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1. INTRODUCTION 
A binary tree created by inserting n randomly chosen keys 
into an empty tree has an expected internal path length of In 

1.386n lg n - 2.846n. 1 Randomly deleting k nodes from 
such a tree yields a tree whose expected internal path length 
is I,-k. Unfortunately, performing insertions after deletions 
does not produce binary trees whose internal path length is 
predicted by this function. A theoretical explanation of the 
effect of performing deletions and then insertions on binary 
trees is still lacking [6]. 

This paper presents an empirical study on the effect of 
applying random insertions and deletions to random binary 
search trees and analyzes results of experiments comparing 
asymmetric and symmetric deletion algorithms. In a previous 
empirical study, Knott [3] suggested that the expected internal 
path length tends to decrease after repeated insertions and 
asymmetric deletions. In this study, the large number of inser- 
tions and asymmetric deletions performed suggests that the 
expected internal path length first decreases but eventually 
begins to increase. For sufficiently large trees, expected inter- 
nal path length becomes worse than that of a random tree. 
However, experiments using the symmetric deletion algo- 
rithm show that performing a large number of insertions and 
symmetric deletions decreases the expected internal path 
length (making the trees better than random). 

Section 2 describes the insertion and deletion algorithms 
used in this study and provides an overview of some of the 
previous work in this area. The statistics used in this study 
are defined in Section 3 which also mentions specifics about 
how the data was gathered. The observations in Section 4 
give an interpretation of the data, and the conclusions are 
summarized in Section 5. 

1 Throughout this paper, lg x denotes log2x. 

ABSTRACT: This paper describes 
an experiment on the effect of 
insertions and deletions on the path 
length of unbalanced binary search 
trees. Repeatedly inserting and 
deleting nodes in a random binary 
tree yields a tree that is no longer 
random. The expected internal path 
length differs when different 
deletion algorithms are used. 
Previous empirical studies 
indicated that expected internal 
path length tends to decrease after 
repeated i n ~ o n s  and asymmetric 
deletions. This study shows that 
performing a larger number of 
insertions and asymmetric 
deletions actually increases the 
expected internal path length, and 
that for sufficiently large trees, the 
expected internal path length 
becomes worse than that of a 
random tree. With a symmetric 
deletion algorithm, however, the 
experiments indicate that 
performing a large number of 
insertions and deletions decreases 
the expected internal path length, 
and that the expected internal path 
length remains better than that of a 
random tree. 
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PROCEDURE Insert(VAR root : NodePtr; x : DataType); 

BEGIN 

IF root = NIL 

THEN BEGIN 

NEW(root); root%.data := x; 

rootT.iChild := NIL; roott.rChild := NIL 

END 

ELSE IF x < root%.data 

THEN Insert(rootT.iChild, x) 

ELSE Insert(root%.rChild, x) 

END; 

FIGURE 1. The Insertion Procedure. 

2. BACKGROUND 

Insertion Algorithm. The structure of binary trees naturally 
leads to one insertion algorithm. To insert a node into a 
binary tree known not to contain that node, compare the new 
and current keys and insert the node into the left or right 
subtree, whichever maintains the invariant of the data struc- 
ture. The Pascal code for this algorithm is provided in Figure 
1. (For further explanation, see Algorithm T in [6].) 

Unlike insertion, there are many reasonable deletion algo- 
rithms from which to choose. This paper describes experi- 
ments with Hibbard's asymmetric deletion algorithm [1] and 
a trivially modified version of this algorithm to make it sym- 
metric. 

Asymmet r i c  Deletion Algorithm. A node's successor is de- 
fined to be the smallest node in its right subtree. Similarly a 
node's predecessor is defined to be the largest node in its left 
subtree. To delete a node from a binary tree, replace the node 
with its successor, i.e., the node that contains the next larger 
key. The Pascal code for this algorithm is given in Figure 2. 
Figure 3 shows examples of the insertion algorithm and this 
deletion algorithm applied to a particular binary tree. (For 
further explanation, see Algorithm D in [6]}. 

Symmetr i c  Deletion Algorithm. To delete a node from a bi- 
nary tree, replace the node with its successor or predecessor. 
Alternately choose the successor and predecessor (so that half 
the time the RightDelete routine is called and half the time a 
suitably modified version of this routine, LeflDelete, is called). 

