
GEORGE E,
FORSYTHE

AWARD

AN EMPIRICAL STUDY
OF INSERTION AND
DELETION IN BINARY
SEARCH TREES
JF,.FF~'Y L. EPP~N~F.~ Carnegie-Mellon University

Jeff Eppinger's current
interests include distributed

systems, database design, and
analysis of algorithms.

This research was sponsored
in part by the Office of Naval

Research under contract
N00014-76-C-0370.

Author's Present Address:
Jeffrey L. Eppinger,

Department of Computer
Science, Carnegie-Mellon

University, Pittsburgh.
Pennsylvania 15213.

Permission to copy without
fee all or part of this material

is granted provided that the
copies are not made or

distributed for direct
commercial advantage, the
ACM copyright notice and
the title of the publication

and its date appear, and
notice is given that copying

is by permission of the
Association for Computing

Machinery. To copy
otherwise, or to republish,

requires a fee and/or specific
permission. © 1983 ACM

0001-0782/83/0900-0663 75¢

1. INTRODUCTION
A binary tree created by inserting n randomly chosen keys
into an empty tree has an expected internal path length of In

1.386n lg n - 2.846n. 1 Randomly deleting k nodes from
such a tree yields a tree whose expected internal path length
is I,-k. Unfortunately, performing insertions after deletions
does not produce binary trees whose internal path length is
predicted by this function. A theoretical explanation of the
effect of performing deletions and then insertions on binary
trees is still lacking [6].

This paper presents an empirical study on the effect of
applying random insertions and deletions to random binary
search trees and analyzes results of experiments comparing
asymmetric and symmetric deletion algorithms. In a previous
empirical study, Knott [3] suggested that the expected internal
path length tends to decrease after repeated insertions and
asymmetric deletions. In this study, the large number of inser-
tions and asymmetric deletions performed suggests that the
expected internal path length first decreases but eventually
begins to increase. For sufficiently large trees, expected inter-
nal path length becomes worse than that of a random tree.
However, experiments using the symmetric deletion algo-
rithm show that performing a large number of insertions and
symmetric deletions decreases the expected internal path
length (making the trees better than random).

Section 2 describes the insertion and deletion algorithms
used in this study and provides an overview of some of the
previous work in this area. The statistics used in this study
are defined in Section 3 which also mentions specifics about
how the data was gathered. The observations in Section 4
give an interpretation of the data, and the conclusions are
summarized in Section 5.

1 Throughout this paper, lg x denotes log2x.

ABSTRACT: This paper describes
an experiment on the effect of
insertions and deletions on the path
length of unbalanced binary search
trees. Repeatedly inserting and
deleting nodes in a random binary
tree yields a tree that is no longer
random. The expected internal path
length differs when different
deletion algorithms are used.
Previous empirical studies
indicated that expected internal
path length tends to decrease after
repeated i n ~ o n s and asymmetric
deletions. This study shows that
performing a larger number of
insertions and asymmetric
deletions actually increases the
expected internal path length, and
that for sufficiently large trees, the
expected internal path length
becomes worse than that of a
random tree. With a symmetric
deletion algorithm, however, the
experiments indicate that
performing a large number of
insertions and deletions decreases
the expected internal path length,
and that the expected internal path
length remains better than that of a
random tree.

September 1983 Volume 26 Number 9 Communications of the ACM 663

http://crossmark.crossref.org/dialog/?doi=10.1145%2F358172.358183&domain=pdf&date_stamp=1983-09-01

GEORGE E. FORSYTHE AWARD

PROCEDURE Insert(VAR root : NodePtr; x : DataType);

BEGIN

IF root = NIL

THEN BEGIN

NEW(root); root%.data := x;

rootT.iChild := NIL; roott.rChild := NIL

END

ELSE IF x < root%.data

THEN Insert(rootT.iChild, x)

ELSE Insert(root%.rChild, x)

END;

FIGURE 1. The Insertion Procedure.

