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Abstract  

Some new classes of balanced trees, defined by very simple balance criteria, are 
introduced. Those trees can be maintained by partial rebuilding at lower update 
cost than previously used weight-balanced trees. The used balance criteria also 
allow us to maintain a balanced tree without any balance information stored in the 
nodes. 

1 I n t r o d u c t i o n  

Partial rebuilding is a general method to maintain balanced tree structures introduced 
by Overmars and van Leeuwen [9, 10]. The idea is brutal but powerful; each time a 
given balance criterion is violated at a node v we rebuild the subtree rooted at v to 
perfect balance. The simplicity of this method makes it useful in applications where 
other balancing methods do not work. The worst case cost for updates is high since 
rebuilding of a large subtree is expensive. However, Overmars and van Leeuwen showed 
that weight-balanced trees can be maintained at low amortized cost, O(log n) per update. 
This is due to the fact that in a weight-balanced tree a large number of updates is required 
to make an initially well-balanced subtree become unbalanced. 

In this paper we improve the method of partial rebuilding by presenting some new 
classes of balanced trees which can be maintained at lower cost than weight-balanced 
trees. In Section 2 we show how to replace the weight-balancing criterion by height- 
balancing. The new balance criterion gives a lower average cost for updates and also 
allow us to give a a better upper bound on the amortized cost than for weight-balancing. 
In section 3 we present general balanced trees. For this class of trees the only requirement 
is that the height is logarithmic. Those trees can be represented without any balance 
information stored in the nodes. 

In addition to the improvements obtained in time and space requirement the presented 
trees are interesting due to their simple and natural definitions. 

I.I Terminology 
We use T to denote an extended binary tree and v to denote a node in that tree. The 
number of leaves in the tree T, also called the size of T, is denoted IT[ or n. The size of 
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the subtree rooted at v, or the size of v, is denoted lvl. The node difference of v, diff(v), 
is the difference in size between v 's  two children, and the sum of all node differences it 
the subtree rooted at v is denoted totaldiff(v). By height(v) we denote the number  of 
edges on the longest pa th  from v down to a leaf. The  number  of deletions made below 
v since the last t ime v was involved in a rebuilding is denoted del(v) and the number  of 
updates  (deletions and insertions) is denoted upd(v).  In the analysis below we assume 
tha t  a rebuilding of a subtree takes linear t ime,  Rfv I where v is the root of the subtree. 
Part ial  rebuilding is also applyable in cases when a rebuilding at v takes longer t ime, for 
example  when maintaining quad trees [4]. The  improvements  we make are also valid in 
those cases. All logarithms are to base 2. 

1.2 Weight-Balancing 
The idea of weight-balancing is to control the height of a tree by limiting the quotient 
between the sizes of the two subtrees of each node. Trees maintained in this way is 
called trees of bounded balance or BB(a)- t rees  and was first presented by Nievergelt and 
Reingold [7]. The maintenance of BB(a)- t rees  by partial  rebuilding is briefly analyzed 
in [9] We give a short analysis here. An alternative definition is also given (equation (3) 
below). 

Associated with the tree is a constant a ,  0 < a < 1/2. Each node v has to fulfill 

[v's smallest subtree[ >_ cr (1) 
I,I 

From the balance criterion we can compute  the m a x i m u m  height of a BB(a)- t ree .  

log n 
height(T) < log-~_~ (2) 

As shown in [7] the balance criterion (1) is meaningless for 1/3 < a < 1/2. This problem 
can be avoided by using the following slightly different balance criterion: 

[v's smallest subtree[ + 1 
> (3) 

M + 1 

The  criterion (3) allows us to let ~ take any value between 1/2 and 1. The  differences in 
the two balance criteria are of low significance and will result in a slightly higher tree. It 
is not hard to show tha t  the criterion (3) gives 

log___~n. 
height(T) < log ~ t- 1 (4) 

Given a constant u, u > 1 a m a x i m u m  height of ulog Ivl + 1 for each node v is achieved 
by sett ing 

a = l - 2  -1/= (5) 

Using the fact that  
I v l -  diff(v) = 2lv's smallest subtree] (6) 

the balance criterion (3) can be rewrit ten as 

diff(v) + 1 _< (1 - 2or(iv I + 1) (7) 
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Combining (5) and (7) gives that  when a node v becomes unbalanced the following is true 

diff(v) > (1 - 2(1 - 2-1/~))(Iv I + 1) - 1 

= (21-1/= - 1)lvl + 21-1/u (8) 

The subtree rooted at v is perfectly balanced immediately after a rebuilding at v and thus 
diff(v) is 0 or 1. To simplify the analysis we assume that  diff(v) = 0. From this follows 
that  

upd(v) _> diff(v) (9) 

Since a partial rebuilding at v requires Rlv[ t ime the amortized cost for rebuilding at v is 
R per update below v. This gives an amortized cost of ~ ( h e i g h t ( T )  - 1) per 

update. Since height(T) _< u log n -k 1 we get an amortized cost of 

Ru log n (10) 
21-1/~ - 1 

where u is an arbitrary constant larger than 1. 

