A DICHROMATIC FRAMEWORK FOR BALANCED TREES

Lco J. Guibas

Xerox Palo Alto Research Center,
Palo Alto, California, and
Carnegie-Mellon University

ABSTRACT

In this paper we present a miform framework for the implementation
and study of balanced tree algorithms. We show how to imbed in this
framework the best known balanced (ree techniques and then use the
framework to develop new algorithms which perform the update and
rehalincing in one pass, on the way down towards a lcaf. We
conchude with a study of performance issues and concurreut updating.

0. Introduction

Balanced trees are among the oldest and most widely used data
structures for scarching. These trees allow a wide variety of
operations, such as scarch, inscrtion, deletion, merging, and splitting
to be performed in time O(lgN), where N denotes the size of the tree
[anu], [Kn]. (Throughout the paper lg will denote log to the base 2.)
A number of different types of balanced trees have been proposed,
and while the related algorithms are often conceptually simple, they
have proven cumbersome to implement in practice. Also, the variety
of such trees and the lack of good analytic results describing their
performance has made it difficult to decide which is best in a given
situation.

In this paper we present a uniform framework for the
implementation and study of bualanced tree algorithms. The
framework deals cxclusively with binary trees which contain two
kinds of nodes: internal and external. Each internal node contains a
key (chosen from a lincar order) and has two links to other nodes
(internal or external). External nodes contain no keys and ha_ve null
links. If such a tree is traversed in symmetric order [Ku] then the
internal nodes will be visited in increasing order of their keys, A
second defining feature of the framework is that it allows one bit per
node, called the color of the node, to store balance information. We
will use red and black as the two colors. In scction 1 we further
claborate upon this dichromatic framework and show how to imbed
in it the best known balanced tree algorithms. In doing so, we will
discover suprising new and efficient implementations of these
techniques.

In section 2 we use the framework to develop new balanced tree
algorithms which perform the update and rebalancing in one pass, on

* This work was done in part while this author was a Visiting
Scientist at the Xerox Palo Al Research Center and in part under
support from the Natiofial Science Foundation, grant no. MCS75-
23738.

CH1397-9/78/0000~0008500.75 (© 1978 IEEE

Robert Sedgewick*

Program in Computer Science
and Brown University

Providence, R. I,

the way down towards a lcaf. As we will sce, this has a number of
significant advantages over the older methods. We shall examine a
number of varations on a common thcme and cxhibit full
implementations which are notable for their brevity. One
irmplementation is examined carcfully, and some propertics about its
behavior are proved.

In both scctions 1 and 2 particular attention is paid to practical
implementation issues, and cowmnplete implementations are given for
all of the important algorithms. This is significant bccausc one
measurc under which balanced trec algorithms can differ greatly is
the amount of code required (o actually implement them.

Section 3 deals with the analysis of the algorithims. New results are
given for the worst case performance, and a technique for studying
the average case is described. While no balanced tree algorithm has
yet satisfactorily submitted to an average case analysis, cmpirical
results are given which show that the various algorithms differ only
slightly in performance. One implication of this is that the top-down
algorithms of scction 2 can be rccommended for most applications
because of their simplicity.

Finally, in section 4, we discuss some other properties of the trees. In
particular, a one-pass top down deletion algorithm is presented. In
addition, we consider how to decouple the balancing from the
updating opcrations and we cxplore parallel updating.

1. The Uniform Framework

In this scction we present a uopiform framework for describing
balanced trecs. We show how to embed in this framework the most
widely used balanced tree schemes, namely B-trees [BaMc], and AVL
trees fAve]. In fact, this embedding will give us interesting and novel
implementations of these two schemes.

We consider rebalancing transformations which maintain the
symmetric order of the keys and which are local to a small portion of
the tree for obvious cfficiency rcasons. These transformations will
change the structure of the tree in the same way as the single and
double rotations uscd by AVL trees [Kn]. The difference between the
various algorithms we discuss arises in the decision of when to rotate,
and in the manipulation of the node colors.

For our first example, let us consider the implementation of 2-3
trecs, the simplest type of B-tree. Recall that a 2-3 tree consists of 2-
nodes, which have one key and two sons, 3-nodes, which have two

Authorized licensed use limited to: Princeton University. Downloaded on April 10,2021 at 13:21:26 UTC from IEEE Xplore. Restrictions apply.

keys and three sons, and external nodes which have no keys and no
sons. Inserting a new key into a 2-3 tree involves first doing an
unsuccessful scarch which terminates at an cxternal node, then
inscrting the new key into the father of that node. If this is a 3-node,
it must be split into two 2-nodes, and the overflow key inserted into
its father, and so on. The "balance” in the trce comes from the fact
that all paths starting at an internal node and cnding at an external
nodc have the same length,

A natural way (o represent a 2-3 tree as a binary tree is to make the
explicit links of the tree black and to “binarize” the 3-nodes by
connccling their two keys with a red link, as shown in Fig. 1. (It is
more convenient to draw colored links than colored nodes, so we
establish the convention that the color of a node is equivalent to the
color of the link which points to it. In our figures heavy lines will
indicate red links.) Note that this correponds to keeping track of the
total number of key comparisons involved when traversing such a
node.

corresponds to o or o

(2) O,

Figure 1. The binarization of a 3-node

To describe the dynamic aspects of the implementation, it is
sufficient to consider insertion into 2- and 3-nodes. Inscrtion into a
2-node gives a 3-node in the obvious way, as shown in Fig. 2.
Inscrtion into a 3-node requires more work, as diagrammed in Fig. 3.
(This diagram assumes that the 3-node "leans” 1o the right: the other
casc is obviously symmetric.) The three cascs here are quite different.
With respect to the structure of the tree, the first casc is a simple
inscrtion, the second is a so-called “"single rotation”, and the third is
a "double rotation”. In all three cases, the color of the top node is
eventually changed to red, with its sons and grandsons all black. This
corresponds to splitting the 3-node into two 2-nodes; the red link is
the message (hat an inscrtion needs to be performed into the node
above, using the same method.

Fig. 4. shows the scquence of 2-3 trees that results when this method
is used to insert the keys 1,9, 2, 8, 3, 7, 4, 6, and 5 in this order into
an initially empty tree. (This sequence is a well-known example
which produces a completely unbalanced “zigzag" tree if no
balancing at all is done.) Note that inserting the 2 causcs a double
rotation, the 3 causes a single rotation, the 4 causcs two double
rotations, and the S causes a single rotation.

g? » Q corresponds to R ’» %
g:? » Q corresponds to R 'gg?

Figure 2. Insertion into a 2-node

;} . ;R corresponds to %.5& ‘ %

g? ’ ;? cotresponds o %% ’ %’ 5 5 ‘@
g? . Q corresponds to % ’% ’Sﬁ% ' E E

Figire 3. Insertion into a 3-node

An implementation of scarch and insertion for 2-3 trees within this
framework is given in Program 1. For convenience, this
implementation uses the normal technique of including two artificial
nodes: a "head" node (4) whose right link points to the root of the
tree, and a special node (z) which represents all external nodes. The
key being sought is first stored in z so that the scarch always
terminates successfully. If the search terminates at z, then the search
was rcally unsuccessful, and an insertion is performed. A stack is
used to keep track of the path traversed on the way down the tree.
(The stack could be climinated by remembering the last 2-node
encountered, but we shall see better methods of doing so later.) The
single and double rotations are handled with a single procedure
called "balance”, which is given in Program 2. This procedure takes
as input links to four consecutive nodes down the path and changes
the structure of the tree to locally balance the bottom three of these
nodes, as shown in Fig. 5. (Only the two cases with fas a right link
are diagrammed: the cases with fas a Iefl link are symmetric.) Also,
the colors of the nodes pointed to by the g and f links afler the
structural transformations arc interchanged. It is casily checked that if
the fand x links are both red then this procedure performs cxactly
the second and third transformations of Fig. 3. (The program is more
general than seems necessary because we shall have occasion to use it
within scveral other algorithms.)