2. BACKGROUND

Insertion Algorithm. The structure of binary trees naturally
leads to one insertion algorithm. To insert a node into a
binary tree known not to contain that node, compare the new
and current keys and insert the node into the left or right
subtree, whichever maintains the invariant of the data struc-
ture. The Pascal code for this algorithm is provided in Figure
1. (For further explanation, see Algorithm T in [6].)

Unlike insertion, there are many reasonable deletion algo-
rithms from which to choose. This paper describes experi-
ments with Hibbard's asymmetric deletion algorithm [1] and
a trivially modified version of this algorithm to make it sym-
metric.

Asymmet r i c Deletion Algorithm. A node's successor is de-
fined to be the smallest node in its right subtree. Similarly a
node's predecessor is defined to be the largest node in its left
subtree. To delete a node from a binary tree, replace the node
with its successor, i.e., the node that contains the next larger
key. The Pascal code for this algorithm is given in Figure 2.
Figure 3 shows examples of the insertion algorithm and this
deletion algorithm applied to a particular binary tree. (For
further explanation, see Algorithm D in [6]}.

Symmetr i c Deletion Algorithm. To delete a node from a bi-
nary tree, replace the node with its successor or predecessor.
Alternately choose the successor and predecessor (so that half
the time the RightDelete routine is called and half the time a
suitably modified version of this routine, LeflDelete, is called).

In this paper, a random insertion consists of inserting a key
which has been randomly selected from a uniform distribu-
tion. When performing a random deletion, each of the nodes
in the tree has an equal chance of being selected for deletion.
Knuth [7] describes this and several other ways to "randomly
select" keys for insertion and deletion, and discusses how
these schemes are related to one another.

Consider building a binary tree using n keys chosen ran-
domly from a uniform distribution (i.e., all n! permutations
of the keysare equallylikely).Thereare (2.")/(n + 1)
possible shapes for this tree [4], each with some probability of
occurring; call the distribution/9.. By this definition, inserting
a new node into this binary tree would yield a tree of size n
+ 1 whose shape occurs with a probability defined by D~÷1.
Binary trees whose distribution of shapes is D. are called
random binary trees.

PROCEDURE RightDelete(VAR root : NodePtr; x : DataType);

VAR copy, successor, succPtr : NodePtr;

BEGIN

IF x < roott.data

THEN RightDelete(rootT.iChild, x)

ELSE IF x > roott.data

THEN RightDelete(roott.rChild, x)

ELSE BEGIN

copy := coot;

IF roott.rChild = NIL

{ Ca~c h There ~ no successor. }
THEN root := root¢.iChild

ELSE IF roobt.rChildt.iChild = NIL

{ Case [I: The successor ~ the right child. }
THEN BEGIN

rootT.rChildT.iChild := rootT.iChild;

toot := root%.rChild

END

{ Case III: The successor ~ the l e f l~o~t child m the r igh t sub t ree .
ELSE BEGIN

succFtr := root?.rChild;

WHILE suc~Ptrt.iChildT.iChild <> NIL DO

succPtr := succPbrT.iChJld;

successor := succPtrT.iChild;

succPtrT.iChild := successort.rChild;

successorT.iChild := root~.IChild;

successor?.rChild := roott.rChild;

root := successor

END;
DISPOSE(copy)

END

END;

FIGURE 2. The Asymmetric Deletion Procedure.

Hibbard [1] proved that deleting a random node, (i.e.,
where each node has an equal probability of being deleted),
from a binary tree of size n with distribution of shapes D,,
yields a tree with a distribution of shapes D

Strangely, performing random insertion and deletion opera-
tions on a random tree does not preserve this distribution of
shapes. Consider building a binary tree of size n, as described
above. Since the keys are chosen from a uniform distribution,
the probability of inserting a new node in any particular
interkey gap is 1/(n + 1). After one random deletion, the
distribution of shapes will be D,-1, but the probability of
inserting a new node where the deleted node used to be ~11
be 2/(n + 1) while all other places are still 1/(n + 1). Knuth
[6] describes this phenomenon as follows:

The shape of the tree is random after deletions, but the
relative distribution of values in a given tree shape may
change, and it turns out that the first random insertion

FBR i := I TO tsize DO RndInsert;

... gather data ...
FOR i := i TO intervals DO BEGIN

FOR j := i TO isize DO BEGIN RndInsert; HndDelete END;

. . . gather data . . .
END;

FreeTree;

FIGURE 3. Examples of Insertion and Asymmetric Deletion.