In this paper, a random insertion consists of inserting a key 
which has been randomly selected from a uniform distribu- 
tion. When performing a random deletion, each of the nodes 
in the tree has an equal chance of being selected for deletion. 
Knuth [7] describes this and several other ways to "randomly 
select" keys for insertion and deletion, and discusses how 
these schemes are related to one another. 

Consider building a binary tree using n keys chosen ran- 
domly from a uniform distribution (i.e., all n! permutations 
of the keysare equallylikely).Thereare (2.")/(n + 1) 
possible shapes for this tree [4], each with some probability of 
occurring; call the distribution/9.. By this definition, inserting 
a new node into this binary tree would yield a tree of size n 
+ 1 whose shape occurs with a probability defined by D~÷1. 
Binary trees whose distribution of shapes is D. are called 
random binary trees. 

PROCEDURE RightDelete(VAR root : NodePtr; x : DataType); 

VAR copy, successor, succPtr : NodePtr; 

BEGIN 

IF x < roott.data 

THEN RightDelete(rootT.iChild, x) 

ELSE IF x > roott.data 

THEN RightDelete(roott.rChild, x) 

ELSE BEGIN 

copy := coot; 

IF roott.rChild = NIL 

{ Ca~c h There ~ no successor. } 
THEN root := root¢.iChild 

ELSE IF roobt.rChildt.iChild = NIL 

{ Case [I: The successor ~ the right child. } 
THEN BEGIN 

rootT.rChildT.iChild := rootT.iChild; 

toot := root%.rChild 

END 

{ Case III: The successor ~ the l e f l~o~t  child m the r igh t sub t ree .  
ELSE BEGIN 

succFtr := root?.rChild; 

WHILE suc~Ptrt.iChildT.iChild <> NIL DO 

succPtr := succPbrT.iChJld; 

successor := succPtrT.iChild; 

succPtrT.iChild := successort.rChild; 

successorT.iChild := root~.IChild; 

successor?.rChild := roott.rChild; 

root := successor 

END; 
DISPOSE(copy) 

END 

END; 

FIGURE 2. The Asymmetric Deletion Procedure. 

Hibbard [1] proved that deleting a random node, (i.e., 
where each node has an equal probability of being deleted), 
from a binary tree of size n with distribution of shapes D,, 
yields a tree with a distribution of shapes D .... 

Strangely, performing random insertion and deletion opera- 
tions on a random tree does not preserve this distribution of 
shapes. Consider building a binary tree of size n, as described 
above. Since the keys are chosen from a uniform distribution, 
the probability of inserting a new node in any particular 
interkey gap is 1/(n + 1). After one random deletion, the 
distribution of shapes will be D,-1, but the probability of 
inserting a new node where the deleted node used to be ~11 
be 2/(n + 1) while all other places are still 1/(n + 1). Knuth 
[6] describes this phenomenon as follows: 

The shape of the tree is random after deletions, but the 
relative distribution of values in a given tree shape may 
change, and it turns out that the first random insertion 

FBR i := I TO tsize DO RndInsert; 

... gather data ... 
FOR i := i TO intervals DO BEGIN 

FOR j := i TO isize DO BEGIN RndInsert; HndDelete END; 

. . .  gather data . . .  
END; 

FreeTree; 

FIGURE 3. Examples of Insertion and Asymmetric Deletion. 
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start with / - -  "- '~ insert 38 

FIGURE 4. The Simulation Outer Loop. 

after a deletion actually destroys the randomness prop- 
erty on shapes. This startling fact, first observed by Gary 
Knott in 1972, must be seen to be believed. Empirical 
evidence suggests strongly that the path length tends to 
decrease after repeated deletions and insertions, so the 
departure from randomness seems to be in the right di- 
rection; a theoretical explanation for this behavior is still 
lacking. 

The expected number of comparisons used when searching 
for an element in a binary tree is proportional to the tree's 
path length. Thus, a binary tree is said to improve when its 
internal path length decreases. The internal path length ofa  
tree is defined as the sum of the depths of the nodes in the 
tree 

IPL = ~, distance(root, i) 
i~{nodes} 

For a random tree containing n nodes, the expected IPL is 
denoted as I. and the expected number of comparisons in a 
successful search is denoted as C.. Knuth [6] gives the ex- 
pected number of comparisons in a successful search, C., as 
2(1 + 1/n)H. - 3 which is approximately equal to 1.386 ]g n 
- 1.846. 2 The n m harmonic number, 1 + l/z + 1/3 + .. • + l / n ,  
is denoted by H.. Substituting into the relation I. = n(C. - 1), 
one obtains the approximation = 1.38611 I. ]g n - 2.846n. A 
distribution of trees is said to be "better than random" when 
the expected ~ L  is less than I.. 