The implementation makes obvious an exlension o 2-3-4 trecs,
which also fit niccly into the dichromatic framework. The idea is to
allow 4-nodes (nodes with three keys and four sons), which are
represented as in Fig. 6. Now splitting only has to be donc upon

insertion into a 4-node, and the split corresponds to simply
complementing the colors of the three nodes involved, as shown in

Fig. 7. (We shall refer to this operation as a “color flip™.) Inscrtion
into a 3-node may require a single or double rotation to convert it
into a 4-node: the necessary transformations are exactly the
transformations of Fig. 3 without the color flips. Fig. 8 shows the
scquence of 2-3-4 trees corresponding to Fig. 4. The implementation
of this method corresponds to moving the test for "balance” out of
the splitting loop, as shown in Program 3. Insertion into a 2-3-4 tree
involves a sequence of color flips and at most one rotation; insertion
into a 2-3 trec may involve many rotations. Thesc trees have been
called "symmetric binary B-trees” by R. Bayer [Ba].

Let us now make a few observations about these implementations.
First, note that if we start with an internal node and follow any two

Authorized licensed use limited to: Princeton University. Downloaded on April 10,2021 at 13:21:26 UTC from IEEE Xplore. Restrictions apply.

Figure 4. Construcling a 2-3 tree

Figure 5. Focal balancing transformations

corresponds to o

Figure 6. The binarization of a 4-node

paths to external nodes, then the number of black arcs on these two
paths will be the same. (This follows from the defining property of
the trees.) Next observe that two conseccutive red links never appear
on any path. (This follows from the implementation which keeps the
red links "inside” the internal nodes.) In fact, an alternate way to
view thc algorithms is that they make exactly the transformations
necessary to maintain both these properties.

A varicty of balanced tree algorithms can be described in terms of
these simple transformations on dichromatic binary trees. In general,
we shall consider families of trees which satisfy the following two
conditions:

1. External nodes are black; internal nodes may be red or black.

2. For cach internal node, all paths from it to cxternal nodes
contain the same number of black arcs.

There will further be a third condition, depending on the family of
trees we consider, which expresses the "balance” property. In essence

record node (color m; reference (node) /, r; integer k);
reference (node) A, z;
reference (node) array p(0::50); integer i;

procedure initialize;
begin z « node(black, , ,); & « node(black, z, z, -60); end;

procedure search and insert (integer value v; reference (node) A);
begin reference (node) x; logical success;
x« B k(z) ¢ v, i+0; success « true;
loop until v = k(x):

P+« x; ie i+l ifv < k(x) then x « Kx) else x « r(x) endif

repeat;
ifx =z
then p(i) « x « node(black, z, z, v); m(z) « red; success « false;
if v < k(p(i-1)) then Lp(i-1)) « x else Hp(i-1)) « x endif;
loop while m(Xp(i))) = m(r(p(1))) = red:
m(I(p(i)) « m(r(A))) « black; m(p(9)) « red; i« i=2;

if m(p(i+1)) = red then balance(p(i—1), p(i), p(i+1), p(i+2))

else / « i+1 endif;
repeat;
endif;
m(r(h)) « black;
return(x, success);
end "search and insert"”

Program 1. 2-3 trees.

ge ' o G woreontso

.Q%

this condition will restrict the size of connected red subtrees that can
arise. Such conditions can oflen be expressed in many equivalent
forms. For 2-3-4 trees, as we have scen, an appropriate condition is

Figure 7. Insertion into a 4-node

3.(2-3-4) No path from an internal node to an external node
contains two red links in a row.

Another way to express this condition is

3.(2-3-4) The only allowed connected red subtrees are those
shown in Fig, 9.

It is straightforward to check that any binary tree satisfying
conditions 1, 2, and 3 (or 3') can be uniquely “decoded” into a 2-3-4
tree. (However, not all such trees can be produced by Program 3,)

Authorized licensed use limited to: Princeton University. Downloaded on April 10,2021 at 13:21:26 UTC from IEEE Xplore. Restrictions apply.

AR R A A s

ORORO,
O,

O,
(2 O,
ONOBIORO,
ORO.

Figure 8. Constructing a 2-3-4 tree

b o

Figure 9. The allowed red subtrees in a 2-3-4 tree

procedure balance (reference (node) value result gg, g, £ x);

begin

if (v < k(g)) = (v < k()

then if v < k(f) then I(f) « n(x); Hx) « felse () « Kx); {x) « fendif;
fex

endif;

if v < k(g) then [(g) « n(f); (/) « gelse (g) « If); If) « g endif;

g« fiomlf) & mg);

if v < k(gg) then l(gg) « g else gg) « g endif;

end "balance"

Program 2. Local balancing,

Note that since no two reds can appear in a row, the "binarized" 2-
3-4 tree satisfics thc property that from any node the ratio of the
shortest to the longest path is at most 2 (takc onc all black path and
another alternating between red and black.) From this it follows
immcdiately that if the tree has N internal nodes, then the length of
the longest path is O(lgN) (in fact < 2IgN), and so a scarch or
insertion takes logarithmic time in the worst case. All of the
algorithms that we discuss have this property.

For another example, consider the extension of the above properties
to handle gencral B-trees, An appropriate "balance condition" is:

3. (B-tree of order m). The only allowed connected red subtrees are
perfectly balanced trees with Lm/24—1 to m—1 nodes.

The implementation of a B-tree of order m involves representing a
node with x sons by a perfectly balanced subtree of x leaves. As in
the 2-3-4 case, insertions into such a subtree will sometimes require
generalized rotations to keep it perfectly balanced. When the red
subtree grows to have m+1 lcaves, it "splits” by performing a color
flip at the root, thus giving rise to two smaller red subtrees. We have
not yet preciscly defined the term "perfectly balanced"”, and this
leaves some flexibility in the implementation. If we defined a
"perfectly balanced” tree as onc in which, for cach node, the number
of nodes in the left subtree differs by at most one from the number
of nodes in the right subtrce, then we get the standard B-tree
implementation. Another plausible definition is to call a tree
"perfectly balanced” if all its external nodes appear on thc bottom
two levels. This way requires fewer transformations to maintain, but

1

procedure initialize;
begin y « node(red, , ,); z « node(black,yy,);
p(-1) « h « node(black, z, z, -o0Q); end;

loop while m(I(p(i))) = m(n(p(i))) = red:
m(l(p(1))) « m(n(p(i))) « black; m(p())) « red; i« {=2;

repeat;

if m(p(i+1)) = m(p(i+2)) then balance(p(i—1), p(), p(i+1), p(i+2)) endif;

Program 3. 2-3-4 trees (new initialization and balancing loop for Program 1),

it will not gencrally "split" nodes ecxactly in half, without an
accompanying gencralized rotation. In cither case, an implied but
weaker (cquivalent when m is a power of 2) condition is

3. (B-tree of order m). No path from an internal node to an
external node contains morc than Llgmd—1 consccutive red
links.