2 T r e e s  o f  B o u n d e d  H e i g h t  

In the previous section we saw that  a maximum height of ulog Ivl + 1 for each node v 
can be achieved for a BB(a)- t ree  by choosing o~ to be 21-1/~ - 1. As we will show in this 
section, we can remove the weight-balancing and use the more natural  "heuristic" balance 
criterion that  height(v) < u log Iv] + 1. The obtained class of balanced trees, called trees 
of bounded height, is defined below. 

D e f i n i t i o n  1 A binary tree is of bounded height if 

height(v) < ulog Ivl + 1 

for  each node v where u is a constant, u > 1. 

(11) 

The constant 1 in the definition is added to allow u to take any value greater than one. 
The algorithms to maintain a BH(u)-tree are the same as for BB(a)-trees;  when the 
balance criterion is violated at a node we make a rebuilding. To decide when a node 
needs to be rebuilt we store two integers in each node telling its size and height. 

In Lemma 1 below we show that  when a node v needs rebalancing diff(v) will be at 
least the same as when a rebalancing is required in a BB(a)- t ree  with the same maximum 
height. 

L e m m a  1 Given a tree of  bounded height where the node v has become unbalanced. Then 

(12) diff(v) > (21-1/~ - 1)[vl 

P r o o f :  Since v is unbalanced we have 

height(v) > ulog Ivl + 1 (13) 
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Let vl be v's highest child. We have 

height(v) = height(vx) + 1 (14) 

Combining equations (13) and (14) with the fact that  vl satisfies the definition (11) gives 

uloglvll + 1 > ulog Ivl 

21/"1v~1 > lvl 
Iv~l > 2-V~'l~l (15) 

This implies tha t  

which completes the proof. 

diff(v)> lv l l - ( Iv l - lv l l )  

=21vl l - lv l  
=(21-~/~-1)1vl (16) 

[] 

Comparing the result of Lemma 1 with equation (8) we see that  when a node gets too 
high it will also be out of weight-balance. Thus both average and amortized cost will be 
at least as good as for trees of bounded balance. In fact, we can prove a better average 
behaviour. This is based on Lemma 2 below. 

L e m m a  2 Given a weight-balanced tree with ce = 1 - 2 -1/~ where the node v has become 

unbalanced Then  it is possible that 

height(v) _< ulog H + 1 (17) 

P r o o f :  We give a counterexample. Clearly it is possible to construct a subtree v where 
both subtrees are perfectly balanced but v is out of weight-balance. The height of such a 
tree is _~ ulog Iv[ + 2 which is less than ulog Iv[ + 1, small trees excepted. 1:3 

T h e o r e m  1 The average cost f o r  rebuilding is less in a BH(u) - t ree  than in a BB(a) - t ree  
with a = 21-11~ - 1. 

P r o o f i  From Lemma 1 we know that  when a n o d e  in a BH(u)-tree requires rebalancing 
a rebalancing is required in the corresponding BB(a)-tree.  From Lemma 2 we know that  
the opposite is not true. Thus rebuilding is required less often in BH(u)-trees, which 
completes the proof. [] 

Trees of bounded height do not only offer a bet ter  average case behaviour than trees of 
bounded balance. It is also possible to give a better upper bound on the amortized cost 
per update than what is given for trees of bounded balance. This improvement is based 
on the fact that  when a node becomes unbalanced there has to be a certain unbalance 
at the lower levels of the tree. This unbalance can be expressed as the sum of all node 
differences in the subtree v, denoted totaldiff(v). 
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L e m m a  3 Given a tree of  bounded height where the node v has become unbalanced. Then 

2 - 21l~ 
totaldiff(v) > ~ ( ] v  I - 1) (18) 

P r o o f :  Let Vd be a node on one of v 's  longest paths such that  

height(v) = height(vd) + d (19) 

Combining equations (13) and (19) with the fact tha t  Vd satisfies the definition (I1) gives 

ulog Ivd[ + d > ulog Ivl 

2d/=lval > Ivl 

Ivdl > 2-d/=lvl (20) 
Assume tha t  each node va have its smallest possible size. From (20) we get that  

diff(vd) = [Vd+,[- ([Vdl-  [Vd+l[) = 2[Vd+x I --[Vdl 

> ( 2 . 2  -(d+l//= - 2-e/=)lvl = (21-~/= - 1)2-a/~fvl (21) 

