;

if m(p(i+l» = rn(p(i+2» then balance(p(i-l), P(i), p(i+l), p(i+2» endif;

Program 4. AVL trees (new initialization and balancing loop for Program 1).

subtree below has increased in height by 1 (from even to odd) and

that the height of its brother is equal or one less. With this extra

condition the transformations of Figs. 2 and 3 suffice to terminate

tile insertion when a 2-nodc or 3-node is encountered. Program 4

gives an implementation for AVL trees based on these comments. (It

makes use of the fact that a 4-node has height one greater than its

brother if and only if both its brother and its father arc black.) The

tree sequence for our sample insertions is given in Fig. 12.

Another way to view this implementation is that the new statement

checks to see if an overflowing 4-node has a brother which is a 2­

node. In that case we do a rotation instead of a color flip and

terminate the algorithm. After the rotation we have a 4-node and a

3-node, where before we had a 2-node and an overflowing 4-node.

lois is exactly one instance of Bayer and McCreight's suggested

12
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improvement to the standard B-tree algorilhms [HaMe]: before
splitting a node, check to see if some of the mass can be passed on
to a brother.

If we implement the full "brother" heuristic, that is also transform an
overflowing 4-node with a brother which is a 3-node into two 4­
nodes, then we obtain a different kind of tree, which might be called
a second order AVL tree. 'Ibese trees satisfy the following stronger
height condition: If we consider the four subtrees at depth two below
any node, then the heights of these subtrees are within one of each
other (for AVL they could differ by as much as two). Thus these
trees are rnGrc strongly balanced than AVL. We can show, for
example, that in such a tree of N leaves the longest path is at most
1.34lgN (as compared to 1.44lgN for AVL). It is, however,
cumbersome to implement these second order trees, as the
transfonnation required is not always a sitnple single or double
rotation: rather, up to nine pointcrs Inay have to be changed.

•

•
r111e standard implementation of AVL trecs involves keeping two bits
per node to encode the three cases (i) the node is balanced, (ii) the
len suhtree is one deeper, and (iii) the right subtree is one deeper.

The necessity of maintaining 'two bits per node has been viewed as
disadvantage, and some researchers have dealt with Illodifying the
basic properties of the trees in order to implement them with one
one bit per node [Ko], [KK). Prognun 4 gives a direct impIcrnentation
using only bit per node. f\.1. Drown [Ur2] has remarked that this can
also be done in a more straightforward way, by pushing the two bits
of the balance factor down, one to each son. This corresponds to an
alternative coloring of the trees: a node is rnarked red if its height is
one grcater than that of its brother. In this coloring, if red links are
given weight 2 (and black links weight 1), then, from any internal
node, all paths to cxtcrnal nodes have the same weight. (In our
framework, red links are given weight 0.) It is also possible to color
2-3 and 2-3-4 trees with black and (double-weight) red links to give a
constant weighted path length from each node: color both sons of
each 2-node and the "upper" son of each 3-node red. 'This leads to
an altcrnate dichromatic framework to the one we have been
discussing. We have choscn to use zero weight links because the
algorithrns appear to be somewhat simpler.

All of the algorithms described here have two features which make
them cumbersome to implement. First, there are two loops: one
controlling the search (going down the tree), and one controlling the
insertion (normally going up the tree). Second, tl1e code for the
balance procedurc is rather cumbersome as it has to handle the four
cases of left and right single and double rotations. In the next
section, we will see new algorithrns which avoid both of these
difficulties.

2. Top· Down Algorithms

rl11c new atgorithrns, which also are conveniently ernbeddec1 within
the dichromatic frarncwork, are based on the COlnrnon therne that the
rehdlancing transformations arc applied on the way down the tree
during dn update operation. 111l1s, when an insertion search
encounters an external node, the record being inserted can be
attached right there, and the operation is complete. 'llle algorithms
need not maintain a stack, since no portion of the search path need
be traversed again to rcstorc the balance condition. In this respect,
the algorithms arc similar to the weigh/-balanced trees introduced by
Reingold [RNn]. Unfortunately those trees seem to require
considerably morc than onc bit of balance information per node.

13

Figure 13. Top-down 2-3-4 tree transformations

'111e benefits of rebalancing on the way down will becolne more
apparent in subsequent sections where we discuss perfolmance issues.
!-."or the rnoment suffice it to mention that we can at least hope for
code which is simple, efficient, and elegant since only one loop is
necessary. Top-down schemes will also have inhererent advantages
for parallel updating, as each writer will need to lock only a bounded
context around itself in the tree.

Perhaps the easiest such algorithm to explain is a top-down insertion
algorithnl for 2-3-4 trees. Such an algoritllffi can be build out of
exactly the same transfonnations that were used in the more
traditional bottorn-up implernentation presented in the previous
section. The general idea is quite easy to explain, even for a general
B-tree. As we go down a path, we split an encountered node if it is
full, and insert the splitting key intu the t~lther. Note that the father
cannot itself be full, so the splitting will not propagate.