The usual implementation of B-trees involves storing nodes as sorted
lists of keys in scparate pages. This may be characlerized as an
implementation which avoids explicitly storing red links, (In fact the
"perfectly balanced” condition becomes irrclevant in such
implementations, since for cach nodc size, only one connccted red
subtree is allowed, that whose shape is determined by the scarch
strategy within the page.)

The above characterization of B-trees in the dichromatic framework
requires balancing both to limit the size of the connccted red
subtrees which arise and to keep those subtrees locally balanced. An
alternative is to not require local balancing at all. This Icads to fower
transformations, but onecs which arc more complex, Also, the
resulting trees are less balanced. For the 2-3-4 casc, this corresponds
to doing simple insertions to 3-nodes (thus allowing 4-nodes to be
represented in three different ways, two of which have two red arcs
in a row), and doing the local balance upon insertion into the 4-
node.

It is much more surprising that AVL trees can also be embedded in
our dichromatic framework, These arc trees in which the heights of
the subtrees rooted at the sons of each node differ by at most one.
This balance condition appears, at first sight, to be of a quite

Authorized licensed use limited to: Princeton University. Downloaded on April 10,2021 at 13:21:26 UTC from IEEE Xplore. Restrictions apply.

Figure 10. An AVL tree colored as a 2-3-4 tree

different nature than those we have been considering. Bayer |Baj
essentially showed that every AVL tree is a 2-3-4 tree: in the
dichromatic notation this can be described quite succintly, Define the
height of a nodc to be the length of the longest path from that node
o an cxternal node. To make an AVL trec into a 2-3-4 tree simply
color red exactly those links which go from a node at an cven height
to a node at an odd height. Fig. 10 shows how a Fibonacci tree [Kn)
looks after coloring. Now, condition 3 above for 2-3-4 trees follows
immediately. Condition 2 can easily be proven by induction on the
height of the tree, using the stronger hypolhesis that avery node of
height A has exactly LAh/21 black links on every path to an external
node. (Not every AVL tree can be viewed as a 2-3 tree, however.)

Observe that a 2-node corresponds to a node at an odd height whose
father is at an odd height (2 greater): a 3-node corresponds to a node
at an even height with one son at an odd height (1 less) and onc son
at an cven height (2 less): and a 4-node corresponds to a node at an
cven height whose sons are both at an odd height (1 less).
Conversely we note that a node with two red sons is balanced; a
node with one red son and one black is heavy (in the AVL sense)
towards the red son, and a node with both black sons has a balance
factor analogously determined by the colors of its grandsons. We
need go no further, as not all grandsons can be black. (Why?)

With this correspondance in mind, we can transform our algorithm
for 2-3-4 tree inscrtion into an algorithm for AVL tree insertion by
the addition of a simple test. Insertion into a 4-node implics that the
height of the two nodes on the inscrtion path is incremented by 1:
the color flip of Fig. 7 is preciscly the necessary transformation. Let
us call the node newly painted red x. To maintain the AVL property,
it is nccessary to check the brother of x. If the brother’s height is
now two less that that of x, a rebalancing transformation is necessary.
It turns out that one local balancing transformation, a single or
double rotation as in Fig. 5, involving the threc nodes above x
(along with two color changes) suffices to terminate the inscrtion.
This transformation is shown in Fig. 11. (Ouly onc case is shown; the
other three arce similar)) On the other hand, if the height of the
brother of x is now cqual to or less than that of x, then we proceed
as before: the red link from the color flip is the message that the

Figure 11, The AVL rotation

“ S dup i £ A e F

Figure 12. Constructing an AVL tree

procedure initialize;
begin y « node(red, |, ,); z « node(black,y,y,);
p(-3) « p(-2) « p(-1) « h « node(black, z, z, -00); end;

loop while m((p(1))) = m(r(p(1))) = red:
m((p(i))) « m{r(p(i))) « black; m(p())) « red; i« i-2;
| if v < k(p(i—1) then b « n(p(i—1) else b « (p(i—1)) endif;

| if m(b) = m(kb)) = m(r(b)) = black and m(Kp(i)) = m(r(p(}))) = red

] then m(p(i+1)) « black: m(b) « red; i« i—1 endif;
repeat;

if m(p(i+1)) = m(p(i+2)) then balance(p{i—1), p(i), p(i+1), p(i+2)) endif;

Program 4. AVL trees (new initialization and balancing loop for Program 1),

subtree below has increased in height by 1 (from cven to odd) and
that the height of its brother is equal or onc less. With this extra
condition the transformations of Figs. 2 and 3 suffice to terminate
the insertion when a 2-node or 3-node is cncountered. Program 4
gives an implementation for AVL trees based on these comments, (It
makes usc of the fact that a 4-node has height onc greater than its
brother if and only if both its brother and its father are black.) The
tree scquence for our sample inscrtions is given in Fig. 12,

Another way to view this implementation is that the new statement
checks to see if an overflowing 4-node has a brother which is a 2-
node. In that case we do a rotation instead of a color flip and
terminate the algorithm. After the rotation we have a 4-node and a
3-node, where before we had a 2-node and an overflowing 4-node.
This is cxactly onc instance of Bayer and McCreight's suggested

12

Authorized licensed use limited to: Princeton University. Downloaded on April 10,2021 at 13:21:26 UTC from IEEE Xplore. Restrictions apply.

improvement to the standard B-tree algorithms [BaMc]: before
splitting a node, check to see if some of the mass can be passed on
to a brother.

If we implement the full "brother” heuristic, that is also transform an
overflowing 4-node with a brother which is a 3-node into two 4-
nodes, then we obtain a different kind of tree, which might be called
a second order AVL tree. These trees satisfy the following stronger
height condition: If we consider the four subtrees at depth two below
any node, then the heights of these subtrees are within one of each
other (for AVL they could differ by as much as two). Thus these
trees are more strongly balanced than AVL. We can show, for
cxample, that in such a tree of N lcaves the longest path is at most
1.341gN (as compared lo 1441gN for AVL). It is, however,
cumbersome to implement these sccond order trees, as the
transformation required is not always a simple single or double
rolation; rather, up to ninc pointers may have to be changed.

‘The standard implementation of AVLL trecs involves keeping two bits
per node to encode the three cases (i) the node is balanced, (ii) the
left subtree is onc deeper, and (iii) the right sublree is one deeper.
The necessity of maintaining ‘two bits per node has been viewed as
disadvantage, and some rescarchers have dealt with modifying the
basic propertics of the trees in order to implement them with one
one bit per node [Ko), [KK]. Program 4 gives a direct implementation
using only bit per node. M. Brown [Br2] has remarked that this can
also be done in a more straightforward way, by pushing the two bits
of the balance factor down, one to cach son. This corresponds to an
alternative coloring of the trees: a node is marked red if its height is
onc greater than that of its brother. In this coloring, if red links are
given weight 2 (and black links weight 1), then, from any internal
node, all paths to external nodes have the same weight. (In our
framework, red links are given weight 0.) It is also possible to color
2-3 and 2-3-4 trecs with black and (double-weight) red links to give a
constant weighted path length from cach node: color both sons of
cach 2-node and the "upper” son of each 3-node red. This leads to
an alternate dichromatic framework to the one we have been
discussing. We have chosen to use zero weight links because the
algorithms appear to be somewhat simpler.

All of the algorithms described herc have two features which make
them cumbersome to implement. First, there are two loops: one
controlling the scarch (going down the trec), and one controlling the
insertion (normally going up the trec). Sccond, the code for the
balance procedure is rather cumbersome as it has to handle the four
cases of left and right single and double rotations. In the next
scction, we will sce new algorithms which avoid both of these
difficulties.