664 Communications of the ACM September 1983 Volume 26 Number 9

GEORGE E. FORSYTHE AWARD

start with / - - "- '~ insert 38

FIGURE 4. The Simulation Outer Loop.

after a deletion actually destroys the randomness prop-
erty on shapes. This startling fact, first observed by Gary
Knott in 1972, must be seen to be believed. Empirical
evidence suggests strongly that the path length tends to
decrease after repeated deletions and insertions, so the
departure from randomness seems to be in the right di-
rection; a theoretical explanation for this behavior is still
lacking.

The expected number of comparisons used when searching
for an element in a binary tree is proportional to the tree's
path length. Thus, a binary tree is said to improve when its
internal path length decreases. The internal path length ofa
tree is defined as the sum of the depths of the nodes in the
tree

IPL = ~, distance(root, i)
i~{nodes}

For a random tree containing n nodes, the expected IPL is
denoted as I. and the expected number of comparisons in a
successful search is denoted as C.. Knuth [6] gives the ex-
pected number of comparisons in a successful search, C., as
2(1 + 1/n)H. - 3 which is approximately equal to 1.386]g n
- 1.846. 2 The n m harmonic number, 1 + l/z + 1/3 + .. • + l / n ,
is denoted by H.. Substituting into the relation I. = n(C. - 1),
one obtains the approximation = 1.38611 I.]g n - 2.846n. A
distribution of trees is said to be "better than random" when
the expected ~ L is less than I..

2 The n m harmonic number, 1 + Vz + 1/3 + . . . + l / n , is denoted by H..

A theoretical explanation of what happens to the IPL of a
binary tree after applying an arbitrary sequence of insertions
and deletions has not been found. The analysis would be
complicated. In his thesis, Knott introduces a lot of notation to
describe binary trees to which sequences of insertions and
deletions have been applied. In this paper, T empirically ex-
amine the effect on IPL of applying pairs of insertions and
deletions to binary trees. Jonassen and Knuth [2] actually
analyze the special case of binary trees with only three nodes;
their solution involves the manipulation of Bessel functions.

3. METHODOLOGY
If a random sequence of insertions and deletions were applied
to a random tree of size n, the resulting tree would probably
not have the same number of nodes. Therefore, the original
tree's IPL would not be directly comparable with the IPL of
the new tree. In this study, sequences of insertion~deletion
pairs (I/D pairs) are applied to random trees. Since the result-
ing tree always has the same size, it is easy to see whether
any improvement has been made. (Knott's data was also ob-
tained by using I/D pairs.) The first step of the simulation,
then, is to insert n nodes into an empty tree, after which
successive pairs of insertions followed by deletions are per-
formed.

Let IPL,j denote the measured mean IPL of an n-node bi-
nary tre__ee after applying i I /D pairs. Figures 5 through 10

1.00

0.99
0.98 o_

0~ 0,97
~ 0.96
>~ 0.95 <

0.94

0,93
0.92
0,91

~" 1.02

c" 1.00
n
g 098
~ 0.96

0.94

0.92

0,90

E 1.08
1.05

~" 1.04
1,02

1.00
o.98 <
0.96
0.94
0.92
0.90

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
a. 64 Node Tree, 200 Runs Number of Insertion/Deletion Pairs

10000 20000 30000 40000 50000
b. 128 Node Tree, 200 Runs Number of Insertion/Deletion Pairs

20000 40000 60000 80000 100000 120000
c. 256 Node Tree, 100 Runs Number of Insertion/Deletion Pairs

FIGURE 5. Asymmetric Deletions.

September 1983 Volume 26 Number 9 Communications of the ACM 665

GEORGE E. FOASYTlfE AWARD

1.20 I

-~ 1.15 I [

1~10 I

1 .O0

0.95
0.90

0

~1.3

100000 200000 300000 400000 500000
a. 512 Node Tree, 50 Runs Number of Insertion/Deletion Pairs

FIGURE 6. Asymmetric Deletions.