In this case, summing the node differences on v's longest pa th  we get a total  sum of 

ulog Ivl+l 
totaldiff(v) > =  (21-1/~ - 1) ~ 2-d/~tv I 

d----O 

_ 2-(~1og1~1)/~ ( 2 1 _ 1 / .  ~ - l / I v  I 
= (2 ~ - 1 / "  - 1) 1 ] - 7 2 - : ~ -  ~ Ivl = - 1)~ 2_,/4 Ivl 

2 - 21/~ 
- 2~/~  - 1 ( Ivl- 1)  ( 2 2 )  

Of course, the nodes vd do not necessary have minimal  size, but  there is no other config- 
uration where totaldiff(v) is lower than what  is given in (22). To see this we show tha t  
no modification of the subtree rooted at v results in a lower value of totaldiff(v). Assume 
that  we try to change the tree to decrease the potential  at a node yd. Since its largest 
subtree (vd+l) has minimal  size we can only decrease the potential  at v~ by adding nodes 
to its smallest subtree. Those nodes can not be taken f rom v~'s largest subtree and thus 
we have to take nodes from the smaller subtree of one of vd's ancestors (but not above v 
since Ivl then will change). This wilt result in an increase of tha t  ancestor 's  node potential  
and the sum of the potential  of the two nodes wiI1 be constant.  Furthermore,  at  each node 
between va and the affected ancestor the potential  will increase. Thus the total  sum of 
node potentials below v will not decrease by any possible modification of the tree. From 
this follows tha t  the sum of node differences is at least the one given in equation (22) 
which completes the proof. [] 

T h e o r e m  2 A BH(u)-tree can be maintained at art amortized cost of  

21/~ - 1 
~ =  ~-Q~ R u l o g n  + R 

per update. 

(23) 
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Proof i  To prove the amortized cost for updates we define a potential function ~(T)  
which depends on the shape of the tree T. The potential function is chosen in such a way 
that the decrease of potential caused by a rebuilding covers the cost for the rebuilding. 
The amortized cost for an update equals the increase in potential caused by the update. 
We choose the following potential function: 

• (T) = 21/-(-~ - 1 R .  totaldiff(T) + R(upd(T) -- feb(T)) (24) 
2 - 21/" 

where reb(T) denotes the total number of rebuildings made in T since the last total 
rebuilding ofT.  Clearly, upd(T) > reb(T), which implies that  ~ (T)  is always nonnegative. 
During an update the value of totatdiff(T) can be changed by at most the number of 
ancestors to the inserted/deleted node The number of ancestors is < u log n which gives 
the cost for an update 

21/~ - 1 
A¢(T)  < ~-~ ~y/~Ru log n + n (25) 

Combining (24) with the result of Lemma 3 gives that a rebuilding at the node v results 
in a decrease of T 's  potential such that 

A¢(T)  > 21/---~-" 1R.  totaldiff(v) + R 
- 2 - 2 1 / "  

21/~ - 1R.  2 -  21/" 
>_ ~ - -  2-i~ 2-i7,=y(lv I - 1) + R = RIv I (26) 

The decrease in potential covers the cost for rebalancing and the proof is completed. [3 

If we compare the given costs for height-balancing with the cost for weight-balancing we 
get 

21/u--1 21/u--1 1 
2-2~i- Ru log n -{- R ~ 1 - 2 -1/~ < - (27) 

R u l o g ~  ' ~  1 - -  
22_11._ I ~ 2 

Thus the upper bound on the rebuilding cost for partial rebuilding has been reduced by 
a factor of 2. Note that although we give a better upper bound we do not prove that the 
amortized cost actually is lower. 

The simplicity of the balance criterion makes trees of bounded height a natural class 
which contains most other classes of balanced trees. This is the case for AVL-trees [1], 
BB(a)-trees [71, SBB-trees [3], and aBB-trees [8]. For all those classes there exist a 
constant u such that  height(v) < ulog Ivl + 1 for each node v in the tree. 

