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It is possible to construct a binary search tree by inserting items at the root 
instead of adding them as leaves. When used for sorting, the method has 
several desirable properties, including (a) fewer comparisons in the best 
case, (b) fewer comparisons in the worst case, (c) a reduced variance, and (d) 
good performance when the items are already nearly sorted or nearly reverse 
sorted. For applications in which the tree is searched for existing items as 
well as having new items added to it (e.g., in the construction of a symbol 
table), the tree can be made to exhibit stacklike behavior, so that the fewest 
comparisons are required to locate the most recently used items. 
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1. I N T R O D U C T I O N  

A binary search tree (in the sense used here) is a col lect ion o f  "nodes , "  
each having  a "va lue"  and  up  to two "sons , "  which are re la ted  such tha t  the 
value o f  every node  exceeds or  equals tha t  o f  its descendants  on the left 
(if it  has  any) and  does no t  exceed tha t  o f  its descendants  on the r ight  (if  
i t  has any). The  nodes  tha t  compr ise  a b ina ry  search tree are sor ted  by value,  
in the sense tha t  a lef t - to-r ight  t raversal  o f  the  tree visits them in ascending  
order .  In  pract ice,  b ina ry  search trees are  used for  sort ing when the n u m b e r  
o f  i tems is no t  k n o w n  in advance,  when in te rmedia te  searches are to be made  
(before all  the i tems have been received), or  when p r o g r a m  simplici ty  is 
desired.  
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A binary search tree is normally constructed by adding new nodes one 
by one as leaves. As the tree grows, the old leaves becomes fathers to new 
leaves. Given a long sequence of N distinct items, in random order, the 
expected number of comparisons required to construct the tree approaches 
2N In N, which compares well with other sorting methods, and is less than 
1.39 times the information theoretic minimum of N log2 N. However, the 
method performs badly when the items are already nearly sorted or nearly 
reverse sorted. These are the worst cases for the algorithm, requiring up to 
N ( N -  1)/2 comparisons. Various tree-balancing techniques alleviate the 
degradation, but involve extra bookkeeping and still leave a sorted sequence 
with a performance no better than that expected with random data. (See 
reference 8; reference 5; reference 3; and reference 6, pp. 193-194, 427, 
and 451 et seq.) 

The method that is presented here constructs a binary search tree by 
inserting each new item at the root, with the old root and the rest of the 
tree rearranged around it. As the tree grows, the earlier arrivals percolate 
down to form the leaves and the intermediate nodes. If  there are no duplicate 
items, a n insertion requires the same number of comparisons as if the same 
item had been added as a leaf to the same tree, but the fact that the tree is 
constantly being reshaped gives the algorithm different overall characteristics. 

2. A L G O R I T H M  

The method of root insertion can be described as follows. The item 
to be inserted in the tree becomes the new root, and a descent is made through 
the tree, starting at the old root, comparing each node that is visited with the 
new root. If  a node has a value that exceeds that of the new root, then the 
node (with its descendants on the right) is attached on the right-hand side 
of the tree, and its left son becomes the next node to be visited; otherwise 
the node (with its descendants on the left) is attached to the left-hand side of 
the tree, and its right son becomes the next node to be visited. The points 
of attachment (on the left and right of the tree) are maintained so that the 
resulting tree is sorted. The descent stops when the next node to be visited 
does not  exist. 

The algorithm is given here, after the corresponding algorithm for leaf 
insertion, which is included for purposes of comparison. For  the meanings 
of the symbols, and the initial and final conditions, see the notes following 
the algorithms. 



A Method for Constructing Binary Search Trees t7 

(A) Leaf insertion 

if root = null then 
root := new 

else 
begin 

node := root; 
while node # null do 

begin 
if value(new) _> value(node) then 

hook := addr(right(node)) 
else 

hook := addr(left(node)); 
node := O(hook) 

end; 
O(hook) := new 

end; 

left(new) := null; 
right(new) := null 

(B) Root insertion 

node := root; 
root := new; 
left_hook := addr(left(root)); 
right_hook := addr(right(root)); 

while node # null do 
if value(node) > value(root) then 

begin 
O(right_hook) := node; 
right_hook := addr(left(node)); 
node := left(node) 

end 
else 

begin 
O(left_hook) := node; 
left_hook := addr(right(node)); 
node := right(node) 

end; 

O(left_hook) := null; 
O(right_hook) := null 

828/9/I-2 
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The following notes apply to these algorithms: 

1. Each node contains three fields: 

left, right pointers to sons (null if son does not exist); 
value value of item to be inserted. 