Fig. 13 shows the transfonnations involved for the 2-3-4 case: a 2­
node attached to a 4-node becomes a J-node attachcd to two 2­
nodes, and a 3-node attached to a 4-node bccorTles a 4-node attached
to two 2-nodes. r1l1e transt()nnations required f(x the colored binary
tree arc exactly those of Figs. 7, 4, and 2.

i\ n imp1cmentation for 2- 3-4 trees with rebalancing done on the way
down is given in Program 5. It is interesting to conIpare this
implemcntation with the standard bottom up implementation of
Progranl J. Each docs a color flip when the currcnt node's sons are
both red ;lIld thcn a rol;ltioll if the current node's f~lther is also red.
The top-down itllplcmcntatioll manages to perf()rtll all the necessary
transformations on the way down the tree. In order top perforrn the
rotations, it is necessary to keep hold of the great-gr(lndf~lther (gg),

grandfather (g), and father (j) of the current node. The test for the
actual insertion has been rnoved out of the inner loop by the artifact
of making the universal external node (z) have two red sons. The
sequence of trees produccd for our s~lTnplc keys is that of Fig. 8. It is
possible to implement single and double rotations wilh somewhnt less
code than the balancing procedure of Prograrn 2. The idea is to
separatc the two single rotations that PrograrTl 2 docs to implement
the double rotation. Ailer tlle first rotation, the "current" node
pointer is set high enough in the tree to set up the nex t rotation. rIlle
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record node (color In; reference (node) I, r, integer k);

reference (node) 11., y, Z;

procedure initialize;
begin y ... nodc(rcd, • ,); z'" nodc(black,y,y,); h ... nodc(b1ack, z. z, -(0); end;

whose brother is a 2-node into a 3-node whose brother is a 3-node.
or a 2-node whose brother is a 4-node. However, 2-3 trees are not
ea.-;Uy handled, because the splitting occurs when a node is full. not
when it has overflowed. Thus a 3-node would have to split into a 2­
node and a I-node, which leads to obvious complications.

One tempting variant is to (i) have both the color flip and the
balance done by the top node involved, (ii) still ensure that only one
transfonnation is applicable at each node, and (iii) not disable any
transformations. l1te sequence of trees produced by such an
algorithm for our ~ple keys is shown in Fig. 14. 'Ibis algorithm
corresponds to 2-3-4 trees whose 4-nodes are represented by three
nodes connected with two red links in any orientation. Fewer
baL1ncing transfonnations are involved, but the trees are less
balanced, and the algorithm is difficult to implement cleanly, since a

node may have to examine boths sons and two grandsons.

There are many variants of Program 5 which work on the same basic
theme: "on the way down the tree, if a node with two red sons is
encountered do a color flip, and if two red links in a row are
encountered. balance the tree nodes they connect." A remarkable
variety of different tree structures can result depending upon: (i)
which node involved in a transfonnation is the one causing it to
happen, (it) which transfonnation is given preference when more
than one is applicable, and (iii) whether the application of a
transfonnation ought to disable another from happening
immediately. Program 5 corresponds to (i) having the color flip done
by the top node involved and the halance done by the the boltom
node involved, (ii) ensuring that only one transfonnation is
applicable at each node, and (iii) disabling the color flip" after the
balance but enabling the balance after the color flip.

Another possibility is to change Program 6 to do a color flip after
each balance (but then disable further balances which would involve
going further back up the tree). Fig. 15 shows a particularly bad
sequence of keys for this variant (the initial stages are omitted). Not
only is the number of possible red subtrees greatly increased, but
also three reds in a row could occur! (Consider, for example, what
happens if the last tree in Fig. 15 is connected to some red node and
a 12 is inserted. Then two red links arc passed up, resulting in three
reds in a row.) This example illustrates that some caution must be
exercised if good balanced trees are to be produced.

Program 5. Top-down 2-3-4 trees.

endif;
if v < k(j) then /(j) ... x else rlj} .. x endif;
if m(x) = black and (m(f) = red or f = g) then x .. gg endif;

endif;

if m(/(x» = m(1(x» = red or In(x) = nl(/(x» = red or In(x) = trl(t(X» = red then
jf x = z then x .. node(black. z, z, v); success" false endie;
if In(x) = black then m(l(x» ... In(f(x» .. black; trl(X) ... red

else m(x) .. black; m(j) .. red endie;

if m(x) = black or (In(l) = red and (v < keg»~ ¢ (v < k(J)) then
if v < k(j) then l(j) ... 1(x); r(x)" f, f.. g

else t(j) .. lex); l(x)" f, f.. g endif

eadif;
m(1(x» ... m(t(x» .. black; m(x) .. red:
if m(j) = red then batance(gg, g, f, x); x.. g eDdit;

encIif;
repeat;
m(t(h» .. black;
retum(x, success);
end "search and insert"

procedure search and insert (integer value v; reference (node) h);
begin reference (node) x. gg, g. f. logical success;
x .. h; k(z)'" V; success" tme;
loop until v = k(x):

gg ... g; g" t. f .. X;

if v < k(x) then x .. /(x) else x .. r(x) endit;
if m(l(x» = m(t(x» = red then

if x = z then x .. nodc(black, z, z, v); success" false;
if v < k(fJ then l(j) ... x else r(fJ .. x endit;

