
International Journal of Computer and Information Sciences, VoL 9, No. 1, 1980

A Method for Constructing Binary Search
Trees by Making Insertions at the Root
C. J. Stephenson 1

Received December 1976; revised April 1979

It is possible to construct a binary search tree by inserting items at the root
instead of adding them as leaves. When used for sorting, the method has
several desirable properties, including (a) fewer comparisons in the best
case, (b) fewer comparisons in the worst case, (c) a reduced variance, and (d)
good performance when the items are already nearly sorted or nearly reverse
sorted. For applications in which the tree is searched for existing items as
well as having new items added to it (e.g., in the construction of a symbol
table), the tree can be made to exhibit stacklike behavior, so that the fewest
comparisons are required to locate the most recently used items.

KEY WORDS: Binary search trees; sorting; symbol tables.

1. I N T R O D U C T I O N

A binary search tree (in the sense used here) is a col lect ion o f "nodes , "
each having a "va lue" and up to two "sons , " which are re la ted such tha t the
value o f every node exceeds or equals tha t o f its descendants on the left
(if it has any) and does no t exceed tha t o f its descendants on the r ight (if
i t has any). The nodes tha t compr ise a b ina ry search tree are sor ted by value,
in the sense tha t a lef t - to-r ight t raversal o f the tree visits them in ascending
order . In pract ice, b ina ry search trees are used for sort ing when the n u m b e r
o f i tems is no t k n o w n in advance, when in te rmedia te searches are to be made
(before all the i tems have been received), or when p r o g r a m simplici ty is
desired.

1 IBM Thomas J. Watson Research Center, Yorktown Heights, N.Y,

t5

0091-7036]80]0200-0015503.00/0 �9 1980 Plenum Publishing Corporation

16 Stephenson

A binary search tree is normally constructed by adding new nodes one
by one as leaves. As the tree grows, the old leaves becomes fathers to new
leaves. Given a long sequence of N distinct items, in random order, the
expected number of comparisons required to construct the tree approaches
2N In N, which compares well with other sorting methods, and is less than
1.39 times the information theoretic minimum of N log2 N. However, the
method performs badly when the items are already nearly sorted or nearly
reverse sorted. These are the worst cases for the algorithm, requiring up to
N (N - 1)/2 comparisons. Various tree-balancing techniques alleviate the
degradation, but involve extra bookkeeping and still leave a sorted sequence
with a performance no better than that expected with random data. (See
reference 8; reference 5; reference 3; and reference 6, pp. 193-194, 427,
and 451 et seq.)

The method that is presented here constructs a binary search tree by
inserting each new item at the root, with the old root and the rest of the
tree rearranged around it. As the tree grows, the earlier arrivals percolate
down to form the leaves and the intermediate nodes. If there are no duplicate
items, a n insertion requires the same number of comparisons as if the same
item had been added as a leaf to the same tree, but the fact that the tree is
constantly being reshaped gives the algorithm different overall characteristics.

2. A L G O R I T H M

The method of root insertion can be described as follows. The item
to be inserted in the tree becomes the new root, and a descent is made through
the tree, starting at the old root, comparing each node that is visited with the
new root. If a node has a value that exceeds that of the new root, then the
node (with its descendants on the right) is attached on the right-hand side
of the tree, and its left son becomes the next node to be visited; otherwise
the node (with its descendants on the left) is attached to the left-hand side of
the tree, and its right son becomes the next node to be visited. The points
of attachment (on the left and right of the tree) are maintained so that the
resulting tree is sorted. The descent stops when the next node to be visited
does not exist.

The algorithm is given here, after the corresponding algorithm for leaf
insertion, which is included for purposes of comparison. For the meanings
of the symbols, and the initial and final conditions, see the notes following
the algorithms.

A Method for Constructing Binary Search Trees t7

(A) Leaf insertion

if root = null then
root := new

else
begin

node := root;
while node # null do

begin
if value(new) _> value(node) then

hook := addr(right(node))
else

hook := addr(left(node));
node := O(hook)

end;
O(hook) := new

end;

left(new) := null;
right(new) := null

(B) Root insertion

node := root;
root := new;
left_hook := addr(left(root));
right_hook := addr(right(root));

while node # null do
if value(node) > value(root) then

begin
O(right_hook) := node;
right_hook := addr(left(node));
node := left(node)

end
else

begin
O(left_hook) := node;
left_hook := addr(right(node));
node := right(node)

end;

O(left_hook) := null;
O(right_hook) := null

828/9/I-2

|8 Stephenson

The following notes apply to these algorithms:

1. Each node contains three fields:

left, right pointers to sons (null if son does not exist);
value value of item to be inserted.