2. At the beginning of each sequence, the pointer variable "root"  
contains the address of the existing root node (or is null if the existing tree 
is empty), and the pointer variable "new" contains the address of the node 
that is to be inserted (in which the "value" field is already set). At the end, 
the variable "root"  contains the address of the new root node. 

3. The function "addr"  yields the storage address of its argument. 
The notation 

0 (pointer) 

is used to refer to the field in storage addressed by the value of "pointer." 

4. In the root-insertion algortihm, as given, an assignment is made to 
the field addressed by "left_hook" or "right hook" each time around the 
loop, and to both fields on exit f rom the loop, irrespective of whether the 
fields already contain the required values. About half these assignments are 
unnecessary, and could be avoided by making a small change to the program. 
Even then, however, the method of root insertion would in general require 
more changes to the pointers in the tree than does the method of leaf insertion. 

5. In the tree constructed by leaf insertion, any duplicate items are 
hung on the right of the ancestral nodes that they match, whereas in the 
tree constructed by root insertion they are hung on the left. This is done 
deliberately so that duplicates are (in both cases) sorted by order of arrival. 

3. E X A M P L E S  

Figure 1 shows the way the trees develop for the sequence 2 8 6 3 9 7 
1 4 5. Below each tree is given the number of comparisons required to make 
the tree from its predecessor. This example has been chosen for purposes 
of illustration, and the tree that is built by root insertion is restructured more 
than is typical. 

Figure 2 shows the corresponding trees for the nearly sorted sequence 
1 2 3 4 6 5 7 8 9. Note that in this case the method of root insertion 
requires far fewer comparisons. 

Figure 3 presents experimentally obtained histograms for the number of 
comparisons required to sort 1000 random number 100,000 times (see 
Appendix). The theoretical best and average values are also shown (see 
Section 4). 
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( 1 )  

Binary tree construction for the nearly sorted sequence 1 2 3 4 6 5 7 8 9. 

4. A N A L Y S I S  

(1) If  the items are distinct (i.e., there are no duplicates), the number 
of  comparisons required to insert an item at the root is the same as the number 
of comparisons required to add the same item to the same tree as a leaf. 

This follows immediately from the algorithms given in Sec. 2, since 
the same path through the tree is taken in the two cases. 

(2) When a new item is inserted at the root, any existing node can 
descend at most one level in the tree. 

In the root-insertion algorithm, the points o f  attachment (addressed 
by " l e f t h o o k "  and "right_hook ~') are initialized to the new root and descend 
at most one level each time around the loop, while the node to be attached 
(addressed by "node") is initialized to the old root and descends exactly 
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Fig. 3. Histograms for the number of comparisons required to sort 1000 items using 
leaf insertion (conventional method) and root insertion (new method), showing also the 
theoretical minimum and average values. Each histogram was obtained by sorting 100,000 
sequences of 1000 random numbers. 

one level each time around the loop. The old root therefore descends one 
level, and lower nodes descend at most one level. 

(3) In a tree constructed by root insertion, if a left or right pointer 
field in a node once becomes null, it remains null thereafter, no matter 
what items are subsequently inserted. 

This also follows straightforwardly f rom the algorithm as given. The 
left and right pointer fields are set non-null only in the loop, which terminates 
if they are already null. 

Corollary: A node that once becomes a leaf remains a leaf. 

(4) Consider the tree that is constructed by root insertion f rom a 
sequence Yl Y2 "'" Y~ of  distinct items, and also the tree that is constructed 
by the same method f rom the same sequence except that after insertion of  
y,~ a leaf containing Yz is removed from the tree (1 ~ l ~< rn ~ n). The first 
tree differs from the second tree only in possessing the extra leaf y~. 
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In the first tree, it follows f rom (3) that the node y~ remains a leaf 
after the insertion of y~, and f rom the root-insertion algorithm the presence of 
a leaf can affect only its own point of  attachment (and not the ancestral 
connections), since the loop terminates as soon as a leaf has been attached. 
Therefore, the presence or absence of  y~ has no effect on the connections 
between the other nodes in the tree. 