Program 6. Top-down 2-3-4 trees (alternate balancing code for Program 5).

trick is to maintain the colors properly, "fhe first part of the double
rotation involves no color changes: both nodes involved are red
before and after the rotation. The single rotation (which is also the
second part of the double rotation) requires that the colors of the
two nodes involved be switched. '"Il1e algorithm proceeds as follows
when a color flip causes a node to become red, and the father of that
node is also red. First, a single rotation is perfonned if necessary to
make the two red links go in the same direction. Second, the current
pointer is set to its great-grandfather node. 'lbird, a single rotation is
perfonned when the two reds in a row arc encountered, to complete
the balancing operation. This requires an extra test within the inner
loop, but the resulting code sequence is quite compact, as shown in
Program 6.

However, there is still a great deal of flexibility left in designing top­
down algorithms within this framework. As we shall sec in the next
section, the algorithms that we have been considering have essentially
the same average case perfonnance, so we should look for an
algorithm which is easily implemented. One goal might be to find an
algorithm which doesn't do any "double" rotations on the way down
the tree. It turns out that such an algorithm is easily derived from
ProgralTI 6, by simply removing all references to gg. Tbe result, given
as Program 7, is a method which allows two reds in a row to be
encountered on way down the tree, but only if they are oriented in
the same direction. Fig. 16 shows the operation of this algorithm on
our sample keys. 1ne allowed connected red subtrees arc shown in
Fig. 17 (only one from each symmetric pair is included). TIle
meaning of the labels on those trees will be discussed below.

It is also possible to implement AVL trees from the top down, by
adding the "brother" transfonnation of Fig. 11 to transfonn a 4-node

The example above indicates that we must be careful to prove that
Program 7 operates in the way that we expect. In particular, we need

14
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Figure 14. Constructing a top-down tree (first valiant)
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Figure 15. Constructing a top-down tree (second variant)
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Figure 16. Constructing a top-down single rotation tree
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Figure 17. Th~ allowed red subtrees for progranl 7.

to prove Ulat Ule Jist L of allowed connected red subtrees is "closed"
under the insertion operation. We can think of the algorithm as a
sequence of traversals of the trees of L, each of which may cause one
tree in L to be tnmsformcd into another. ;\lthough each tree has a
black link into the root and black links at the leaves, the situation is
conlplicated by the fact that the link into the root of the tree labelled
c may become red. From the point of view of the subtree above that
linle, one of its bottom links will bCCOITIe red. We shall refer to this
phenomenon as "passing a red up". 11lis of course can also happen
when the insertion tenninales and an external node is replaced by a
new red node. 'Ibe situation is more completely described by the
following lemnlas:

LEMMA 2.1. Suppose that a red subtree in L is traversed top-down
during the execution of Program 7, and that Ule subtree is exited on
black link t. Then Ule following facts are true:
0) link t may become red either by insertion of a new node or

because it points to the root of a type c subtree;
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(ii) if link t becomes red, then the links below it will become black,
and no subsequent transfonnation during the current insertion
will change their color;

(iii) whether link t becomes red or not, any connected red subtree
resulting from transfonnations on the tree being traversed is in
L.

LEMMA 2.2. Each of the trees in L does in fact arise.

These lemmas arc easily proven by case analysis from Fig. ~7. The
letters on each of the black links leaving the trees denote the trees in
L that will be fonned if the subtree in question is traversed during
execution of Program 7. the subtree is exited at that black link. and
that black link turns red.

Since two reds is a row are allowed, the ratio of the length of the
longest path to the shortes path in the tree is now 3 (consider the
situation when the keys inserted are in increasing order). so the
length of the longest path in a tree of N nodes is bOClnded by 3 IgN.
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record node (color m; reference (node) t, r: integer k);
reference (node) h, y, z;

procedure initialize;
begin Y .... nodc(rcd, , ,): z .... node(black,y,y,); h f- l1odc(black, z, Z, -(0); end;

procedure search and insert (integer value v; reference (node) h);
begin referellce (node) x, g,.f: logic~ll success;
x .... h; k( z) +- v; success +- true;
loop until v == k(x):

g +- f, f +- x; if v < k(x) then x .... lex) else x .... !(x) euelir;
if m~l(x» == NI('(X» == red or m(x) == m(l(x» == red or n/(x) == m(!(x» .:::: red then