2. Top-Down Algorithms

The new algorithms, which also arc conveniently embedded within
the dichromatic framework, are based on the common theme that the
rebalancing transformations are applied on the way down the tree
during an update operation. Thus, when insertion search
encounters an external node, the record being inserted can be
attached right there, and the operation is complete. The algorithms
need not maintain a stack, since no portion of the search path need
be traversed again to restore the balance condition. In this respect,
the algorithms are similar to the weight-balanced trees introduced by
Reingold [RND]. Unfortunately those scem to require
considerably more than one bit of balance intormation per node,

an

trees

13

Figure 13. Top-down 2-3-4 trce transformations
The benefits of rebalancing on the way down will become more
apparent in subsequent scctions where we discuss performance issues.
For the moment suffice it to mention that we can at least hope for
code which is simple, cfficient, and clegant since only one loop is
necessary. Top-down schemes will also have inhererent advantages

for parallel updating, as cach writer will nced to lock only a bounded
conlext around itsclf in the tree.

Perhaps the easiest such algorithm to explain is a top-down insertion
algorithm for 2-3-4 trees. Such an algorithm can be build out of
exactly the same transformations that were used in the more
traditional bottom-up implementation presented in the previous
scction. The general idea is quite easy to explain, even for a general
B-tree. As we go down a path, we split an encountered node if it is
full, and tnsert the splitting key into the father. Note that the father
cannot itsclf be full, so the splitting will nol propagate.

Fig. 13 shows the transformations involved for the 2-3-4 case: a 2-
node attached to a 4-node becomes a 3-node attached to two 2-
nodes, and a 3-node attached 10 a 4-node becomes a 4-node attached
o two 2-nodes. The transformations required for the colored binary
tree are exactly those of Figs. 7, 4, and 2.

An implementation for 2-3-4 trees with rebalancing done on the way
down is given i Program 5. It is interesting to compare this
mmplementation with the standard bottom up implementation of
Program 3. Each doces a color flip when the current node’s sons are
both red and then a rotation if the current node’s father is also red.
The top-down implementation manages to perform all the necessary
transformations on the way down the tree. In order (op perform the
rotations, it is nccessary to keep hold of the great-grandfather (gg),
grandfather (g), and father (/) of the current node. The test for the
actual insertion has been moved out of the inner loop by the artifact
of making the universal cxternal node (z) have two red sons. The
sequence of trees produced for our sample keys is that of Fig. 8. It is
possible to implement single and double rotations with somewhat less
code than the balancing procedure of Program 2. The idea is to
scparate the two single rotations that Program 2 does to implement
the double rotation. After the first rotation, the "current” node
pointer is set high cnough in the tree to sct up the next rotation. The

Authorized licensed use limited to: Princeton University. Downloaded on April 10,2021 at 13:21:26 UTC from IEEE Xplore. Restrictions apply.

record node (color m1; reference (node) /, r; integer k),
reference (node) h, y, z;

procedure initialize;
begin y « node(red, , ,); z « node(black,y,y,). A « node(black, z, z, -00); end;

procedure scarch and insert (integer value v; reference (node) A);
begin reference (node) x, gg, g f; logical success,
x ¢ h, kKz) « v, success « true;
loop until v = k(x):

g8 -

& gcfifex

if v < k(x) then x « x) else x « r(x) endif;
if m(Kx)) = nm{r(x)) = red then
if x = z then x « node(black, z, z, v); success + false;

if v < k() then K/} « x else r(f) « x endif;

endif;

m{x)) « m(r(x)) « black; m(x) ¢ red:

if m(f) = red then balance(gg, g, f; X); x « g endif;
endif;

repeat;
min(h)) «

retum(x,

black;
success);

end "search and insert”

if m((x)) = m(Ax)) = red or m(x) = m(lx)) = red or m(x) = r(r(x)) = red then

if

Program 5. Top-down 2-3-4 trecs.

x = zthen x « node(black, z, z, v, success « false endif;

if m(x) = black then m(/x)) « m(r(x)) « black; m(x) « red

else m(x) « black; m(f) « red endif;

if m(x) = black or (m(f) = red and (v < k(g)) # (v < k())) then

ity < k(Nthen I() « Hx); {X)« f f+¢g
else /() « (x); Kx) « £ [« gendif

endif;
if v < k() then X} « x else r(f) « x endif;
if m(x) = black and (m(f) = red or f = g) then x « gg endif;

endif;

Program 6. Top-down 2-3-4 trees (alternate balancing code for Program).

trick is to maintain the colors properly, The first part of the double
rotation involves no color changes: both nodes involved are red
before and after the rotation. The single rotation (which is also the
second part of the double rotation) requires that the colors of the
two nodes involved be swilched. The algorithm proceeds as follows
when a color flip causes a node to become red, and the father of that
node is also red. First, a single rotation is performed if necessary to
make the two red links go in the same dircction. Sccond, the current
pointer is sct to its great-grandfather node. Third, a single rotation is
performed when the two reds in a row are encountered, to complete
the balancing operation. This requires an extra test within the inner
loop, but the resulting code sequence is quite compact, as shown in
Program 6.

It is also possible to implement AVL trecs from the top down, by
adding the "brother” transformation of Fig. 11 to transform a 4-node

14

whose brother is a 2-node into a 3-node whose brother is a 3-node,
or a 2-node whose brother is a 4-node. However, 2-3 trees are not
casily handled, because the splitting occurs when a node is full, not
when it has overflowed. Thus a 3-node would have to split into a 2-
node and a 1-node, which leads to obvious complications.

There are many variants of Program 5 which work on the same basic
theme: “on the way down the tree, if a node with two red sons is
encountered do a color flip, and if two red links in a row are
encountered, balance the (ree nodes they connect.” A remarkable
variety of diffcrent tree structures can result depending upon: (i)
which nodc involved in a transformation is the onc causing it to
happen, (ii) which transformation is given preference when more
than onc is applicable, and (iii) whether the application of a
transformation ought to disable another from happening
immediately. Program 5 corresponds 1o (i) having the color flip done
by the top nodce involved and the balance done by the the boltom
node involved, (ii) ensuring that only onc transformation is
applicable at cach node, and (iii) disabling the color flip after the
balance but enabling the balance after the color flip.

One templing variant is to (i) have both the color flip and the
balance done by the top node involved, (ii) still cnsure that only one
transformation is applicable at cach node, and (jii) not disable any
transformations. The scquence of trees produced by such an
algorithm for our sjaxaplc keys is shown in Fig. 14. This algorithm
corresponds to 2-3-4 trees whose 4-nodes are represcnted by three
nodes connected with two red links in any orientation. Fewer
balancing transformations are involved, but the trees arc less
balanced, and the algorithm is difficult to implement cleanly, since a

node may have to examine boths sons and two grandsons.

Another possibility is to change Program 6 to do a color flip after
each balance (but then disable further balances which would involve
going further back up the tree). Fig. 15 shows a particularly bad
sequence of keys for this variant (the initial stages are omitted). Not
only is the number of possible red subtrees greatly increased, but
also three reds in a row could occur! (Consider, for example, what
happens if the last tree in Fig. 15 is connected to some red node and
a 12 is inserted. Then two red links are passcd up, resulting in three
reds in a row.) This example illustrates that some caution must be
exercised if good balanced trees are to be produced.