1.00

0.90 o- - ~ 0 ~ 0 100~000 150~000 200~00 2s00000
b. 1024 Node Tree, 25 Runs Number of Insert ion/DeLHion Pairs

~ 1.60
~- 1.50 /-----_ _ -

1.40 J

~ ~.2o
L10

1.00
0.90

0 ~000000 200~)000 ~oobooo 4000000 5oooooo ~oooooo 7oo~ooo 8006o00 ~oooooo
c. 2048 Node Tree, 20 Runs Number of Insert ion/Delet ion Pairs

•1.60

~ 1.5o

1.401

1.3C

1.2(~

1.10

1.00

9.90

, !
, /

i
t J
r A

, ; / I
, !

r
'J j

¢ [/ /

I / / f" .

\'¢,.~.-

0.50

i t

~ t ~ , " 2 0 4 8 node tree

/ ' , / ' - - / " \ " "'", ~ ; '" 1024 node tree
\ 7 ' ~ r . ,

, j

~ \ ~ ,~ ~x 512 node tree

256 node t ree

. . . . " " ' - ' ~ ' - ' - " " 128 node tree

",... ," ", -'"" ""., - "" "- -" ",.'" - -" - "'" 64 node tree

100 l S0 2~0 2.~0 a~o 3~0
(Number of l iD Pairs)/n 2 FIGURE 7.

show IPLn.JI, plotted as a function of i.
This ratio shows the improvement of
the resulting tree's expected IPL as a
fTaction of the random tree's expected
IPL.

The deletion algorithm given above
generally replaces the node to be de-
leted with its successor, the "left-most
node in the right subtree." The left and
right subtrees are treated differently
and, as observed below, this appears to
have a profound affect on the behavior
of binary trees. Such a deletion algo-
rithm is called an asymmetric deletion
algorithm. The symmetric deletion algo-
rithm examined in this study is a trivi-
ally modified version of the asymmetric
algorithm that alternately replaces the
node to be deleted with its successor or
its predecessor. Similar results have
been obtained by randomly replacing
the node to be deleted by its successor
or predecessor.

To ensure that the results were not
an artifact of the random number gener-
ator (or a bug), simulations were per-
formed on both DEC-20s and Perqs.
These machines have different architec-
tures; the code for each implementation

Comparison Chart for Asymmetric Deletions.

666 Communications of the ACM September 1983' Volume, ?6 Number 9

GEORGE E. FORSYTHE AWARD

FIGURE 8. Symmetric (Alternating) Deletions.

was separately written; and each imple-
mentation used a different random
number generator. In the DEC-20 simu-
lations, the random number generator
used the linear congruential method to
produce 36-bit pseudorandom numbers
[5]. The random number generator for
the Perqs is the feedback shift-register
pseudorandom number generator de-
scribed by Lewis and Payne [8]. The
data presented in this paper was gener-
ated on the Perqs and took about one
month of CPU time, but similar results
were obtained for the smaller trees on
the DEC-2Os.

The outer loop of the simulation pro-
gram (shown in Figure 4) is very simple.
First, build a tree with Isize nodes, then
gather data before and after each inter-
val of isize I/D pairs.

4. O B S E R V A T I O N S
The graphs in Figures 5 and 6 show
the expected internal path length of
n-node binary trees plotted against
the number of insertion and asym-
metric deletion pairs. Initially, IPL,,i

~" 1.02

'-'=: 1.00

~. 0.98

~ 0.96

~ o.94
0.92

0.90
0.88

0

1.02 r

~1,00 - k 0.98

0.94

0.92

0.90

0,88 -
0

E 1,02 [

~. 1.°o 1
o988

<

1.00

"~ 0.98

~ 0.96

0.94

0.92

0.90

0.88
0

1.02 r
1.00

_ 0.98

0.92 t
0,90

0,88 t
0.86

0

~ 1.04
1.o2

~" 1.00

10000

;00000

FIGURE 9. Symmetric (Alternating) Deletions.