If x == z then x +- node(black, z, z, v); success +- false eodif·
if rn(x) == black then m(l(x» +- nl('(x» +- black; nl(x) +- red'

else m(x) +- black; m(f) .... rcd endif;
if !tl(x) == black or (m(f) == red and (v < keg»~ -:t: (v < k(f)) then

if v < k(f} then l(f) +- rex); leX) +- f, f +- g
else 1(f) +- lex); lex) +- f, f .... g eodiC

endiC;
if v < k(j} then l(f) +- x else r(f) 4- X endif;

endif;
repeat;
m(f(h» +- black;
rctufn(x, success);
end "search and insert"

__________ ~Program 7. Top-down single rotation trees (2-3-4-5 trees).

'I11C implerrlentation in Progr~un 7 is notable for its brevity: it
requires only about 60% as Inuch code as the classical AVI.. and 2-3
algorithlns. The following section shows that it can also be expected
to perform as well as these algorithrns in a dynalnic sense.

3. Perfornlance Comparisons

Since balanced trees are suitable for a wide variety of applications,
there are a nUInber of different measures which could be used to
compare the various algorithms we havc been discussing. In the
previous sections we have dealt with s(nne static issues such as
program size and overhead required. In this section we shall
concentrate on the dynamic statistics of the vaIious algorithtTIs. There
are essentially two costs of interest. One is the search cost, when a
tree built by one of the algorithrns is used for searches only. 'Ine
other is the insertion, or balancing cost. 'Ine first measures the
balance quality of the trees built by the algorithm: the second the
effort consumed in achieving this balance. We have already seen
exarnplcs which supprt the intuitive notion that search cost may be
traded for insertion cost and vice versa.

TIle dichromatic framework makes the task of comparing the
algorithms somewhat simpler, since the properties of the binary trees
produced can be studied in a color-blind manner. (As nlentioned
above, this corresponds to explicitly counting node-internal
comparisons for 2-3 and 2-3-4 trees.) In what follows, we shall
concentrate on the cost of unsuccessful searches: the length of the
path traversed to an external node. (lne cost of successful searches
can be derived from this in a standard way [Kn).) In particular, we
shall consider three different measures.
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One is the worst-case path cost. which is the length of the longest
path alTIOng all trees of N keys built by the algorithm. 'Inc second,
and perhaps more representative, is the worst-case path length cost,
which is the average search cost for thc tree of maximal external
path length, among all trees buill by the algorithln. Af1.d finally we
have the average cost. which is the average search cost for a random
tree built by the algorithm, under the usual model that the Nt
possible pCImutations of the N keys used in building the tree are
equally likely. Note also that for a given class of trees, the average,
worst-case path length, and worst-case path costs fonn a non­
decreasing scquence of nUlnbers.

For a perfectly balanced tree of N keys ti1e worst-case path, worst­
case path length, and average cost are all essentially 19N, so this will
f()rnl our de jllCto standard of comp;lrison. Define the fractional cost
to be the supretnum, as N gels large, of the ratio of the cost in
question to IgN. '111uS the fractional worst-case path, worst-case path
length, and average cost for perfcctly balanced trees are all trivially
1. For trces produced by our algorithms, the fractional costs will be

~l.

'111C situation for worst-case path cost is the simplest to analyzc. It is
well-known that for AVL trees the fractional cost is l/lg<p .:::: 1.44...,
which is achieved by tile Fibonacci trees [Kn). (A Fibonacci tree of
height n is constructed by putting a Fibonacci tree of height n - 2 to
the left of the root and one of height n-1 to the right of the root.
'[bc tree of height 0 is a single external node; the tree of height 1 is
an internal node with two external sons.) For 2-3 or 2-3-4 trees a
tree which is entirely 2-nodes except for one path of 3-nodes give~ a
fractional cost of 2 (which is clearly the highest passibIe). Similarly,
from the comlnents in the previous section, the fractional cost for the
trees generated by Program 7 is 3.
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For the fractional worst-case path length cost the situation is more
difficult and interesting. We have been able to improve on a number
of previously known bounds. A common misconception is that
Fibonacci trees max imize path length "unong all AVL trees of the
same size. This would be nice, since the fractional cost for Fibonacci
trees under this metric is quite low. A Fibonacci tree of height n has
Fn+ 2 external nodes, and its external path length is defined by the
recurrence

En = En-- 1 + En- 2 + Fn+ 2, n ~ 2,
with EO = 0, E1 = 1. rIlle solution to this recurrence is

En = 4n/5 Fn+ 1 + (3n+3)/5 Fn,

so the fractional path length cost for a Fibonacci tree of height n is

limsup (4nFn+1/5 + (3n+3)Fn/5)/f~+2lgFn+2) = (4/(5«p) +
3/(5(1)2)/lg(IJ = 1.04...