2. At the beginning of each sequence, the pointer variable "root"
contains the address of the existing root node (or is null if the existing tree
is empty), and the pointer variable "new" contains the address of the node
that is to be inserted (in which the "value" field is already set). At the end,
the variable "root" contains the address of the new root node.

3. The function "addr" yields the storage address of its argument.
The notation

0 (pointer)

is used to refer to the field in storage addressed by the value of "pointer."

4. In the root-insertion algortihm, as given, an assignment is made to
the field addressed by "left_hook" or "right hook" each time around the
loop, and to both fields on exit f rom the loop, irrespective of whether the
fields already contain the required values. About half these assignments are
unnecessary, and could be avoided by making a small change to the program.
Even then, however, the method of root insertion would in general require
more changes to the pointers in the tree than does the method of leaf insertion.

5. In the tree constructed by leaf insertion, any duplicate items are
hung on the right of the ancestral nodes that they match, whereas in the
tree constructed by root insertion they are hung on the left. This is done
deliberately so that duplicates are (in both cases) sorted by order of arrival.

3. E X A M P L E S

Figure 1 shows the way the trees develop for the sequence 2 8 6 3 9 7
1 4 5. Below each tree is given the number of comparisons required to make
the tree from its predecessor. This example has been chosen for purposes
of illustration, and the tree that is built by root insertion is restructured more
than is typical.

Figure 2 shows the corresponding trees for the nearly sorted sequence
1 2 3 4 6 5 7 8 9. Note that in this case the method of root insertion
requires far fewer comparisons.

Figure 3 presents experimentally obtained histograms for the number of
comparisons required to sort 1000 random number 100,000 times (see
Appendix). The theoretical best and average values are also shown (see
Section 4).

A Method for Constructing Binary Search Trees 19

2 2 2

\ . k \
8 8 8

/ /
6 6

/
3

2
\

8
/ \

6 9
/

3

2
\

8
/ \

6 9
/ \

3 7

{Y) (2) f 3) (21 (3)

2 2
/ \ / \

! 8 I 8

/ X / X
6 9 5 9

I X - / \
3 7 3 7

\
4

(t) (4)

A l g o r i t h m (A) - L e a f inse r t ion

(To ta l n u m b e r of c o m p a r i s o n s = 21)

/
2

\
8

/ \
6 9

/ \
3 7

\
4

\
5

(5)

8
/

2

6 3 / 9
/ \ / X / ' \

2 8 2 6 3 3 9

\ I X / \6 /
8 2 6 2 8

\
8

{ I) t 2) 12) (3 } (4)

3 9

/ \ I
2 6 8

4 5
/ \ / \

t " 7 4 7

k / \ / / \
3 6 9 1 6 9

/ / \ f
2 8 3 8

/

2

(31 (41 (3)

A l g o r i t h m (B) - R o o t inser t ion

(To ta l n u m b e r of c o m p a r i s o n s = 22)

F i g .] . B i n a r y t r e e c o n s t r u c t i o n f o r t h e s e q u e n c e 2 8 6 3 9 7 1 4 5.

2 0 S t e p h e n s o n

1
\

2

C1)

I
\

2
\

3

1 I I I 1 1
\ \ \ \ \ \

2 2 2 2 2 2
\ \ \ \ \ \

3 3 3 3 3 3
\ \ \ \ \ \

4 4 4 4 4 4
\ \ \ \ \
6 6 6 6 6

l / \ / \ / \
5 5 7 5 7 5 7

\ k
8 8

\
9

(2) (3) (4) (5) (5)

A l g o r i t h m (A) , L e a f inse r t ion

(To ta l n u m b e r of c o m p a r i s o n s = 33)

(6) (7)

F i g . 2.