3 G e n e r a l  B a l a n c e d  Trees  

Although the BH(u)-trees are a general class of trees this class does not contain all 
balanced trees, for example not the k-neighbour trees [6]. The simpliest possible balance 
criterion we can have is to allow the tree to take any shape as long as its height is O(log n). 
Such a balance criterion results in a "superclass" containing all other classes of balanced 
trees. (Note that the splay tree [11] is not balanced in this sense, since its worst case 
height is O(n).) In this section we show that such a superclass may be maintained by 
partial rebuilding. This class also has the advantage of requiring no balance information 
to be stored in the nodes. We call the structure a general balanced tree or GB(u)-tree. 
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D e f i n i t i o n  2 Given a constant u, u > 1, a tree T is a GB(u)- tree i f  

height(T) _< ulog IT[ + 1 (28) 

The maintenance algorithms for GB(u)-trees differ from the algorithms for BB(c~)-trees 
and BH(u)-trees. Since there is no local balance criterion to be fulfilled in each node the 
balance criterion is checked only at the root. As shown by Baer and Schwab [2], if we 
rebalance the entire tree each time it becomes too high the amortized cost will be O(n) 
per updating operation. To achieve a better  result we make the following observation: 

Lemma 4 Let T be a binary tree in which there is a path longer than u l o g [ T  i + 1 and 
let v be the lowest node on this path such that 

height(v) > ulog Ivl + 1 (29) 

Then 
2--21/u 

totaldiff(v) > 21/~ _ l ( [ V l -  1) (30) 

Proofi First, it is clear tha t  on each long path there exist a node which satisfies (29), 
since at least the root satisfies this criterion. Since v is the lowest node satisfying the 
criterion we know that  each node vg on v's longest path satisfies height(vd) _< u log Ivdl + 1. 
The rest of the proof is similar to the proof of Lemma 3. [] 

The result of Lemma 4 allows us to design efficient algorithms for the maintenance of 
general balanced trees. As soon as the tree becomes too high we make rebuildings at 
each path which is too long. On each path the rebuilding is made at the lowest node v 
satisfying condition (29). In order to locate the paths and nodes where to make rebuilding 
we use the same data structure as for trees of bounded height, that  is, in each node we 
store the height and size. 

The amortized cost for general balanced tree is practically the same as for trees of 
bounded height. The only extra cost we have is the cost to locate the nodes where to 
make rebuilding. The location of a node requires logarithmic time. Since at least one 
update has been made below a node which is to be rebalanced the amortized cost per 
update for locating this node is O(log n). If we omit this extra cost, which anyway is 
small compared to the rebuilding cost, we can use the same analysis as for BH(u)-trees. 
Therefore, we have 

T h e o r e m  3 The class of  general balanced trees can be maintained with an amortized 
rebuilding cost o f  211"-1D. log n + R per update. 

Proof: The proof follows from the discussion above. [] 

3.1 R e m o v a l  o f  t h e  B a l a n c e  I n f o r m a t i o n  

The balance information stored in the nodes of a general balanced tree is used to find 
nodes where rebuil¢ling can be made at low amortized cost. However, when an insertion 
is made only one path - -  the path down to the inserted node - -  may  become too long. 
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Thus during insertion we do not need any stored information to find the path where 
rebuilding is required. The only thing we have to do is to find the lowest node v on the 
path which satisfies condition (29). This location can also be made without using any 
stored information, which is shown below. The skewness caused by deletions can be dealt 
with by rebuilding the entire tree with periodic intervals. Altogether we obtain a balanced 
tree with no balance information stored in the nodes. The only balance information we 
need is two global integers containing the size of T and the number of deletions made 
since the last rebuilding of the entire tree, denoted del(T). 

T h e o r e m  4 There is a binary search tree which requires no stored balance information, 
except two global integers, with the following costs: 

search O(log n) worst case 

update O(log n) amortized 

Proof." We let the two global integers contain the values of ITI and del(T). Given a 
constant u > 1 we use the following updating algorithms: 

Insertion: ff the depth of the inserted leaf exceeds ulog ITI + 1 we back up along the 
path making explicit examination of the subtrees of the visited nodes until a node 
v, height(v) > ulog Iv[ + 1 is found. We make a partial rebuilding at that node. 

Deletion: If del(T) >__ [TI we make a rebuilding of the entire tree. 

Let [Tlm~. be the maximal value of IT[ since the latest rebuilding of T. Since we rebuild 
T when del(T) > ITI we know that ]Tim,, < 21TI = 2n. During insertion we make a 
rebuilding when a path longer than u log n + 1 is found. This implies that the height of 
T is never more than ulog [T[m~, + 1. Thus 

height(T) < u log [Tl.,a~ + 1 _ u log(2n) + 1 = u log n + u + 1 (31) 

which gives the logarithmic search time. 
Rebuildings are made on two occasions; when del(T) = IT] and when the tree gets too 

high during insertion. The amortized cost for the first type of rebuilding is constant for a 
deletion. In the second case the rebuilding algorithm contains two steps: location of the 
node v and a rebuilding at v. To find the node v by explicit examination of its subtrees 
starting at a leaf takes e(Ivl)  time. Thus the time for locating v can be included in the 
restructuring cost without affecting the asymptotic bound. The rest of the analysis is the 
same as for trees of bounded height, which gives a logarithmic amortized cost per update. 
This completes the proof. D 

The trees in the proof of Theorem 4 are not identical to GB-trees since their maximum 
height is t~logn + u + 1 instead of u logn  + 1. This difference, which is of low practical 
significance, is due to the difference in the deletion algorithm. To differ between these two 
variants of general balanced trees we call the class without balance information GBo(u)- 
trees. 