2 The n m harmonic number, 1 + Vz + 1/3 + . . .  + l / n ,  is denoted by H.. 

A theoretical explanation of what happens to the IPL of a 
binary tree after applying an arbitrary sequence of insertions 
and deletions has not been found. The analysis would be 
complicated. In his thesis, Knott introduces a lot of notation to 
describe binary trees to which sequences of insertions and 
deletions have been applied. In this paper, T empirically ex- 
amine the effect on IPL of applying pairs of insertions and 
deletions to binary trees. Jonassen and Knuth [2] actually 
analyze the special case of binary trees with only three nodes; 
their solution involves the manipulation of Bessel functions. 

3. METHODOLOGY 
If a random sequence of insertions and deletions were applied 
to a random tree of size n, the resulting tree would probably 
not have the same number of nodes. Therefore, the original 
tree's IPL would not be directly comparable with the IPL of 
the new tree. In this study, sequences of insertion~deletion 
pairs (I/D pairs) are applied to random trees. Since the result- 
ing tree always has the same size, it is easy to see whether 
any improvement has been made. (Knott's data was also ob- 
tained by using I/D pairs.) The first step of the simulation, 
then, is to insert n nodes into an empty tree, after which 
successive pairs of insertions followed by deletions are per- 
formed. 

Let IPL,j denote the measured mean IPL of an n-node bi- 
nary tre__ee after applying i I /D pairs. Figures 5 through 10 
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show IPLn.JI, plotted as a function of i. 
This ratio shows the improvement of 
the resulting tree's expected IPL as a 
fTaction of the random tree's expected 
IPL. 

The deletion algorithm given above 
generally replaces the node to be de- 
leted with its successor, the "left-most 
node in the right subtree." The left and 
right subtrees are treated differently 
and, as observed below, this appears to 
have a profound affect on the behavior 
of binary trees. Such a deletion algo- 
rithm is called an asymmetric deletion 
algorithm. The symmetric deletion algo- 
rithm examined in this study is a trivi- 
ally modified version of the asymmetric 
algorithm that alternately replaces the 
node to be deleted with its successor or 
its predecessor. Similar results have 
been obtained by randomly replacing 
the node to be deleted by its successor 
or predecessor. 

To ensure that the results were not 
an artifact of the random number gener- 
ator (or a bug), simulations were per- 
formed on both DEC-20s and Perqs. 
These machines have different architec- 
tures; the code for each implementation 

Comparison Chart for Asymmetric Deletions. 
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FIGURE 8. Symmetric (Alternating) Deletions. 

was separately written; and each imple- 
mentation used a different random 
number generator. In the DEC-20 simu- 
lations, the random number generator 
used the linear congruential method to 
produce 36-bit pseudorandom numbers 
[5]. The random number generator for 
the Perqs is the feedback shift-register 
pseudorandom number generator de- 
scribed by Lewis and Payne [8]. The 
data presented in this paper was gener- 
ated on the Perqs and took about one 
month of CPU time, but similar results 
were obtained for the smaller trees on 
the DEC-2Os. 

The outer loop of the simulation pro- 
gram (shown in Figure 4) is very simple. 
First, build a tree with Isize nodes, then 
gather data before and after each inter- 
val of isize I/D pairs. 

4. O B S E R V A T I O N S  
The graphs in Figures 5 and 6 show 
the expected internal path length of 
n-node binary trees plotted against 
the number of insertion and asym- 
metric deletion pairs. Initially, IPL,,i 
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FIGURE 11. 

Comparison Chart for Symmetric (AItemating) Deletions. 

decreases,  as Knott observed.  After  
some crit ical  point,  though, IPL.,i 
starts to increase,  even tua l ly  levell-  
ing off after approx imate ly  n 2 I / D  
pairs. Figure 7 is a compar ison  char t  
in which  IPL. .JI .  is p lot ted as a 
function of i / n  2 for each of the  val- 
ues of n tested. (The la t ter  ratio nor-  
mal izes  the x axis.) 