However, there is still a great deal of flexibility Ieft in designing top-
down algorithms within this framework. As we shall sec in the next
scction, the algorithms that we have been considering have essentialty
the same average case performance, so we should look for an
algorithm which is casily implemented. One goal might be to find an
algorithm which docsn’t do any "double” rotations on the way down
the tree. It turns out that such an algorithm is casily derived from
Program 6, by simply removing all references to gg. The result, given
as Program 7, is a method which allows two reds in a row to be
encountered on way down the tree, but only if they are oriented in
the same direction. Fig. 16 shows the operation of this algorithm on
our sample keys. The allowed connected red subtrecs are shown in
Fig. 17 (only onc from ecach symmectric pair is included). The
meaning of the labels on those trees will be discussed below.,

The example above indicates that we must be careful to prove that
Program 7 operates in the way that we expect. In particular, we need

Authorized licensed use limited to: Princeton University. Downloaded on April 10,2021 at 13:21:26 UTC from IEEE Xplore. Restrictions apply.

0] ©) 0, () @ @ ©
(3) O O, (¥ OfRO,
©) (f oo

Figure 14. Constructing a top-down tree (first variant)

(9 (Q (4 0 O (4 O

ORO) OO, ONO ONO OSyO OO © 0

ORO OO, & G &) IOROBEOROSRONEOIONMOSAO,
O, OO ONOBROBEOROIONONENOROION0, (s) Q) G Q)

Figure 15. Constructing a top-down tree (sccond variant)

O O, (2) (2) O, () ©, ()
© (s) O
(s

Figure 16. Constructing a top-down single rotation tree

b b c d
d’ d ba ba'b

e f
bb’ bb c bb’ bh ac
ad’ ad

ad’ad

Figure 17. The allowed red subtrees for program 7,

to prove that the list L of allowed connected red subtrees is “closed”
under the inscrtion operation. We can think of the algorithm as a
scquence of traversals of the trees of L, cach of which may causc one
tree in L 1o be transformed into another. Although cach tree has a
black link into the root and black links at the leaves, the situation is
complicated by the fact that the link into the root of the tree labelted
¢ may become red. From the point of view of the subtree above that
link, one of its bottom links will become red. We shall refer to this
phenomenon as "passing a red up”. This of course can also happen
when the insertion terminates and an external node is replaced by a
new red node. The situation is more completely described by the
following lemmas:

LEMMA 2.1, Suppose that a red subtree in L is traversed top-down

during the exccution of Program 7, and thal the subtree is exited on

black link ¢ Then the following facts are true:

(i) link ¢ may become red cither by insertion of a new node or
because it points to the root of a type ¢ subtree;

15

(ii) if link ¢ becomes red, then the links below it will beccome black,
and no subscquent transformation during the current inscrtion
will change their color;

(iii) whether link ¢ becomes red or not, any connected red subtree

resulting from transformations on the tree being traversed is in
L.

LEMMA 2.2, Each of the trees in L does in fact arise.

These lemmas are easily proven by casc analysis from Fig. 17. The
letters on each of the black links leaving the trees denote the trees in
L that will be formed if the subtree in question is traversed during
exccution of Program 7, the subtree is exited at that black link, and
that black link turns red.

Since two reds is a row arc allowed, the ratio of the length of the
longest path to the shortes path in the tree is now 3 (consider the
situation when the keys inserted are in incrcasing order), so the
Iength of the longest path in a tree of N nodes is botinded by 3 IgN.

Authorized licensed use limited to: Princeton University. Downloaded on April 10,2021 at 13:21:26 UTC from IEEE Xplore. Restrictions apply.

record node (color »; reference (node) [7, integer k);

reference (node) 4, y, z;

procedure initialize;
begin y « node(red, |, |);

z « node(black.y.y,):

f « node(black, z, z, -o0); end;

procedure scarch and insert (integer value v; reference (node) A);

begin reference (node) x, g £ logical success;

x ¢ h; k(z2) < v; success « true;
loop until v = k(x):

g fi fexi ifv < k(x)then x « [x) else x « /(x) endif;
il m(l(x)) = m(r(x)) = red or m(x) = m(lx)) = red or m(x) = m(r(x)) = red then
if x = zthen x « node(black, z, z, v); success « false endif;
if m(x) = black then m({(x)) « m(r(x)) « black: m(x) « red
clse m(x) « black; m(f) « red endif;
if m(x) = black or (m(f) = red and (v < k(g)) # (v < k(f))) then
ifv < k(f) then [f) « H{x), Hx) « f feg
else n(f) « Ux); Ax) « /i f+ gendif

endif;

if v < k(f) then I(f) « x else nf) « x endif;

endif;
repeat;
m(r{(h)) « black;
return(x, success);
end "search and insert"

Program 7. Top-down single rotation trees (2-3-4-5 trees).

The implementation in Program 7 is notable for its brevity: it
requires only about 60% as much code as the classical AVL and 2-3
algoriths. The following section shows that it can also be expected
to perform as well as these algorithms in a dynamic scnse,

3. Performance Comparisons

Since balanced trees are suitable for a wide variety of applications,
there are a number of different measures which could be used to
compare the various algorithms we have been discussing. In the
previous scctions we have dealt with some static issues such as
program size and overhead required. In this section we shall
concentrate on the dynamic statistics of the various algorithms, There
are cssentially two costs of interest. One is the scarch cost, when a
tree built by one of the algorithms is used for searches only. The
other is the insertion, or balancing cost. The first measures the
balance quality of the trees built by the algorithm; the second the
cffort consumed in achieving this balance. We have already seen
examples which supprt the intuilive notion that search cost may be
traded for insertion cost and vice versa.

The dichromatic framework makes the task of comparing the
algorithms somewhat simpler, since the propertics of the binary trees
produced can be studied in a color-blind manner. (As mentioned
above, this corresponds to cxplicitly counting node-internal
comparisons for 2-3 and 2-3-4 trecs.) In what follows, we shall
concentrate on the cost of unsuccessful searches: the length of the
path traversed to an cxternal node. (The cost of successful scarches
can be derived from this in a standard way [Kn).) In particular, we
shall consider three different measures.

16

One is the worst-case path cost. which is the length of the longest
path among all trees of N keys built by the algorithm. The second,
and perhaps more representative, is the worst-case path length cost,
which is the average scarch cost for the tree of maximal external
path length, among all trees built by the algorithin. And finally we
have the average cost, which is the average scarch cost for a random
tree built by the algorithm, under the usual model that the N!
possible permutations of the N keys used in building the tree are
cqually likely. Note also that for a given class of trecs, the average,
worst-casc path length, and worst-casc path costs form a non-
decreasing sequence of numbers.

For a perfectly balanced tree of N keys the worst-case path, worst-
casc path length, and average cost arc all essentially 1gN, so this will
form our de facto standard of comparison. Define the fractional cost
to be the supremum, as N gels large, of the ratio of the cost in
question Lo IgN. Thus the fractional worst-case path, worst-case path
length, and average cost for perfectly balanced trees are all trivially
1. For trees produced by our algorithms, the fractional costs will be
> L

The situation for worst-case path cost is the simplest to analyze. It is
well-known that for AVL. trees the fractional cost is 1/lge = 1.44...,
which is achieved by the Fibonacci trecs [Kn]. (A Fibonacci tree of
height n is constructed by putting a Fibonacci tree of height n—2 to
the left of the root and onc of height n—1 to the right of the root.
The tree of height 0 is a single external node; the tree of height 1 is
an internal node with two cxternal sons.) For 2-3 or 2-3-4 trees, a
trece which is entirely 2-nodes except for one path of 3-nodes gives a
fractional cost of 2 (which is clearly the highest possible). Similarly,
from the comments in the previous scction, the fractional cost for the
trees generated by Program 7 is 3.

