
CHAPTER IV 

PARTIAL REBUILDING 

4.1. Introduction. 

When the available data structures for some searching problem seem not to allow 

for dynemization by means of the local rebuilding technique described in Chapter 3 

(as e.g. quad-trees and k-d trees) or when the local changes needed for balancing are 

very complex (as in e.g. super B-trees) another technique, named PARTIAL REBUILDING, 

can be useful. Generally speaking, the idea of partial rebuilding is the following. 

Assume that the (static) data structure for the searching problem in mind is a tree 

structure (possible augmented by associating substructures to nodes) and that there 

is some kind of balance criterion that each internal node should satisfy. The inser- 

tion or deletion of a point in the structure might cause some nodes, normally located 

on the path towards the inserted or deleted point, to become "out of balance". As we 

do not have a local rebuilding technique for rebalancing these nodes, we use a brute 

force technique: we rebuild the complete subtree at the highest node that is "out of 

balance" as a "perfectly balanced" subtree~ This will sometimes take a lot of work, 

especially When the root of the tree is out of balance. But one can often prove that 

bigger subtrees have to be rebuilt less often than smaller ones and that the average 

update time will remain low. Hence, the partial rebuilding technique, in general, will 

yield only good average update time bounds. It is hard to give general conditions for 

data structures that enable the use of partial rebuilding as a dynemization method. 

Applications normally require (i) a lowerbound on the number of updates performed in 

the sub~ree at some internal node ~ before it can go out of balance and (ii) an upper- 

bound on the cost for rebuilding the subtree at a node that has gone out of balance 

into som~ perfectly balanced tree. The analysis normally proceeds by charging the costs 

for rebuilding a subtree to the updates that made it go out of balance and bounding 

the total charge accumulated by every update that was performed on the tree. The chap- 

ter will show a number of examples to demonstrate how the technique can be used. 

We will first apply the partial rebuilding technique to BB[~]-trees to make the 

basic!idea behind the method clear. Next we will follow Lueker [Lul] in applying the 

technique to super B-trees, yielding simpler (understandable and implementable) main- 

tenance algoritl~ns with the same update time bounds as the very complex methods that 

use the local rebuilding technique, but with average rather than worst-case bounds. 

In Sections 4.4. and 4.5. we will give the most important applications of the method, 

namely the maintenance of structures similar to quad- and k-d trees. 

Rudolf Theunissen



53 

4.2. BB[~]-trees. 

In a BB[~]-tree (some a, 0<~<½) it is required that for each internal node ~, 

the number of points below the leftson of ~ (denoted as nlson(~ ) ] divided by the total 

number of points below ~ (i.e., n~) must lie between ~ and I-~ (see Section 3.2.2.). 

We will only consider leaf-search BB[~]-trees. We call a node ~ in perfect balance 

if nlson(~ ) and nrson(B ) differ by at most i. We call a tree perfectly balanced if 

each internal node is in perfect balance. Disregarding some lowest levels from con- 

sideration, a perfectly balanced tree is a BB[~]-tree for any 0<~<½. 

Lemma 4.2.1. Given a node ~ in a BB[~]-tree that is in perfect balance. Let n~ be the 

number of points below ~ at the moment it gets out of balance. Then, there must have 

been ~(nB) updates in the subtree rooted at B. 

Proof 

Updates that are not performed in the subtree rooted at ~ clearly do not influence 

i 
the balance at ~. Let ns,~ n'Ison (~) and n'rson(~) denote the number of points below ~, 

the leftson and the rightson of ~, respectively, at the moment ~ is in perfect balance. 

i Assume nlson(~ ) =< n'rson (~) . Then ~ will become out of balance the fastest when dele- 

tions are performed below Ison(~) and insertions are performed below rson(~). Let there 

have been N d deletions below ison(8) and Nl insertions below rson(~) before ~ goes 

= nlson (~)' _N d = out of balance. In this case n~ = n~+Ni-N d ~  and nlson(~ ) L~½n'I-NbJ d" 

Since ~ is now out of balance, we have 

nls°n ($) < 

n~ 

½n ' -N d 

n~ 

½(n~-Ni+Nd) - i - N d < ~n~ 

-½Ni-½N d < (~-½)n~ + i 

Ni+N d > 2(~-~)n~ - 2 

This is ~(nB) because ~<½. 

Lemma 4.2.2. Given an ordered set of n points, a perfectly balanced binary tree of 

them can be built in O(n) time. 

Proof 

This can be achieved by building the tree levelwise, starting at the leaves. 