(Recall that f~ = (/ ,nI5
1
/2 rounded to the nearest integer, where (p =

(5
1
/ 2 + 1)/2 is the "golden ratio".) Fibonacci trees are only about 4%

worse than optimal under this metric.

However, it is possible to construct i\ VL trees which are much
worse. Given a Fibonacci tree of height n and some positive integer
k, k < fl, we can construct an "overweight" Fibonacci tree by
replacing the rightnlost (boltOlnlllost) Fibonacci subtree of height k
by a complete binary tree with 2k external nodes. Fig. 10 shows such
a tree with n = 6 and k = 4. By appropriatcIy choosing k, we can
get a tree in which aSylnptotically all paths have the maximal
possible length. Specifically, the fractional path length for the
overweight Fibonacci tree is

limsup (Hn - Ek+k2 k+(n - k)(2 k - Fk + 2»
/(/t~_/~ +2k)lg(/~-I'k+ 2k».

If k is chosen so that 2k is about nFn, then this litnit equals

limsup 11
2P~/nFnlgFll ,

which approaches l/lg(p.

For 2-3-4 trees, a silnilar construction leads to a fractional worst-case
path length of 2. rIlle situation for 2-3 trees is less deai·. Clbis
probleJn has been studied by Rosenberg and Snyder [RS].) We can
casily upper bound this cost by 2. and and all analogous construction
to the above yields 2-3 trees with fractional cost of 2 - 1/3lg3. We
start Ule construction by bulding the already considered scrawny trees
which have maximum height for their nUITlber of leaves. (In the
sequel heights will always refer to the dichromatic framework
representation of these B-trees.) In the 2-3 or 2-3-4 case such trees
are clearly composed of a single path of 3-nodes with everyone else a
2-node. (A 2-node is also allowed at the root, if the height is odd.)
rIbese scrawny trees naturally correspond to the Fibonacci trees of
the AVL casco Without loss of generality, we can assume that the
rightmost chain is U1C one consisting of 3-nodes. To Inake these trees
overweight, we choose a k and replace the righmost scrawny tree of
height k by, in each case, the bushiest possible tree of height k. 'Ibis
bushy tree consists entirely of 3-nodes in the 2-3 case, and entirely of
4-nodes in the 2-3-4 case. An appropriate choice of k now as a
function of n, the total tree height, cOJnpletes the argument. We only
present SOlne of the details of the 2-3 argument, as the 2-3-4
argument is somewhat simpler. 'Ille fractional worst-case path length
cost for the 2-3 tree just constructed is

limsup (5k3 k1216 + (n - k)3 k12 + n2n12)

/(3 kI2 +2X2n/2)lg(3kI2 + 2X2nI2».
We now let k = Il/lg3 + 19rz. It is then easy to check that the above
limsup is 2-1/3lg3.
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Although we have not carried out the constnlction for the trees of
Program 7, it is reasonable to conjecture that a fractional cost of 3
can be obtained.

No balanced tree algorithm has yet been completely analyzed under
the average cost metric. rlbe classical bottom up algorithms are
extremely difficult to analyze because they do not "preserve"
randomness: given a random tree. its subtrees arc not randoln trees.
On the other hand, it is possible that the top-down algorithms may
submit to analysis, because they perfonn their transformations
blindly in a consistent fashion. However, even under the most
generous randomness assumptions, the recurrenccs that arise in the
analysis seem intractable. 'Ille question of whether any of these
algorithms are truly asynlptotic to 19N on the average is the most
fundamcntal opcn question in the analysis of balanced trees.

It is possible to do a fringe analysis, of the avcrage casc behavior
assuming Ulat the rebalancing transfonnations occur only at the
"bottom" of the tree. Yao [Y] showed how to conlpute the average
nUInber of 2-nodes and 3-nodes at the bottom levels of 2-3 trees, and
Drown [Ur~] gave SOJne sitnilar results for i\VL trees. Neither gave
any results concerning path lengths. but these can be derived with
the help of the following lemma for (arbitrary) binary search trees.

LEMMA 3. Given any binary search tree with n keys, let the average
unsuccessful search cost be Cn' rIben the average unsuccessful search
cost after a random insertion is

Cn+1 = Cn + 2/(n+2).