2
/

I 2
/

1

3
/

(I)

2
/

1

4 6 5 7 8 9
I I I\ ,I I I

3 4 4 6 5 7 8
/ / / / \ / /

3 3 4 6 5 7
/ / / / \ /

2 2 3 : 4 6 5
I / a / / I \

1 " f / ' ' ' 3 4- 6
/ / /

2 3
/ /

1 ' 2
/

1

(l) (~) (I) 12) 2) (11

A l g o r i t h m (B) - R o o t i n s e r t i o n

(To ta l n u m b e r of c o m p a r i s o n s = 10)

(1)

Binary tree construction for the nearly sorted sequence 1 2 3 4 6 5 7 8 9.

4. A N A L Y S I S

(1) If the items are distinct (i.e., there are no duplicates), the number
of comparisons required to insert an item at the root is the same as the number
of comparisons required to add the same item to the same tree as a leaf.

This follows immediately from the algorithms given in Sec. 2, since
the same path through the tree is taken in the two cases.

(2) When a new item is inserted at the root, any existing node can
descend at most one level in the tree.

In the root-insertion algorithm, the points o f attachment (addressed
by " l e f t h o o k " and "right_hook ~') are initialized to the new root and descend
at most one level each time around the loop, while the node to be attached
(addressed by "node") is initialized to the old root and descends exactly

A Method for Constructing Binary Search Trees 21

THEORETICAL
BEST CASE,
ROOTINSERTION.

THEORETICAL
BEST CASE,
LEAF INSERTION

/ROOT INSERTION

, / ,
0 4000 8000 16000

JMEAN (BOTH METHODS)

/ / L E A F INSERTION

12000

NUMBER OF COMPARISONS

Fig. 3. Histograms for the number of comparisons required to sort 1000 items using
leaf insertion (conventional method) and root insertion (new method), showing also the
theoretical minimum and average values. Each histogram was obtained by sorting 100,000
sequences of 1000 random numbers.

one level each time around the loop. The old root therefore descends one
level, and lower nodes descend at most one level.

(3) In a tree constructed by root insertion, if a left or right pointer
field in a node once becomes null, it remains null thereafter, no matter
what items are subsequently inserted.

This also follows straightforwardly f rom the algorithm as given. The
left and right pointer fields are set non-null only in the loop, which terminates
if they are already null.

Corollary: A node that once becomes a leaf remains a leaf.

(4) Consider the tree that is constructed by root insertion f rom a
sequence Yl Y2 "'" Y~ of distinct items, and also the tree that is constructed
by the same method f rom the same sequence except that after insertion of
y,~ a leaf containing Yz is removed from the tree (1 ~ l ~< rn ~ n). The first
tree differs from the second tree only in possessing the extra leaf y~.

22 Stephenson

In the first tree, it follows f rom (3) that the node y~ remains a leaf
after the insertion of y~, and f rom the root-insertion algorithm the presence of
a leaf can affect only its own point of attachment (and not the ancestral
connections), since the loop terminates as soon as a leaf has been attached.
Therefore, the presence or absence of y~ has no effect on the connections
between the other nodes in the tree.

(5) The tree that is constructed by root insertion f rom any given
sequence of distinct items is identical to the tree that is constructed by leaf
insertion f rom the reverse sequence.

Postulate a sequence S that has the property to be proved, and let r
be any item not in S. Then f rom (3) and (4) the sequence rS also has the
property, since there is a unique position in the tree at which item r can exist
as a leaf. By induction, since any sequence of length 1 has the property,
all sequences have the property.

(6) In the tree constructed by root insertion from a sequence in which
item p precedes item q, the node containing q can never become a descendant
of the node containing p.

This follows directly from (5) and the fact that q precedes p in the reverse
sequence.

(7) In a tree constructed by root insertion from a sequence y~ yz --- y~
of distinct items in random order, the expected depth in the tree of item yr is

d~ = 2H,~-r+l - - 2 (1)

where the root is reckoned to be at a depth of zero, and

r

From (5), the expected depth of item Yr in the tree constructed by root
insertion is the same as the expected depth of item Y,-r+l in a tree constructed
by leaf insertion. Equation (1) then follows from the expected number of
comparisons required for an unsuccessful search in a tree containing n -- r
items; see, for example, reference 6, p. 427.