(5) The tree that is constructed by root insertion f rom any given 
sequence of distinct items is identical to the tree that is constructed by leaf 
insertion f rom the reverse sequence. 

Postulate a sequence S that has the property to be proved, and let r 
be any item not in S. Then f rom (3) and (4) the sequence rS also has the 
property, since there is a unique position in the tree at which item r can exist 
as a leaf. By induction, since any sequence of length 1 has the property, 
all sequences have the property. 

(6) In the tree constructed by root insertion from a sequence in which 
item p precedes item q, the node containing q can never become a descendant 
of  the node containing p. 

This follows directly from (5) and the fact that q precedes p in the reverse 
sequence. 

(7) In a tree constructed by root insertion from a sequence y~ yz --- y~ 
of distinct items in random order, the expected depth in the tree of  item yr is 

d~ = 2H,~-r+l - -  2 (1) 

where the root is reckoned to be at a depth of zero, and 

r 

From (5), the expected depth of  item Yr in the tree constructed by root 
insertion is the same as the expected depth of item Y,-r+l in a tree constructed 
by leaf insertion. Equation (1) then follows from the expected number of  
comparisons required for an unsuccessful search in a tree containing n --  r 
items; see, for example, reference 6, p. 427. 

(8) Average number of comparisons. The average number of com- 
parisons required to construct a tree, f rom a sequence of N distinct items in 
random order, is the same for the two algorithms. 

Since the sequence is in random order, all possible subsequences of  the 
first m items are equally likely, and in particular any subsequence has the 
same likelihood as its reverse. Then f rom (1) and (5) the expected number 
of  comparisons required to insert the (m q- t)th item is equal for the two 
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algorithms; hence the average number of comparisons required to insert 
all N items is also equal, and is known to be 

Car =, 2(N + 1) [IN - -  4 N  (2) 

which for large N approaches the value 

t;%v ~ 2N(ln N -- 2 + 7) + O(ln N) (3) 

where 7 is Euler's constant (approximate value 0.577). (This result can be 
derived from reference 6, page 427.) 

(9) B e s t  case.  The minimum number of comparisons required to 
sort N items by leaf insertion occurs when the tree is perfectly balanced, and 
is 

Cmtn = ~ [log2nj (4) 
l~n~N 

whence, for large N, 

Cmin ~ N(log2 N -- 2) + O(log2 N) (5) 

The minimum number of comparisons with root insertion is N -  1, and 
occurs when the items are already sorted or reverse sorted (or when they are 
all the same). 

(10) W o r s t  case. The maximum number of comparisons required 
to sort N items by leaf insertion occurs when the items are already sorted 
or reverse sorted (or when they are all the same), and is N ( N -  1)/2. The 
maximum number of comparisons required with root insertion is not known 
for certain, but is also of order N 2, and appears to be as follows. 

Consider a sequence consisting of two increasing subsequences 
Yl Y~ "" Ym and z l z  2 .. .  ZN_~,~ such that y~ > ZN_,~. This sequence can be 
made by cutting a sorted deck. The comparisons required to insert the items 
at the root are as follows: 

Item Number of  Comparisons 

Yl 0 

Y2, Yz .... , Ym 1 

zz m 

z~ , z z .....  ZN_~ m -q- 1 



24 Stephenson 

Hence the total number of comparisons is 

C =  ( m - -  1 ) + m - k ( A T - - m - -  1 ) (m+ 1) 

= --m 2 + Nm + ( N -  2) (6) 

For a given value of N, C reaches a maximum when m = N/2 (N even) 
or when m = (N 4- 1)/2 (N odd), and is then 

N 2 
C - -  ~ + N - - K  (7) 

where K = 2 (N even) or 9/4 (N odd). 
For N ~< 10, it has been shown by exhaustive search that the number of 

comparisons is in fact as given by Eq. (7), and occurs for the "cut decks" 
described above, for their reflections, and for the closely related sequences 
in which yl is exchanged with ZN_~, and/or y~ is exchanged with zz. 