Authorized licensed use limited to: Princeton University. Downloaded on April 10,2021 at 13:21:26 UTC from IEEE Xplore. Restrictions apply.

For the fractional worst-case path length cost the situation is more
difficult and intercsting. We have been able to improve on a number
of previously known bounds. A common misconception is that
Fibonacci trees maximize path length among all AVL trecs of the
same size. This would be nice, since the fractional cost for Fibonacci
trees under this metric is quite low. A Fibonacci tree of height 2 has
F, ., external nodes, and its external path length is defined by the
recurrence
En = En—fl + Enﬁ2 + Fn+2v n 2 2'
with £, = 0, £y = 1. The solution to this recurrence is
"L, =4n/5F,, + (3n+3)/SF,
so the fractional path length cost for a Fibonacci tree of height n is

timsup (4nF,, /5 + Bn+3)F/5/ F, HlgF,.2) = (4/(5¢) +
3/(5¢H)/ 1gp = L04...
(Recall that £, = qr"/Sl/2 rounded to the ncarest integer, where ¢ =
(51/"-+1)/2 is the "golden ratio”.) Fibonacci trees are only about 4%
worse than optimal under this metric.

However, it is possible to construct AVL trees which are much
worse. Given a Fibonacci tree of height n and some positive integer
k, k < n, we can construct an "overweight” Fibonacci tree by
replacing the rightmost (bottommost) Fibonacci subtree of height &
by a complete binary trec with 2% external nodes. Fig. 10 shows such
atree with n = 6 and k = 4. By appropriatcly choosing k, we can
get a tree in which asymptotically all paths have the maximal
possible length. Specifically, the fractional path length for the
overweight Fibonacci tree is
limsup (£, ~ Fg+ k2% (n = k2% = Fi)
/(F = F 2Ky, — 1+ 25)).

If k is chosen so that 2K is about nk,, then this limit equals
limsup nF,/nF,JgF,
which approaches 1/1g¢.

For 2-3-4 trees, a similar construction leads to a fractional worst-case
path length of 2. The situation for 2-3 trees is less clear. (This
problem has been studied by Rosenberg and Snyder [rRs]) We can
easily upper bound this cost by 2, and and an analogous construction
to the above yiclds 2-3 trees with fractional cost of 2 — 1/31g3. We
start the construction by bulding the already considered scrawny trees
which have maximum height for their number of lcaves. (In the
scquel heights will always refer to the dichromatic framework
representation of these B-trees.) In the 2-3 or 2-3-4 casc such trees
are clearly composed of a single path of 3-nodes with everyone else a
2-node. (A 2-node is also allowed at the root, if the height is odd.)
These scrawny trecs naturally correspond to the Fibonacci trees of
the AVL case. Without loss of generality, we can assume that the
rightmost chain is the one consisting of 3-nodes. To make these trees
overweight, we choose a & and replace the righmost scrawny tree of
height & by, in cach case, the bushiest possible tree of height k. This
bushy tree consists entirely of 3-nodes in the 2-3 case, and entircly of
4-nodes in the 2-3-4 case. An appropriate choice of k now as a
function of n, the total trec height, completes the argument. We only
present some of the details of the 2-3 argument, as the 2-3-4
argument is somewhat simpler. The fractional worst-case path length
cost for the 2-3 tree just constructed is
limsup (5k3%2/6 + (n—k)3%/2 4 n272)
/(3K 242X 2" g3k 24 2x 272,

We now let & = n/lg3 + lgn. It is then casy to check that the above
limsup is 2—-1/31g3.

17

Although we have not carried out the construction for the trees of
Program 7, it is reasonable to conjecture that a fractional cost of 3
can be obtained.

No balanced tree algorithm has yet been completely analyzed under
the average cost metric. The classical bottom up algorithms are
extremely difficult to analyze because they do not “preserve”
randomness: given a random tree, its subtrecs are not random trees.
On the olher hand, it is possible that the top-down algorithms may
submit 10 analysis, because they perform their transformations
blindly in a consistent fashion. However, even under the most
generous randomness assumptions, the recurrences that arise in the
analysis scemn intractable. The question of whether any of these
algorithms arc truly asymptotic to 1gN on the average is the most
fundamental open gquestion in the analysis of balanced trees.

It is possible to do a fringe analysis, of the average case behavior
assuming that the rebalancing transformations occur only at the
"bottom" of the tree. Yao [Y] showed how to compute the avcrage
number of 2-nodes and 3-nodes at the bottom levels of 2-3 trees, and
Brown [Br2] gave some similar results for AVL trecs. Neither gave
any resulls concerning path lengths, but these can be derived with
the help of the following lemma for (arbitrary) binary scarch trees.

LEMMA 3. Given any binary search trec with n keys, let the average
unsuccessful scarch cost be C,. Then the average unsuccessful search
cost after a random insertion is

Coy1 = C, + 2/(n+2).

Proof: The external path length of the tree is (n-+ 1)C,. Each external
node is cqually likely to receive the insertion, with probability
1/(n+1). Notice that if the inscrtions is at level i then the external
path length increases by i+ 2 (two new external nodes are created at
level i+1, less the one at level i). Therefore, the average increase in
external path length is

1/(n+1) E(lcvcl(.x)+2) = C, + 2,
where the sum is taken over all external nodes x. This leads
immediatcly to the recurrence

(n+2)Cpiq = (n+1C, + C, + 2,
which proves the lemma.

This lemma has a number of interesting conscquences. By
telescoping the recurrence, we get
Cy = Cy+ 2Hy, = 2H,, 1, for N > n,
where H)y denotes the N-th harmonic number [Kn). (In particular,
taking n = 0 and Cjy = 0 gives the well-known average unsuccessful
scarch cost for random trecs, Cy = 2Hy 1 — 2, which says that the
fractional cost for such trees is 2In2 = 1.38..., since Hy = InN
+0O(1)) If we start with a “seed” trec which is perfectly balanced,
C, = lgn, then we get
Cy = lgn -+ 2g(N/n) + O(1),
and by taking n large cnough, say n O(N/]gN), then we have
trees with an optimum fractional cost,
Cy = 1gN + OQloglogN).
This mcans that no balancing nced be done at all if it can be
ensured that the tree is perfectly balanced afier a a sufficient number
of keys have been inserted.

Returning to the fringe analysis, let us consider how to calculate the
average scarch cost for 2-3 trees under the assumption that
rebalancing is only done at the bottom. Yao showed that the ratio of

Authorized licensed use limited to: Princeton University. Downloaded on April 10,2021 at 13:21:26 UTC from IEEE Xplore. Restrictions apply.

2-nodes to 3-nodes on the bottom level is 2:1, so any particular
external node belongs to a 3-node with probability 3/7 and a
rotation is done on insertion with probability 2/7. If a rotation is
done for an inscrtion on level i, then the external path length is
increased by only i+1, and Lemma 3 is casily modificd to take this
into account, with the result that the fractional average cost for such
trees is 12/7 In2 = 1.188... . The result is the same for AVL and 2-
3-4 trees.

In general, cach of the algorithms that we have considered has a set
of allowable connccted red subtrecs, L. For cach tree ¢ in L, the
fringe analysis will give us the probability that a random insertion
will strike one of the external nodes of ¢, The average external path
Iength in a tree with N nodes ignoring rotations above the bottom

level, is
(2 Dy EAx)HN+l 2.