Proof The external path length of the tree is (n+ l)Cn. Each external
node is equally likely to receive the insertion, with probability
l/(n+ 1). Notice that if the insertions is at level i, then the external
path length increases by i+ 2 (two new external nodes are created at
level i+ 1, less the one at level i). Therefore, the average increase in
external path length is

1/(n+ 1) .2: (1cvel(x)+ 2) = Cn + 2,

where the sum is taken over all external nodes X. This leads
immediately to the recurrence

(n+ 2)Cn+ 1 = (n+ I)Cn + Cn + 2,
which proves the lemma. I

lllis lemma has a number of interesting consequences. By
telescoping the recurrence, we get

eN = Cn + 2HN + 1 - 2Hn+1, for N > n,
where !fN denotes the N-th harmonic number [Kn]. (In particular,
taking n == 0 and Co == 0 gives the well-known average unsuccessful
search cost for random trees, CN = 21fNt-I - 2, which says that the
fractional cost for such trees is 21n2 == 1.38... , since HN = InN
+0(1 ).) If we start with a "seed" tree which is perfectly balanced,
en = 19n, then we get

CN == 19n + 2lg(Nln) + 0(1),
and by taking n large enough, say n = O(NllgN), then we have
trees with an optilnum fractional cost,

CN = IgN + O(1oglogN).
clbis means that no balancing need be done at all if it can be
ensured that U1C tree is perfectly balanced after a a sufficient nUluber
of keys have been inserted.

Returning to the fringe analysis, let us consider how to calculate the
average scarch cost for 2-3 trees under the assulnption that
rcbabncing is only done at thc bottorn. Yao showed that the ratio of
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2-nodes to 3-nodes on the bottom level is 2:1, so any particular
external node belongs to a 3-node with probability 3/7 and a
rotation is done on insertion with probability 2/7, If a rotation is
done for an insertion on level i, then the external path length is
increased by only i+1, and Lemma 3 is easily modified to take this
into account, with the result that the fractional average cost for such
trees is 12/7 In2 = 1.188.... The result is the same for AVL and 2·
3-4 trees.

In general, each of the algorithms that we have considered has a set
of allowable connccted red subtrees, L. For each tree t in L, the
fringe analysis will give us the probability that a random insertion
will strike one of'the external nodes of I. 'Ille average external path
length in a tree with N nodes ignoring rotations above the bottom
level, is

(2. ~PI ~ax)HN+l· 2.

In this fonnula the first sum is over all I in L, and the second over
a11 external nodes x of I. In addition, Pt denotes the probability of
hitting a tree of type I, and ~x the saving in path length due to the
rotation if one is done and 0 otherwise. (If the external node is at
level i this is the difference between i+2 and the increase in the
external path length after the rotation.) Note that rotations at the
fringe always reduce the path length; however, this need not be so
for rotations higher up in the tree, In fact all the algorithms we have
considered can be forced to do rotations that will increase the path
lengUt. This is another reason why a complete average case analysis
is non-trivial.

As an application, consider the fringe analysis for Program 7, the
top-down single rotation trees. Let a, b, C, d, e, f also represent the
probabilities that a random insertion strikes an external node in a
tree labelled a, b, C, d, e, f respectively if Fig, 17. (Then 2a, 3b, 4c,
4d, 5e, Sf are the probabilites that the respective trees themselves
occur). For simplicity, assume that these probabilities reach steady·
state after a sufficient nUlnber of nodes have been inserted (Yao
shows how to make this precise). Then, from Fig. 17, we can write
down the equations

a = -2a + 4c + 3e + 3f
b = 2a - 3b + 4c + 4e + 4f
c = b - 4c + e + f
d 2b - 4d + 2e + 2f
e = 2d - Se
f = 2d - Sf.

We also have the nonnalizaLion condition

2a + 3b + '4c + 4d + 5e + Sf = 1.

The solution to this set of sitnul.taneous equations (there is one
redundant equation) is

a = 8/105, b = 11/105, C = 3/105,
d = 6/105, e = 2/105, f = 2/105.

Now, the only insertions for which t>. is non-zero are the rightmost
three in tree d. The first saves I, the other two save 2, so the average
ex lel11a1 path length in a tree wi th N nodes is

(2 - 5d) (HN+ 1 - 1) = 12/7 (HN+1 - 1),
the same as for 2-3 or AVI.. trees! (11lere are easier ways to prove
this rcsu1t~ the intention here was to illustrate a general technique for
the fringe analysis of any such algorithm.)
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The fringe analysis can be extended upwards by considering the set
of possible subtrees of red height 2, etc., but these sets tend to be
large, and the calculations quickly become prohibitively difficult
(For AVL trees, M. Brown has remarked that the fringe analysis does
not seem to extend in this fashion, because the transfonnation on a
tree depends on the shape of the tree rooted at its brother.) It does
appear that the fractional average cost quickly approaches 1. On the
average, most of the rotations occur at the bottom levels: those
higher up present a bad worst case.

The reader is again reminded that these fringe analyses rigorously
prove nothing about the average case performance of the algorithms
in the previous sections. We are unable to prove that for a given
algorithm (e.g., 2-3 trees) the average case behavior of the fringe
variant is an upper bound on the average case behavior of the real
algorithm, though we conjecture this to be true. However, they can
be taken as analytic evidence that the algorithms perfonn very well
on the average.