(8) Average number of comparisons. The average number of com-
parisons required to construct a tree, f rom a sequence of N distinct items in
random order, is the same for the two algorithms.

Since the sequence is in random order, all possible subsequences of the
first m items are equally likely, and in particular any subsequence has the
same likelihood as its reverse. Then f rom (1) and (5) the expected number
of comparisons required to insert the (m q- t)th item is equal for the two

A Method tot Constructing Binary Search Trees 23

algorithms; hence the average number of comparisons required to insert
all N items is also equal, and is known to be

Car =, 2(N + 1) [IN - - 4 N (2)

which for large N approaches the value

t;%v ~ 2N(ln N -- 2 + 7) + O(ln N) (3)

where 7 is Euler's constant (approximate value 0.577). (This result can be
derived from reference 6, page 427.)

(9) B e s t case. The minimum number of comparisons required to
sort N items by leaf insertion occurs when the tree is perfectly balanced, and
is

Cmtn = ~ [log2nj (4)
l~n~N

whence, for large N,

Cmin ~ N(log2 N -- 2) + O(log2 N) (5)

The minimum number of comparisons with root insertion is N - 1, and
occurs when the items are already sorted or reverse sorted (or when they are
all the same).

(10) W o r s t case. The maximum number of comparisons required
to sort N items by leaf insertion occurs when the items are already sorted
or reverse sorted (or when they are all the same), and is N (N - 1)/2. The
maximum number of comparisons required with root insertion is not known
for certain, but is also of order N 2, and appears to be as follows.

Consider a sequence consisting of two increasing subsequences
Yl Y~ "" Ym and z l z 2 .. . ZN_~,~ such that y~ > ZN_,~. This sequence can be
made by cutting a sorted deck. The comparisons required to insert the items
at the root are as follows:

Item Number of Comparisons

Yl 0

Y2, Yz , Ym 1

zz m

z~ , z z ZN_~ m -q- 1

24 Stephenson

Hence the total number of comparisons is

C = (m - - 1) + m - k (A T - - m - - 1) (m+ 1)

= --m 2 + Nm + (N - 2) (6)

For a given value of N, C reaches a maximum when m = N/2 (N even)
or when m = (N 4- 1)/2 (N odd), and is then

N 2
C - - ~ + N - - K (7)

where K = 2 (N even) or 9/4 (N odd).
For N ~< 10, it has been shown by exhaustive search that the number of

comparisons is in fact as given by Eq. (7), and occurs for the "cut decks"
described above, for their reflections, and for the closely related sequences
in which yl is exchanged with ZN_~, and/or y~ is exchanged with zz.

(11) Variance. Let p(N, C) be the probability of performing exactly
C comparisons when sorting N distinct items that arrive in random order,
and let s2(N) be the variance of the corresponding probability distribution.
The variance for leaf insertion is known to be

s 2 = 7N 2 -- 4(N + 1) 2 H~) -- 2(N -~ 1) HN -}- 13N (8)

whence, for large N,

Here

and

s 2 ~ (7 - -2~2] N2-} - O(Nln N)
3]

1 H(- E
l~<f4n

2 ~ 2
7 ~ ~ 0.42027

(9)

(See reference 8; and reference 6, p. 672.)
It is clear from Fig. 3 that the variance for root insertion is less than for

leaf insertion. Unfortunately, an exact expression has not been found for it,
owing to the difficulty of obtaining a recurrence relation for a tree with a
changing shape. Some experimental results are presented in Fig. 4. The points
that are circled are either exact, or were derived from a sufficient number of
independent tests for there to be prima facie confidence that the value of
logl0s is known to an accuracy of 4-0.01. The other points were derived from
a smaller number of tests, and confidence limits for them were not obtained.

A Method for Constructing Binary Search Trees 25

LEAF INSERTION

5 - $2 = 7N2- 4(N+1)2 HN(2)- 2(N+I) HN+ 15N

4

er "~ 31 ""
o

2

I "|

0 / tz
f

|

_ I I I _ I _ _ 1

I 2 5 4 5 6

Ioglo N
Fig. 4. Variance of number of comparisons required to sort N
randomly chosen items, using leaf insertion (conventional method)
and root insertion (new method). The values for leaf insertion
are exact. The results for root insertion were obtained experi-
mentally: the circled points represent cases for which the value of
log10 s is known within --0.01 ; the other points are approximate.