In this formula the first sum is over all ¢ in L, and the second over
all external nodes x of + In addition, p, denotes the probability of
hitting a tree of type ¢, and A, the saving in path length due to the
rotation if one is done and 0 otherwise. (If the external node is at
fevel i this is the difference between i+2 and the increase in the
external path length affer the rotation) Note that rotations at the
fringe always reduce the path length; however, this need not be so
for rotations higher up in the tree. In fact all the algorithms we have
considered can be forced to do rotations that will increase the path
length. This is another reason why a complete average case analysis
is non-trivial,

As an application, consider the fringe analysis for Program 7, the
top-down single rotation trees. Let a, b, ¢, d, e f also rcpresent the
probabilitics that a random insertion strikes an cxternal node in a
trec labelled a, b, ¢, d, e, frespectively if Fig. 17. (Then 2a, 35, 4c,
4d, 5e, 5f arc the probabilites that the respective trees themselves
occur). For simplicity, assume that these probabilities reach steady-
state after a sufficient nuinber of nodes have been inserted (Yao
silows how to make this precise). Then, from Fig. 17, we can write
down the cquations

a = =2a + 4 + 3e + 3f

b = 2a — 3b + 4c + de + 4f
¢c = b -4 + e+ f

d = 2b - 4d + 2 + 2f

e = 2d - Se

f = 2 - 5,

We also have the normalization condition
20+ 3b+4c+4d + Se+ 5 = 1,

The solution to this sct of
redundant cquation) is

a = 8/105, b = 11/105, ¢ = 3/105,

d = 6/108, e = 2/108, f = 2/105.
Now, the only insertions for which A is non-zero are the rightmost
three in tree d. The first saves 1, the other two save 2, so the average
external path length in a tree with N nodes is

Q-5 Ay - 1) = 1277 (Hyyy - 1),
the same as for 2-3 or AVL trecs! (There are casier ways to prove
this result; the intention here was to illustrate a general technique for
the fringe analysis of any such algorithm.)

simultancous equations (there is one

n

18

The fringe analysis can be extended upwards by considering the set
of possible subtrees of red height 2, etc., but these scts tend to be
large, and the calculations quickly become prohibitively difficult.
(For AVL trees, M. Brown has remarked that the fringe analysis does
not seem to extend in this fashion, because the transformation on a
tree depends on the shape of the tree rooted at its brother,) It does
appear that the fractional average cost quickly approaches 1. On the
average, most of the rotations occur at thc bottom levels: those
higher up present a bad worst case.

The reader is again reminded that these fringe analyses rigorously
prove nothing about the average case performance of the algorithms
in the previous scctions. We are unable to prove that for a given
algorithm (e.g., 2-3 trees) the average case bchavior of the fringe
variant is an upper bound on the average case behavior of the real
algorithm, though we conjecture this to be true. However, they can
be taken as analytic evidence that the algorithms perform very well
on the average.

From a practical standpoint, simulation studics of balanced tree
algorithms consistently show that the fractional average case cost is
very close to 1. (See [KFSK], [Kn].) Table 1 gives the results of
simulations for the five implementations that we have on five
different files of 20,000 nodes each. The main cmpirical obscrvation
that can be made from this table is that on the average all the
algorithms have essentially the same behavior. Furthermore, the
performance of all the methods scems to be extremecly insensitive to
the input. Since the external path length of a perfectly balanced
20,000 node trec is 287248, this data may be interpreted as showing
that the avecrage-case fractional cost of these algorithms is
approximately 1.02.. . Unfortuantely, even for such large N, the
value of 1gN is so small that the same data is also consistent with the
hypothesis that the fractional cost is 1 (or, in other words, the
average cxternal path length is about 1gN -+ 0.3). Though the
simulations do not help resolve this theoretical question, they do
indicate that the trees are extremcly well balanced, since they are
within 2% of optimal,

Another point worth noting is that the insertion cost for all of the
algorithms is very low. The number of rotations or color flips to be
expected is about one every two trips down the tree. Program 7 uses
fewer rotations at the expense of a slightly less balanced tree. It is
possible to get by with even fewer rotations at the expense of more
imbalance: some of the variants mentioned in the previous section
have this property. Finally, although one might expect the top-down
algorithms to do significantly more rotations than their bottom-up
counterparts, the table show this not to be the case. A direct
comparison between the top-down and bottom-up 2-3-4 tree
algorithms shows their performance statistics to be extremely similar,

Since the algorithms are so similar in performance, it is wise to pay
careful attention to the implementation, which can have a very
significant effect on the performance. The empirical studies show that
the "inner loop" of the algorithms is the search loop, which must
therefore be carcfully implemented. If searches are to be done much
more often than insertions, it may be advisable to have a separate
scarch procedure, then call "scarch and insert” if the search was
unsuccessful. However, for most applications this is probably not
worth the trouble, since the extra overhead in the inner loop for all
the balanced tree algorithms is so small. The inner loops of the top-
down algorithms can be "unwound" so that they involve only one

Authorized licensed use limited to: Princeton University. Downloaded on April 10,2021 at 13:21:26 UTC from IEEE Xplore. Restrictions apply.

External path length

Program File 1 FFile2 | File3 | File 4 File §
2-3 trees (Prog. 1) 292457 | 292725 | 291960 | 292124 | 292269
2-3-4 trees (Prog. 3) 293315 | 292680 | 293727 | 293010 | 292464
AVL trees (Prog. 4) 291708 | 292364 | 293479 | 292712 | 292433
top-down 2-3-4 (Prog. 5) | 292816 | 292364 | 293479 | 292712 | 292433
single rotation (Prog. 7) | 294422 | 294331 | 294197 | 294137 | 294753

single rotations

Program Filel | File2 | File3 Filc 4 File §
2-3 trees (Prog. 1) 12537 | 12569 | 12543 | 12437 | 12534
2-3-4 trees (Prog. 3) 11643 | 11571 | 11558 | 11563 | 11567
AVL trees (Prog. 4) 14003 | 13875 | 14035 | 13965 | 13860
top-down 2-3-4 (Prog. 5) | 11852 | 11758 | 11769 | 11726 | 11783
single rotation (Prog. 7) 11365 | 11040 | 11398 | 11306 | 11209

color flips

Program File 1 Filc2 | File3 | Filc4 File 5
2-3 trees (Prog. 1) 14912 | 14970 | 14938 | 14922 | 14848
2-3-4 trees (Prog. 3) 10280 | 10231 10238 | 10346 | 10280
AVL trees (Prog. 4) 9541 9492 9532 9509 9524
top-down 2-3-4 (Prog. 5) | 11419 | 11393 | 11339 | 11439 | 11380
single rotation (Prog. 7) 9931 9967 9998 9948 10022

Table 1. Empirical data for five programs on five random 20,000 node files

more test than a straight scarch precedure. This comparcs favorably
with the overhcad required to maintain the stack (or remember
where to start rebalancing) for the bottom-up algorithms. The test for
Programs 6 and 7 is slightly more expensive than that for program §,
but for most applications this is probably worthwhile in view of the
simplicity of thosc algorithms, If scarch speed is essential or more
bits per node arc available, then there arc other alternatives to
consider. For example, on some computers it might be casier to keep
the color bits with the links, rather than the nodes. This makes the
extra test in the inner loop of the top-down algorithms even simpler
to implement.

4. Turther Topics

Balanced trees have utility in a wide variety of applications. Besides
search and inscrtion, many other operations are commonly required
of such data structures. Some examples are deletion, splitting,
concatenation, and sclection. A full discussion of these and other
problems is given by Knuth [Kn]. Due to lack of space, all of these
problems cannot be considered here, but rather we shall atempt to
illustrate some of the machinery involved by considering in detail the
deletion problem.