From a practical standpoint, simulation studies of balanced tree
algorithms consistently show that the fractional average case cost is
very close to 1. (See [KFSK], [Kn].) Table 1 gives the results of
simulations for the five implementations that we have on five
different files of 20,000 nodes each. The main empirical observation
that can be made from this table is that on the average all Ihe
algorithms have esselltia//y the same behavior. Furthermore, the
perfonnance of all the meUtods seems to be extremely insensitive to
the input. Since the external path length of a perfectly balanced
20,000 node tree is 287248, this data may be interpreted as showing
that the average-case fractional cost of these algorithms is
approximately 1.02.... Unfortuantely, even for such large N, the
value of IgN is so small that the same data is also consistent with the
hypothesis that the fractional cost is 1 (or, in other words, the
average external path length is about 19N + OJ). rlllough the
simulations do not help resolve this theoretical question, they do
indicate that the trees are extremely well balanced, since they are
within 2% of optimal.

Another point worth noting is that the insertion cost for all of the
algorithms is very low. The number of rotations or color flips to be
expected is about one every two trips down the tree. Program 7 uses
fewer rotations at the expense of a slightly less balanced tree. It is
possible to get by with even fewer rotations at the expense of more
imbalance: some of the variants mentioned in the previous section
have this property. Finally, although one might expect the top-down
algorithms to do significantly more rotations than their bottom-up
counterparts, the table show this not to be the case. A direct
comparison between the top-down and bottom-up 2-3-4 tree
algorithms shows their performance statistics to be extremely similar.

Since the algorithms are so similar in perfonnance, it is wise to pay
careful attention to the implementation, which can have a very
significant effect on the perfonnance. The empirical studies show that
the "inner loop" of the algorithms is the search loop, which must
therefore be carefully implemented. If searches are to be done much
more often than insertions, it may be advisable to have a separate
search procedure, then call "search and insert" if the search was
unsuccessful. However, for most applications this is probably not
worth the trouble, since the extra overhead in the inner loop for all
the balanced tree algorithms is so small. The inner loops of the top"
down algorithms can be "unwound" so that they involve only one
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External path length
Program File 1 File 2 File 3 File 4 File 5

2-3 trees (Prog. 1) 292457 292725 291960 292124 292269
2-3-4 trees (Prog. 3) 293315 292680 293727 293010 292464
AVL trees (Prog. 4) 291708 292364 293479 292712 292433
top-down 2-3-4 (Prog. 5) 292816 292364 293479 292712 292433
single rotation (Prog. 7) 294422 294331 294197 294137 294753

single rotations
Program File 1 File 2 File 3 File 4 File 5

2-3 trees (Prog. 1) 12537 12569 12543 12437 12534
2-3-4 trees (Prog. 3) 11643 11571 11558 11563 11567
AVL trees (Prog. 4) 14003 13875 14035 13965 13860
top-down 2-3-4 (Prog. 5) 11852 11758 11769 11726 11783
single rotation (Prog. 7) 11365 11040 11398 11306 11209

color flips
Program File 1 File 2 File 3 File 4 File 5

2-3 trees (Prog. 1) 14912 14970 14938 14922 14848
2-3-4 trees (Prog. 3) 10280 10231 10238 10346 10280
AVL tre(,.-s (Prog. 4) 9541 9492 9532 9509 9524
top-down 2-3-4 (Prog. 5) 11419 11393 11339 11439 11380
single rotation (Prog. 7) 9931 9967 9998 9948 10022

For the classical balanced tree deletion algorithms, deletion is
generally considered to be harder than insertion. Fortunately, the

Table 1. Empirical data for five programs on five random 20,000 node files _

dichromatic framework and the top·down viewpoint can lead to
deletion methods which arc not much more complex Lhan insertion.
'Ibis is illustrated by Program 8, which complctcs the deletion
opcration for 2-3-4 trees in one top-down pass. It is wetl known that
it suffices to consider the case that the node to be deleted is on the
bottom level (has external sons). This is accomplished by doing a
search for the node to be deleted, saving its position in I when it is
encountered, and continuing until an external node is hit. Then the
father of the external node is the successor to the node to be deleted.
The deletion is completed by dcleting this father after saving it., key
in the node pointed to by I. Now, if the bottom lcvel node to be
deleted is red, it may simply be removed: the difficulty is when a
black node must be deleted. Program 8 ensures that this will never
be necessary, by pushing a red down from the root to the bottom.
'Ibe transfonnations involved arc essentially those of Fig. 13 in
revcrsc, with two additions: 0) 3·nodcs are rotated, if necessary, so
that thc red (bottom) node is traversed, and (ii) if a 2·node is
encountered which has a 3- or 4-node for a brother, a balance
transfonnation is perfonned which makes thc nodc bcing traversed a
3-nooe. 'Ibe various transfonnations are diagrammed in Fig. 18.1be
sequence of trees r",~ulting from deleting our sample set of keys, in
reverse order from insertion, is shown in Fig. 19. Since Program 8
works for any 2-3·4 trec, it may be used on trees built by either
Program 3 or Programs 5 and 6. A similar algorithm is available for
Program 7, but 2-3 trees and AVI.., trees are stilt somcwhat more
difficult to handle.

more test than a straight search precedure. This compares tavorably
with the overhead required to maintain the stack (or remember
where to start rebalancing) for the bottom-up algorithms. lbe test for
Programs 6 and 7 is slightly more expensive than that for program S,
but for most applications this is probably worthwhile in view of the
simplicity of those algorithms. If search speed is essential or more
bits per node arc available, then there arc other alternatives to
con~ider. For example, on some computers it might be easier to keep
the color bits with the links, rather than the nodes. This makes the
extra tcst in the inner loop of the top-down algorithms even simpler
to implement.