0"921" 0.90 -
0.88
0.86

0 1000000 2000000 9000000
:~ Pairs

September 1983 Volume 26 Number 9 C o m m u n i c a t i o n s of t he A C M 667

GEORGE E. FORSYT/fE AWARD

1.50

1.40

o
o

< 1.30

0

1.20

1.10

1.00

0.90

0,80
64

~" 1.04

1.02

1.00

0.98

0.96,

?

s*

/
/

,"
0

,m

,,"Asymmetric Deletions

,P'"

, , ' "

,o

o,°

°-
o oo

o , o"
Random (No Deletions) * - " "

.

Symmetric Deletions

128 256 512 1024 2048
n, the Tree Size

0.94.

0.92

0.90,

0.88

0.86

~t,,,

,,J ' r /*~ ,

, , . , ? ~ , / ,~f l .~, j / , / ~ , / / , , ," / ~ . 64node tree

" ',,';' ,r,~, ,~ ~ - ~ 256 node tree ~ --~ 128 node tree

i ' - , / ', ,",;-,, ~ 2048 node tree
' - ' " ' , " ' " 1024 node tree

0 0.50 1.00 1.50 2,00 2.50 3.00 3.50
(Number of I/D Pairs)/n ~

FIGURE 10.

FIGURE 11.

Comparison Chart for Symmetric (AItemating) Deletions.

decreases, as Knott observed. After
some crit ical point, though, IPL.,i
starts to increase, even tua l ly levell-
ing off after approx imate ly n 2 I / D
pairs. Figure 7 is a compar ison char t
in which IPL. .JI . is p lot ted as a
function of i / n 2 for each of the val-
ues of n tested. (The la t ter ratio nor-
mal izes the x axis.)

Perhaps the most significant obser-
vat ion is that as n increase._~s so does
the asymptot ic value for IPL. ,JI . . Bi-
nary tree operat ions, such as inser-
t ion and deletion, can be mode led by
Markov Chains (but the state space
would be quite large). Since any bi-
nary tree may be obta ined by apply-
ing some combina t ion of I /D pairs to

o ther b inary tree, the lim~_~
IPL..~ exists [9]. Figure 7 suggests that

l im IPL..~ > I.

for sufficiently large values of n
(roughly greater than 128). Thus bi-
nary trees seem to become "worse
than random" after many insert ions
and deletions.
.... The compar ison chart in Figure
11 shows the asymptot ic values
of IPL. .J I . for both dele t ion
algori thms plotted against

Comparison Chart of the Asymptotic Values of IPL(n, i).

668 Communications of the ACM September 1983 Volume 26 Number 9

GEORGE E. FORSYTHE AWARD

Table I. Data for Asymmetric Deletions.

n Samples IPL,~ >~/In Variance

64 6000 0.97 0.01652

128 6800 1.00 0.01340

256 2300 1.06 0.00985
512 1200 1.16 0.00970

1024 750 1.30 0.01013
2048 5340 1.49 0.00771

Table II. Data for Symmetric Deletions.

n Samples IP~>a/~ Vanance

64 6000 0.905 0.01654

128 6800 0.890 0.00916
266 2300 0.888 0.00615
512 1200 0.890 0.00347

1024 750 0.881 0.00235

2048 5340 0.883 0.00269

n (on a log scal_~. The data given in Table I summarizes
the IPLn.~ and IPL2 . for i > n 2. The asymmetric deletion
curve appears to be quadratic. A least-squares mult iple
regression weighted by the inverse of the variance yields
the following approximation:

IPLn i
!im,_~ ~ ~ 0.0202 lg2n - 0.241 lg n + 1.69.

Substituting I. ~ 1.386n lg n - 2.846n we obtain

m

l imlPL. , i ~ 0.0280n lgan - 0.392n lg2n

+ 3.03n lg n - 4.81n.