(11) Variance. Let p(N, C) be the probability of performing exactly 
C comparisons when sorting N distinct items that arrive in random order, 
and let s2(N) be the variance of the corresponding probability distribution. 
The variance for leaf insertion is known to be 

s 2 = 7N 2 -- 4(N + 1) 2 H~  ) -- 2(N -~ 1) HN -}- 13N (8) 

whence, for large N, 

Here 

and 

s 2 ~  (7 - -2~2]  N2-} - O(Nln N) 
3 ]  

1 H(- E 
l~<f4n 

2 ~  2 
7 ~ ~ 0.42027 

(9) 

(See reference 8; and reference 6, p. 672.) 
It is clear from Fig. 3 that the variance for root insertion is less than for 

leaf insertion. Unfortunately, an exact expression has not been found for it, 
owing to the difficulty of obtaining a recurrence relation for a tree with a 
changing shape. Some experimental results are presented in Fig. 4. The points 
that are circled are either exact, or were derived from a sufficient number of 
independent tests for there to be prima facie confidence that the value of 
logl0s is known to an accuracy of 4-0.01. The other points were derived from 
a smaller number of tests, and confidence limits for them were not obtained. 
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LEAF INSERTION 

5 - $2 = 7N2- 4(N+1)2 HN(2)- 2(N+I ) HN+ 15N 
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Fig. 4. Variance of number of comparisons required to sort N 
randomly chosen items, using leaf insertion (conventional method) 
and root insertion (new method). The values for leaf insertion 
are exact. The results for root insertion were obtained experi- 
mentally: the circled points represent cases for which the value of 
log10 s is known within --0.01 ; the other points are approximate. 

(12) The rearrangement of the tree that accompanies an insertion at 
the root can be thought of as a process of "splitting" the existing tree, then 
attaching the two resulting subtrees to the new root. This suggests comparison 
with the algorithm for splitting balanced trees, given by Crane in reference 3, 
and summarized in reference 6, on p. 466-467. The algorithms are, however, 
quite different, and in general the resulting tree is also different. Crane's 
method restructures the two subtrees, as it creates them, so as to maintain 
balance. The root insertion algorithm does not maintain balance, and in 
fact some of its desirable properties depend on the lack of balance. 

(13) For a comparison with a sorting method that uses a set of trees, 
see references 1 and 2. 

Note that the performance anaIyses given in this section are expressed 
purely in terms of the number of comparisons. It is possible to envisage cir- 
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cumstances in which the cost of '  modifying a tree pointer might exceed the 
cost of making a comparison. This would usually hurt the performance of 
root  insertion more than that  of leaf insertion. 

5. A N  A R B O R E A L  STACK 

The discussion and analysis given above have been restricted to the 
situation in which each descent through the tree is associated with the addi- 
tion of a new node. This is what happens when a tree is used to sort a list 
of  items. A binary search tree can also be used, however, in situations where 
it has to be searched for existing entries as well as having new entries added 
to it. An example is the construction of a symbol table for an assembler 
or compiler: the tree is searched for the name of a variable; if it is already 
in the tree, the existing entry is used; otherwise a new entry is added. For 
these applications it is necessary to take account of  the work involved in 
locating an existing entry, as well as in adding a new one. 

A tree that is constructed by adding leaves resembles a list, in the sense 
that the first item to be inserted has a depth of 0 (is at the root), the second 
arrival has a depth of 1 (hangs directly f rom the root), the third arrival has 
a depth of 1 or 2, etc. Therefore, the earliest arrivals can be located with the 
fewest comparisons. On the other hand, a tree that is constructed by root 
insertion resembles a stack, since the most recently inserted item has a depth 
of 0, the penultimate arrival has a depth of 1, the antepenultimate item has 
a depth of 1 or 2, and in general, f rom Sec. 4, paragraph (2), the depth of the 
rth item is at most n - -  r, where n is the number of  items in the tree. In this 
case it is the most recent arrivals that can be located with the fewest com- 
parisons. [For the expected depth of an item, as a function of its arrival time, 
see Sec. 4, paragraph (7).] 

The method of root insertion can be adapted to combine a search with 
a conditional insertion in such a way as to leave the matching entry (whether 
old or new) at the root of the tree. A tree that is manipulated in this way has 
the property that the items which have been most recently referred to are 
always near the root, irrespective of  when they were first encountered. This 
is desirable when constructing symbol tables, since references to names tend 
to be clustered. 