Perhaps  the most significant obser-  
vat ion is that  as n increase._~s so does 
the asymptot ic  value  for IPL. ,JI . .  Bi- 
nary  tree operat ions,  such as inser- 
t ion and deletion,  can be mode led  by 
Markov Chains  (but the state space 
would  be quite large). Since any bi- 
nary  tree may  be obta ined  by apply-  
ing some combina t ion  of I /D  pairs  to 

o ther  b inary  tree, the lim~_~ 
IPL..~ exists [9]. Figure 7 suggests that  

l im IPL..~ > I. 

for sufficiently large values  of n 
(roughly greater  than  128). Thus  bi- 
nary trees seem to become "worse 
than random" after many  insert ions 
and deletions.  
.... The compar ison chart  in Figure 
11 shows the asymptot ic  values  
of IPL. .J I .  for both dele t ion 
algori thms plotted against 

Comparison Chart of the Asymptotic Values of IPL(n, i). 
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Table I. Data for Asymmetric Deletions. 

n Samples IPL,~ >~/In Variance 

64 6000 0.97 0.01652 

128 6800 1.00 0.01340 

256 2300 1.06 0.00985 
512 1200 1.16 0.00970 

1024 750 1.30 0.01013 
2048 5340 1.49 0.00771 

Table II. Data for Symmetric Deletions. 

n Samples IP~>a/~ Vanance 

64 6000 0.905 0.01654 

128 6800 0.890 0.00916 
266 2300 0.888 0.00615 
512 1200 0.890 0.00347 

1024 750 0.881 0.00235 

2048 5340 0.883 0.00269 

n (on a log scal_~. The data given in Table I summarizes 
the IPLn.~ and IPL2 .  for i > n 2. The asymmetric  deletion 
curve appears to be quadratic. A least-squares mult iple 
regression weighted by the inverse of the variance yields 
the following approximation: 

IPLn i 
!im,_~ ~ ~ 0.0202 lg2n - 0.241 lg n + 1.69. 

Substituting I. ~ 1.386n lg n - 2.846n we obtain 

m 

l imlPL. , i  ~ 0.0280n lgan - 0.392n lg2n 

+ 3.03n lg n - 4.81n. 

The graphs in Figures 8 and 9 show the corresponding plots 
of the data in Table II fo__Lr the expected path length for sym- 
metric deletions. The IPL.,~ decreases initially, as in the case of 
asymmetric deletions, but the asymptotic value of the ex- 
pected internal path length seems to remain lower than that 
of a random tree. The comparison charts in Figures 10 and 11 
indicate that 

1 > lim IPL,.i 
i-~ T ~ 0.88 

or that 

In > lim IPLn.i ~ 1.22n lg n - 2.50n 

The com.p~rison chart in Figure 11 shows the asymptotic 
value of IPLn.~ slowly decreasing as n increases. Since a binary 
tree with n nodes cannot have an internal path length less 
than that of a perfect tree, we know that 

lim IPL..~ = f~(n log n). 

5. CONCLUSIONS 
The expected internal path length of a random binary tree is 
I. = O(n, log n). Empirical evidence suggests that performing 
many insertions and asymmetric deletions__vields binary trees 
with an expected internal path length of IPL..i = O(n logan). 
Thus, performing asymmetric deletions causes binary trees to 
become more unbalanced. Amazingly, the expected path 
length does not increase by a constant factor, but rather by a 
factor of logan. However, experiments show that the symme- 
tric deletion algorithm improves the balance of binary trees 
leav/ng the expected internal path length O(n log n); but with 

a smaller constant coefficient than the expected internal path 
length of a random binary tree. 

Because this is an empirical study, the above conclusions 
can only be conjectures. No one has provided a theoretical 
explanation of the behavior of a binary tree's path length after 
applying deletions and then insertions. There is no proof that 
the asymptotic value of IPLn,i is less than In when performing 
random insertions and symmetric deletions or that the 
asymptotic value of IPL.,i is greater than I. when applying 
insertions and asymmetric deletions. Furthermore, Jonassen 
and Knuth's intricate and subtle analysis of this problem for 
the special case of binary trees with three nodes gives an 
indication that a complete explanation may be quite difficult. 

In closing, it should be noted that the results of this study 
will have little impact on the use of binary trees in practice. It 
takes approximately 1.5 million random insertions and asym- 
metric deletions to make a 2048-node binary tree worse than 
a random tree, and 4 million before its expected internal path 
length reaches the asymptotic value (which is just 50% 
worse). When so many operations are required, other data 
structures are probably more appropriate. 
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