(12) The rearrangement of the tree that accompanies an insertion at
the root can be thought of as a process of "splitting" the existing tree, then
attaching the two resulting subtrees to the new root. This suggests comparison
with the algorithm for splitting balanced trees, given by Crane in reference 3,
and summarized in reference 6, on p. 466-467. The algorithms are, however,
quite different, and in general the resulting tree is also different. Crane's
method restructures the two subtrees, as it creates them, so as to maintain
balance. The root insertion algorithm does not maintain balance, and in
fact some of its desirable properties depend on the lack of balance.

(13) For a comparison with a sorting method that uses a set of trees,
see references 1 and 2.

Note that the performance anaIyses given in this section are expressed
purely in terms of the number of comparisons. It is possible to envisage cir-

26 Stephenson

cumstances in which the cost of ' modifying a tree pointer might exceed the
cost of making a comparison. This would usually hurt the performance of
root insertion more than that of leaf insertion.

5. A N A R B O R E A L STACK

The discussion and analysis given above have been restricted to the
situation in which each descent through the tree is associated with the addi-
tion of a new node. This is what happens when a tree is used to sort a list
of items. A binary search tree can also be used, however, in situations where
it has to be searched for existing entries as well as having new entries added
to it. An example is the construction of a symbol table for an assembler
or compiler: the tree is searched for the name of a variable; if it is already
in the tree, the existing entry is used; otherwise a new entry is added. For
these applications it is necessary to take account of the work involved in
locating an existing entry, as well as in adding a new one.

A tree that is constructed by adding leaves resembles a list, in the sense
that the first item to be inserted has a depth of 0 (is at the root), the second
arrival has a depth of 1 (hangs directly f rom the root), the third arrival has
a depth of 1 or 2, etc. Therefore, the earliest arrivals can be located with the
fewest comparisons. On the other hand, a tree that is constructed by root
insertion resembles a stack, since the most recently inserted item has a depth
of 0, the penultimate arrival has a depth of 1, the antepenultimate item has
a depth of 1 or 2, and in general, f rom Sec. 4, paragraph (2), the depth of the
rth item is at most n - - r, where n is the number of items in the tree. In this
case it is the most recent arrivals that can be located with the fewest com-
parisons. [For the expected depth of an item, as a function of its arrival time,
see Sec. 4, paragraph (7).]

The method of root insertion can be adapted to combine a search with
a conditional insertion in such a way as to leave the matching entry (whether
old or new) at the root of the tree. A tree that is manipulated in this way has
the property that the items which have been most recently referred to are
always near the root, irrespective of when they were first encountered. This
is desirable when constructing symbol tables, since references to names tend
to be clustered.

The method can be described as follows. A name is given which is to
be searched for, and inserted if not a l ready present. A temporary root is
made, and the existing tree is searched for a match with the given name.
So long as a match is not found, the descent through the tree is handled in
the same way as for an unconditional insertion, the tree being rearranged
as necessary around the new root. I f an old entry for the name does not
exist, the temporary root is made permanent; otherwise the old entry is

A Method for Constructing Binary Search Trees 27

promoted to the root, and any descendant nodes are reconnected to the
tree without inspection. Thus the number of nodes that are visited is the same
as if the same tree had been searched for the same name without any
rearrangement, but the fact that the tree is reshaped results in different overall
characteristics, with the fewest comparisons being required to locate the most
recently used names.

This method shows up to its greatest advantage when the program being
assembled or compiled contains many names, most of which are declared
at the beginning and not used thereafter, and a few of which are used many
times, with clustered references.

The algorithm is given here. See also the notes that follow.

(C) Root insert ion or promot ion

node := root;
left_book := addr(left(dummy));
right_hook := addr(right(dUmmy));

while node # null do
if value(node) = name then

begin
O(left_hook) := left(node);
O(right_hook) := right(node);
root := node;
go to bottom

end;
if value(node) > name then

begin
O(right_hook) := node;
right_hook := addr(left(node));
node := left(node)

end
else

begin
O(left_book) := node;
left_hook := addr(right(node));
node := right(node)

end;

O(left_hook) := null;
O(right_hook) := null;
root := new_node ();
value(root) := name;

bottom:
left(root) := left(dummy);
right(root) := right(dummy)

28 Stephenson

The following notes apply to this algorithm:

1. Each node contains the same three fields described in the corre-
sponding note of Sec. 2. In practice, there would normally be additional
fields containing (for example) the attributes associated with the name.