E x a m p l e :  Figure 1 shows a GB0(1.2)-tree where the node p has just been inserted. 
The path to the inserted node is too long since height(T) = 6 > 1.21og 15 + 1, We 
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Figure 1: A GBo(1.P)-tree which requires rebuilding. Leaves are marked as empty edges. 

have to make a partial rebuilding at one of the nodes on that  path. By making explicit 
examination of the subtrees bot tom-up we find that  the node v satisfies condition (29) 
since height(v) = 5 > 1.2log 10 + 1. A partial rebuilding is made at v and the insertion 
is completed. [] 

4 C o n c l u s i o n s  

We have presented some new classes of balanced trees which may be efficiently main- 
tained by partial rebuilding. The balance criteria used are evident and the trees can be 
maintained at a lower cost than weight-balanced trees. In this way we have improved the 
t ime performance of partial rebuilding. In our analysis we assumed that  a rebuilding of a 
subtree can be made in linear time but  our improvements are valid also in other cases. 

The general balanced trees are particularly interesting since they contain all other 
classes of balanced trees and can be maintained with no balance information stored in 
the nodes. They also use a natural and attractive maintenance strategy; we do not make 
any rebalancing until it is really needed. In the literature some at tempts  have been made 
to have a global balance criterion and make restructurings only when this criterion is 
violated [2]. The amortized cost for those methods are O(n) per operation. Here we have 
shown that by choosing carefully where to make rebuilding we can maintain a tree with 
only a global balance criterion at low amortized cost. 

The splay tree, presented by Sleator and Tarjan [11], does not require any balance 
information stored in the nodes. However, this tree is not balanced in the sense that  the 
height is guaranteed to be O(log n). The logarithmic cost for searching in a splay tree is 
amortized while we here obtain logarithmic worst case bounds. As shown by Brown [5] 
the explicit balance information may in some classes of balanced trees be eliminated by 
coding the information by the location of empty  pointers. However, in this case we still 
store the information although it is stored implicitly. 
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Besides being generally applyable on various data structures the method of partial re- 
building has the advantage of being simple to implement. This together with the fact 
that the height of the tree can be kept arbitrary close to optimal makes the method useful 
also for the dictionary problem, especially when comparisons are expensive. 

Acknowledgements  

I would like to thank Dr. Svante Carlsson for valuable comments on this paper. 

References  

[1] G. M. Adelson-Velski and E. M. Landis. An algorithm for the organization of infor- 
mation. DokIadi Akademia Nauk SSSR, 146(2), 162. 

[2] J-L. Baer and B. Schwab. A comparison of tree-balancing algorithms. Communica- 
tions of the ACM, 20(5), 1977. 

[3] R. Bayer. Symmetric binary B-trees: Data structure and maintenance algorithms. 
Aeta Informatica, 1(4), 1972. 

[4] J. L. Bentley. Multidimensional binary search trees used for associative searching. 
Communications of the ACM, 18(9), 1975. 

[5] M. R. Brown. Addentum to a storage scheme for height-balanced trees. Information 
Processing Letters, 8(3), 1979. 

[6] H. A. Mauer, Th. Ottman~ and H. W. Six. Implementing dictionaries using binary 
trees of very small height. Information Processing Letters, 5(1), 1976. 

[7] J. Nievergelt and E. M. Reingold. Binary trees of bounded balance. SlAM Journal 
on Computing, 2(1), 1973. 

[8] H. J. Olivie. A new class of balanced search trees: Half-balanced binary search trees. 
R.A.LR.O. Informatique Theoretique, 16:51-71, 1982. 

[9] M. H. Overmars. The Design of Dynamic Data Structures. Springer Verlag, 1983. 
ISBN 3-540-12330-X. 

[10] M. H. Overmars and J. van Leeuwen. Dynaimc multi-dimensional data structures 
based on quad- and k-d trees. Acta Informatica, 17, 1982. 

[11] D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. Journal of the 
ACM, 32(3), 1985. 