The method can be described as follows. A name is given which is to 
be searched for, and inserted if not a l ready present. A temporary  root is 
made, and the existing tree is searched for a match with the given name. 
So long as a match is not found, the descent through the tree is handled in 
the same way as for an unconditional insertion, the tree being rearranged 
as necessary around the new root. I f  an old entry for the name does not 
exist, the temporary root is made permanent;  otherwise the old entry is 
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promoted to the root, and any descendant nodes are reconnected to the 
tree without inspection. Thus the number of  nodes that are visited is the same 
as if  the same tree had been searched for the same name without any 
rearrangement, but the fact that the tree is reshaped results in different overall 
characteristics, with the fewest comparisons being required to locate the most 
recently used names. 

This method shows up to its greatest advantage when the program being 
assembled or compiled contains many names, most of  which are declared 
at the beginning and not used thereafter, and a few of which are used many  
times, with clustered references. 

The algorithm is given here. See also the notes that follow. 

(C) Root insert ion or promot ion 

node := root; 
left_book := addr(left(dummy)); 
right_hook := addr(right(dUmmy)); 

while node # null do 
if value(node) = name then 

begin 
O(left_hook) := left(node); 
O(right_hook) := right(node); 
root := node; 
go to bottom 

end; 
if value(node) > name then 

begin 
O(right_hook) := node; 
right_hook := addr(left(node)); 
node := left(node) 

end 
else 

begin 
O(left_book) := node; 
left_hook := addr(right(node)); 
node := right(node) 

end; 

O(left_hook) := null; 
O(right_hook) := null; 
root := new_node ( ); 
value(root) := name; 

bottom: 
left(root) := left(dummy); 
right(root) := right(dummy) 
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The following notes apply to this algorithm: 

1. Each node contains the same three fields described in the corre- 
sponding note of Sec. 2. In practice, there would normally be additional 
fields containing (for example) the attributes associated with the name. 

2. At the beginning of the sequence, the pointer variable "root" 
contains the address of the existing root node (or is null if the existing tree 
is empty); the pointer variable "dummy" contains the address of a spare 
node (which is used as a temporary root during the search), and the variable 
"name" contains the value of the item that is to be inserted or promoted. 
At the end, the variable "root" contains the address of the new root node, 
in which the "value" field contains the value given in "name." 

3. The function "new_node" obtains storage for a new node and 
yields its address. 

4. Although in the algorithm as written there appear to be two com- 
parisons in the loop, this is a quirk of the Algol-like representation. In 
practice, most computers require only one comparison to determine the sign 
of a difference (--, 0 or +).  

As noted earlier, the method of root insertion tends to involve more frequent 
changes to the tree pointers than occurs using conventional leaf insertion. 
It is possible to envisage circumstances in which the extra cost of making 
these changes might outweigh the benefit of the stacklike behavior. 

6. F I N A L  REMARKS 

The method of "root insertion" has several advantages over the con- 
ventional method of "leaf insertion." 

Root insertion has particular merit when the items arrive nearly sorted 
or nearly reverse sorted. In these cases, the method wins handsomely in terms 
of comparisons, and does not necessarily lose in terms of modifications 
(cf. Fig. 2). 

As a method for constructing symbol tables, root insertion is most 
advantageous when there are many names that appear only once, and the 
references to the remaining names are clustered. 

A C K N O W L E D G M E N T S  

The writer is indebted to Ashok K. Chandra, for a major contribution 
to Sec. 4; and to William H. Burge, Marc A. Auslander, and the editor and 
referees, for some valuable suggestions. 



A Hethod for Constructing Binary Search Trees 29 

A P P E N D I X :  G E N E R A T I O N  O F  R A N D O H  N U H B E R S  

Some init ial  tests were made  with a p s e u d o - r a n d o m  number  genera tor  
in which the number  v~+l was genera ted  f rom its predecessor  v~ by  the rule 

v~+l = mod(16807v~,  2 ~1 - -  1) 

(See references 4 and  7.) I t  was, however ,  f ound  tha t  the measured  var iance  
for  leaf  inser t ion d id  no t  agree with the expected values [Eq. (9)]. The gener- 
a tor  was then modif ied  to implement  the rule 

v~+l = x @ mod(16807v,~, 2 al - -  1) 

where " @ "  s tands for  "exclus ive-or ,"  and  x represents  the lef t-al igned 

reversal  o f  the 20 low-order  bits f rom the basic  System/370 t ime-of -day  
clock,  the last  bi t  of  which t icks every microsecond.  This modif ied  genera tor  
was found  to yield results  for  leaf  inser t ion which were within 1% of  the 
expected values,  and  was used for  all the results presented  here. 
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