2. At the beginning of the sequence, the pointer variable "root"
contains the address of the existing root node (or is null if the existing tree
is empty); the pointer variable "dummy" contains the address of a spare
node (which is used as a temporary root during the search), and the variable
"name" contains the value of the item that is to be inserted or promoted.
At the end, the variable "root" contains the address of the new root node,
in which the "value" field contains the value given in "name."

3. The function "new_node" obtains storage for a new node and
yields its address.

4. Although in the algorithm as written there appear to be two com-
parisons in the loop, this is a quirk of the Algol-like representation. In
practice, most computers require only one comparison to determine the sign
of a difference (--, 0 or +).

As noted earlier, the method of root insertion tends to involve more frequent
changes to the tree pointers than occurs using conventional leaf insertion.
It is possible to envisage circumstances in which the extra cost of making
these changes might outweigh the benefit of the stacklike behavior.

6. F I N A L REMARKS

The method of "root insertion" has several advantages over the con-
ventional method of "leaf insertion."

Root insertion has particular merit when the items arrive nearly sorted
or nearly reverse sorted. In these cases, the method wins handsomely in terms
of comparisons, and does not necessarily lose in terms of modifications
(cf. Fig. 2).

As a method for constructing symbol tables, root insertion is most
advantageous when there are many names that appear only once, and the
references to the remaining names are clustered.

A C K N O W L E D G M E N T S

The writer is indebted to Ashok K. Chandra, for a major contribution
to Sec. 4; and to William H. Burge, Marc A. Auslander, and the editor and
referees, for some valuable suggestions.

A Hethod for Constructing Binary Search Trees 29

A P P E N D I X : G E N E R A T I O N O F R A N D O H N U H B E R S

Some init ial tests were made with a p s e u d o - r a n d o m number genera tor
in which the number v~+l was genera ted f rom its predecessor v~ by the rule

v~+l = mod(16807v~, 2 ~1 - - 1)

(See references 4 and 7.) I t was, however , f ound tha t the measured var iance
for leaf inser t ion d id no t agree with the expected values [Eq. (9)]. The gener-
a tor was then modif ied to implement the rule

v~+l = x @ mod(16807v,~, 2 al - - 1)

where " @ " s tands for "exclus ive-or ," and x represents the lef t-al igned

reversal o f the 20 low-order bits f rom the basic System/370 t ime-of -day
clock, the last bi t of which t icks every microsecond. This modif ied genera tor
was found to yield results for leaf inser t ion which were within 1% of the
expected values, and was used for all the results presented here.

REFERENCES

1. W. H. Burge, "An Analysis of a Tree Sorting Method and Some Properties of a Set
of Trees," Proceedings of t he First USA-Japan Computer Conference (1972), pp. 372-379.

2. W. H. Burge, "A Correspondence Between Two Sorting Methods," IBM Research
Report, RC 6397 (1977).

3. Clark A. Crane, "Linear Lists and Priority Queues as Balanced Binary Trees," Ph.D.
Thesis, Stanford University, Computer Science Department Report, STAN-CS-72-259
(1972).

4. Fred G. Gustavson and Werner Liniger, "A fast random number generator with good
statistical properties," Computing 6:221-226 (1970).

5. T. N. Hibbard, "Some combinatorial properties of certain trees with applications to
searching and sorting," JACM 9(1):13-28 (1962).

6. D. E. Knuth, The Art of Computer Programming, Vol. 3, Sorting and Searching (Addison-
Wesley, Reading, Massachusetts, 1973).

7. P.A.W. Lewis, A. S. Goodman, and J. M. Miller, "A pseudo-random number generator
for the System/360," IBM Syst. J. 8:136-146 (1969).

8. P F. Windley, "Trees, forests and rearranging," Comput. J. 3(2):84-88 (1960).