The graphs in Figures 8 and 9 show the corresponding plots
of the data in Table II fo__Lr the expected path length for sym-
metric deletions. The IPL.,~ decreases initially, as in the case of
asymmetric deletions, but the asymptotic value of the ex-
pected internal path length seems to remain lower than that
of a random tree. The comparison charts in Figures 10 and 11
indicate that

1 > lim IPL,.i
i-~ T ~ 0.88

or that

In > lim IPLn.i ~ 1.22n lg n - 2.50n

The com.p~rison chart in Figure 11 shows the asymptotic
value of IPLn.~ slowly decreasing as n increases. Since a binary
tree with n nodes cannot have an internal path length less
than that of a perfect tree, we know that

lim IPL..~ = f~(n log n).

5. CONCLUSIONS
The expected internal path length of a random binary tree is
I. = O(n, log n). Empirical evidence suggests that performing
many insertions and asymmetric deletions__vields binary trees
with an expected internal path length of IPL..i = O(n logan).
Thus, performing asymmetric deletions causes binary trees to
become more unbalanced. Amazingly, the expected path
length does not increase by a constant factor, but rather by a
factor of logan. However, experiments show that the symme-
tric deletion algorithm improves the balance of binary trees
leav/ng the expected internal path length O(n log n); but with

a smaller constant coefficient than the expected internal path
length of a random binary tree.

Because this is an empirical study, the above conclusions
can only be conjectures. No one has provided a theoretical
explanation of the behavior of a binary tree's path length after
applying deletions and then insertions. There is no proof that
the asymptotic value of IPLn,i is less than In when performing
random insertions and symmetric deletions or that the
asymptotic value of IPL.,i is greater than I. when applying
insertions and asymmetric deletions. Furthermore, Jonassen
and Knuth's intricate and subtle analysis of this problem for
the special case of binary trees with three nodes gives an
indication that a complete explanation may be quite difficult.

In closing, it should be noted that the results of this study
will have little impact on the use of binary trees in practice. It
takes approximately 1.5 million random insertions and asym-
metric deletions to make a 2048-node binary tree worse than
a random tree, and 4 million before its expected internal path
length reaches the asymptotic value (which is just 50%
worse). When so many operations are required, other data
structures are probably more appropriate.

A c k n o w l e d g m e n t s : I would like to thank Jon Bentley, James
Gosling, Diane Lambert, and Jim Saxe for their help and
guidance.

REFERENCES
1. Hibbard, T.N. Some combinatorial properties of certain trees with

applications to searching and sorting. 1. ACM 9, 1 (January 1962) 13-
28.

2. Jonassen, A.T. and Knuth, D.E. A trivial algorithm whose analysis
isn't.]. Comput. Syst. Sci. 16, 3 (June 1978) 301-322.

3. Knott, G.D. Deletion in binary storage trees. Ph.D. Thesis. Stanford
University (May, 1975), STAN-CS-75-491.

4. Knuth, D.E. The Art of Computer Programming. Volume I: Funda-
mental Algorithms. Addison-Wesley Publ. Co., Inc., Reading, Massa-
chusetts, (1968) Section 2.3.4.4.

5. Knuth, D.E. The Art of Computer Programming. Volume lI: Seminu-
merical Algorithms. Addison-Wesley Publ. Co., Inc., Reading Massa-
chusetts (1969), Section 3.2.

6. Knuth, D.E. The Art of Computer Programming. Volume Ill: Searching
and Sorting (Second Printing, March 1975), Addison-Wesley Publ.
Co., Inc., Reading, Massachusetts, (1973), Section 6.2.2. Note: The
Second Printing contains important changes in Section 6.2.2.

7. Knuth, D.E. Deletions that preserve randomness. IEEE Trans. Softw.
Eng. SE-3, 5 (September 1977) 351-359.

8. Lewis, T.G. and Payne, W.H. Generalized feedback shift register
pseudorandom number generator. J. ACM 20, 3 (July 1973) 456-468,

9. Ross, S.M. Applied Probability Models with Optimization Applica-
tions. Holden-Day, Inc., San Francisco (1970) Section 4.3.

CR Categories and Subject Descriptors: E.1 [Data]: Data Structures--
trees; F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-
merical Algorithms and Problems--sorting and searching

General Terms: Algorithms, Theory
Additional Key Words and Phrases: binary trees

Received 9/82: revised 5/83: accepted 8/83

September 1983 Volume 26 Number 9 Communications of the ACM 669