For the classical balanced tree deletion algorithms, deletion is
generally considered to be harder than inscrtion. Fortunately, the

19

dichromatic framework and the top-down viewpoint can lead to
deletion methods which are not much more complex than insertion,
This is illustrated by Program 8, which completes the deletion
operation for 2-3-4 trees in onc top-down pass. It is well known that
it suffices to consider the case that the node to be deleted is on the
bottom level (has external sons). This is accomplished by doing a
scarch for the node to be deleted, saving its position in ¢ when it is
encountered, and continuing until an external node is hit, Then the
father of the external node is the successor to the node to be deleted.
The deletion is completed by deleting this father afler saving its key
in the node pointed (o by . Now, if the bottom level node to be
deleted is red, it may simply be removed: the difficulty is when a
black node must be deleted. Program 8 cnsures (hat this will never
be necessary, by pushing a red down from (he root to the bottom.
The transformations involved are cssentially those of Fig. 13 in
reverse, with two additions: (i) 3-nodes are rotated, if necessary, so
that the red (bottom) node is traversed, and (ii) if a 2-node is
encountered which has a 3- or 4-node for a brother, a balance
transformation is performed which makes the node being traversed a
3-nade. The various transformations arc diagrammed in Fig, 18, The
sequence of trees resulting from deleting our sample set of keys, in
reverse order from inscrtion, is shown in Fig. 19, Since Program 8
works for any 2-3-4 tree, it may be used on (rees built by cither
Program 3 or Programs 5 and 6. A similar algorithm is available for
Program 7, but 2-3 trees and AVL trees are still somewhat more
difficult (o handle,

Authorized licensed use limited to: Princeton University. Downloaded on April 10,2021 at 13:21:26 UTC from IEEE Xplore. Restrictions apply.

A

B if

o iy

Figure 18. Top-down 2-3-4 delction transformations

e ik

Figurc 19. Destroying a 2-3-4 tree

Onc nice feature of the dichromatic framework is that it allows us to
decouple the job of maintaining the tree balanced from the
operations of insertion and deletion. We can design a balancer which
works on the basis of local context only, without having to gather
tree-wide information. Such a balancer traverses the tree and uses
our standard tranformations: two reds on a path cause a rotation, a
black with two reds below causes a color flip. With carcful traversal
design the balancer can be shown o have the following property. (f
we slart with any red-black tree satisfying coaditions 1. and 2. of
scction 1 then, afler the balancer has made O(IgN) passes over the
tree, the resulting tree will be balanced, in the sense of satisfying
condition 3 for (onc of) our algorithims. (Note that condtions 1. and
2. allow cxtremely unbalanced trees, for instance oncs where all
internal nodes are on one red lincar chain,) This implics we can run
the balancer asynchronously with the tree updaters, and if we
guarantee that it receives enough cycles, then we know that the tree
will remain well balanced. The simplicily of the rebalancing decisions
and transformations makes it attractive to consider putting such a
balancer into microcode and/or hardware.

The previous paragraph raised some issucs about concurrent access to
our trees. As we have alrcady mentioned, the top-down approach
implics that inserters and rcaders do not interfere as long as they
Jock a small boundad context in the trec around themselves. In fact,
it is possible to do the rcbalancing in the "shadow™ of the real tree,
with the result that rcaders are never locked out at all. The only
penalty is that writers will then have to lock a slightly wider context.
Deleters are ssomewhat more difficult to handle. The only difficulty
is the dangling reference ¢ in the middle of the trec. Onc then can
cither lock the scarch path below ¢, or clsc rotate ¢ to the bottom of
the tree. (This can be done by a scquence of rotations which
maintain the defining balance propertics.) Many other ramifications

20

for parallel cxecution of the top-down approach remain to be
explored and we hope to undertake them in a future report. For a
discussion of similar issucs sce the work of Kung and Lchman [KulLe).

In this paper, we have exhibited a framework suitable for studying
the implementation and performance of a varicty of balanced tree
algorithms. Within this framework, we were able to develop new
algorithms which perform as well but are significantly simpler than
the classical algorithms. The dichromatic framework not only has
sufficient flexibility to aid in developing new techniques, but also it
is simple cnough to perhaps lead to a complele analysis of some
balanced tree algorithm.

Acknowledgements: 'T'he authors wish (o thank Lyle Ramshaw for
many helpful discussions and cspecially for his contributions to
section 3. Clark Thompson and Mark Brown offered valuable
comments on both the form and the content of the manuscript.
Finally, the authors wish to acknowledge the use of the MACSYMA
system at MIT for cheeking some of the calculations in scction 3,

5. References

[AHU] Aho A., Hopcroft J., and Ullman J., The Design and
Analysis of Computer Algorithms, Addison-Wesley, 1974,

{AVL] Adelson-Velskii G., Landis E., On an information
organization algorithm, Doklady Akademica Nauk SSSR,
146 (1962), 263-266

[Ba] Bayer R., Symunetric binary B-trees: data structure and

maintenance algorithms, Acta Informatica, 1 (1972), 290-
306

Authorized licensed use limited to: Princeton University. Downloaded on April 10,2021 at 13:21:26 UTC from IEEE Xplore. Restrictions apply.

procedure dclcte (integer value v; reference (node) h); [BaMc] Bayer R, and McCreight E. Organization and

begin reference (node) x, & S b, bb; maintenance of large ordered indices, Acta Informatica, 1
x ¢ h kz) « 007 1« il (1972), 173-179
if m(Kr(h))) = m(r(s(h))) = black then m(r(h)) < red endif;
loop until x = z [Br1] Brown M., A partial analysis of height-balanced trees,
gef fex SIAM J. Comp., (to appear)
if v < k(x) then x « [x); b « nx); bb « n(b)
else x « 1(x); b« Kx); bb « Kb) endif; [Br2] Brown M., A storage scheme for height-balanced trees,
if v = k(x) then ¢ « x endif; IPL, (to appear)
if m(x) = m(f) = black and m(b) = red then balance(g, £, b, bb) endif;
if m(x) = m((x)) = m(r(x)) = black then [KFSK] Karlton P, Fuller S., Scroggs R., and Kachler T,
m(x) « red; m(f) « black; Performance of height-balanced trees, CACM 19 (1976),
if m(b) = m(K(b)) = m(r(b)) = black then m(b) « red 2328
elseif m({(b)) = red then balance(g, f, b, (b))
elscif m(r(b)) = red then balance(g, f. b, /(b)) [Kn] Knuth D., The Art of Computer Programming, Vol. III,
endif; Sorting and Searching, Addison-Wesley, 1973
endif;
repeat; [Kul.c] Kung, H.T. and Lchman, P.L., A4 concurrent data-base
m(r(h)) « m(z) « black;] manipulation problem: binary search trees, to appear in
if ¢ = nil then if v < k(g) then g) « z else 1(g) « z endif; the proccedings of the 1978 Large Data-Base
k(1) « k() endif; Conference, Berlin
return(?);
end "delete” [RND] Reingold E., Nievergelt J, Dco N. , Combinatorial

Algorithms: Theory and Practice, Prentice-Hall, 1977

Program 8. Declction for 2-3-4 X
8 ction trees [RS] Roscnberg A., and Snyder L., Minimal-comparison 2,3-

trees, SIAM J. Comp., (to appear)

[Y] Yao A., On random 2-3 trees, Acta Informatica, 9 (1978),
p. 159-170

21

Authorized licensed use limited to: Princeton University. Downloaded on April 10,2021 at 13:21:26 UTC from IEEE Xplore. Restrictions apply.