4. Further Topics

Balanced trees have utility in a wide variety of applications. Desides
search and insertion, many other operations are commonly required
of such data structures. Some examples arc deletion, splitting,
concatenation, and selection. A fult discussion of these and other
problems is given by Knuth [Kn]. l)uc to lack of space, all of these
problems cannot be considered here. but rather we shall atcmpt to
illustrate some of the machinery involved by considering in detail the
deletion problem.

19
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Figure 18. Top-down 2-3-4 deletion transfonnations
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Figure 19. I)estroying a 2-3-4 tree

One nice feature of the dichromatic fralllework is that it allows us to
decouple the job of rnaillt~lining the tree balanced froln the
operations of insertion and deletion. We can design a balancer which
works on the basis of local context only, without having to gather
tree-wide inf()fmation. Such a balancer traverses the tree and uses
our standard tranforrnations: two reds on a path cause a rotation, a
black with two reds below causes a color flip. With careful traversal
design the balancer can be shown to have the following property. [f
we start with any red-bbck tree satisfying conditions 1. and 2. of
section 1 then, aner the balancer has made O(lgN) passes over the
tree, the resulting tree will he balanced, in the sense of satisfying
condition 3 for (one of) our algorjthIns. (Note that condtions 1. and
2. allow extrenlc1y unbalanced trees, for instance ones where all
internal nodes are on one red linear chain.) ~nlis implies we can run
the balancer asynchronously with the tree updatcrs, and if we
guarantee that it receives enough cycles, then we know that the tree
will relnain well balanced. 'Ine siInphcity of the rebalancing decisions
and transformations Inakes it attractive to consider putting such a
balancer into microcode and/or hardware.

for parallel execution of the top-down approach remain to be
explored and we hope to undertake thenl in a future report. For a
discussion of similar issues sec the work of Kung and Lehtnan [KuLe].

In this paper, we have exhibited a framework suitable for studying
the itnplementation and performance of a variety of balanced tree
algorithms. Within this framework, we were able to develop new
algoriL1uns which perfonn as well but arc significantly siInpler than
the classical algorithms. rnle dichrolnatic fralnework not only has
sufficient flex ibility to aid in developing new techniques, but also it
is simple enough to perhaps lead to a cUInp1cte analysis of some
balanced tree algorithm.
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5. ReferencesThe previous paragraph raised some issues about concurrent access to
our trees. As we have already mentioned, the top-down approach
implies that inserters and readers do not interfere as long as they
lock a small boundad context in the tree around themselves. In fact,
it is possible to do the rebalancing in the "shadow" of the real tree,
with the result that readers are never locked out at all. In.e only
penalty is that writers will then have to lock a slightly wider context.
I)c1eters are ssomewhat more difficult to handle. The only difficulty
is the dangling reference t in the middle of the tree. One then can
dUlcr lock the search path below l, or clse rotate t to Ule hottom of
the tree. ('Ibis can be done by a sequence of rotations which
nlaintain the defining balance properties.) Many other r31nifications
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procedure delete (integcr value v; referencc (node) h);
begin reference (node) x, g, f, t, b, bb;
x +- h: k(z) +- -00; t +- nil;
if nz(l(I(h») = m(r(r(h») = black then m(r(h» +- red endif;
loop until x = z:

g +- f, f +- x;
if v < k(x) then x +- I(x): b +- r(x); bb +- l(b)

else x +- rex); b +- lex); bb +- l(b) cndif;
if v = k(x) then t +- x endif;
if m(x) = m(f) = black and nl(b) = red then balance(g, f, b, bb) endif;
if m(x) = m(l(x» = m(r(x» = black then

m(x) +- red; m(j) +- black;
if m(b) = m(l(b» == rn(l(b» = black then rn(b) +- red
c1seif m(l(h» = red then balance(g, f, b, l(b»

elseif m(l(b» == red thcn balance(g, f, b, r(b»
endif;
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repeat;
m(r(h» ... m(z) +- black;
if I = nil then if v < keg) then leg) +- z else r(g) +- z endif;

k( t) +- k(j) endif;
retum(t);
end "delete"

Program 8. Deletion for 2-3-4 trees.
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