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Abstract

In this paper we present randomized algorithms over binary search trees such that: a) the
insertion of a set of keys, in any fixed order, into an initially empty tree always produces a
random binary search tree; b) the deletion of any key from a random binary search tree results
in a random binary search tree; c¢) the random choices made by the algorithms are based upon
the sizes of the subtrees of the tree; this implies that we can support accesses by rank without
additional storage requirements or modification of the data structures; and d) the cost of any
elementary operation, measured as the number of visited nodes, is the same as the expected cost of
its standard deterministic counterpart; hence, all search and update operations have guaranteed
expected cost @(logn), but now irrespective of any assumption on the input distribution.

1. INTRODUCTION

Given a binary search tree (BST, for short), common operations are the search of an item given
its key and the retrieval of the information associated to that key if it is present, the insertion of a
new item in the tree and the deletion of some item given its key. The standard implementation of
searches and updates in unbalanced BSTs is (except for deletions) simple and elegant, and the cost
of any of these operations is always linearly bounded by the height of the tree.

For random binary search trees, the expected performance of a search, whether successful or not,
and that of update operations is @(logn) [15, 17, 24], with small hidden constant factors involved
(here and unless otherwise stated, n denotes the number of items in the tree or size of the tree).
Random BSTs are those built using only random insertions. An insertion in a BST of size j — 1 is
random if there is the same probability for the inserted key to fall into any of the j intervals defined
by the keys already in the tree.

However, if the input is not random (for instance, long ordered subsequences of keys are likely
to be inserted) then the performance of the operations can dramatically degrade and become linear.
Moreover, little is known about the behavior of BSTs in the presence of both insertions and deletions.
None of the known deletion algorithms, including Hibbard’s deletion algorithm [11] and its multiple
variants, preserve randomness —a surprising fact that was first noticed by Knott [13]. There have
been several interesting empirical and theoretical studies around this question [12, 14, 6, 5, 4] but
their results are partial or inconclusive. There is some evidence that some deletion algorithms degrade
the overall performance to ©(y/n); for others, empirical evidence suggests that this degradation does
not take place, but the experiments were only conducted for long runs of deletion/insertion pairs
applied to an initially random BST.
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The traditional approach to elude these problems is to impose additional constraints on the
heights, sizes, etc. of the subtrees; many kinds of balanced search trees have been proposed, like
AVLs [1], red-black trees [10], weight-balanced trees (also known as BB[a] trees) [19], height-ratio-
balanced trees [8], ... All balanced search trees guarantee logarithmic performance of the search
and update operations in the worst-case. The insertion and deletion algorithms must guarantee that
the resulting BST does not violate any of the constraints; typically, this is achieved using rotations.
The disadvantage of balanced search trees is that the update algorithms are rather complex, and the
constant factors in the performance can become large. Furthermore, each internal node must also
contain balance information, needed only to verify whether the constrainsts are satisfied or not at
that particular location.

Another approach to cope with the problem of worst-case sequences is the use of randomization
techniques. In many situations, randomized algorithms are simple, elegant and their expected perfor-
mance is the same as the worst-case performance of much more complicated deterministic algorithms;
we should not forget that randomized algorithms provide a guarantee for their expected performance,
which is no longer dependent on any assumption about the input distribution [21]. Therefore, unless
the random choices made by these algorithms were known, a sequence of operations that forced some
designated behavior (say, the worst-case) could not be constructed.

Randomization techniques were used by Aragon and Seidel [3] for their randomized treaps and
by Pugh [20] in his definition of skip lists. Thanks to the randomization process, skip lists and
randomized treaps achieve logarithmic expected performance.

In this paper, we consider randomized algorithms to dynamically mantain a dictionary in a BST.
We call the BSTs produced by our algorithms randomized binary search trees (RBSTs). In Sections 2
and 3 we show that RBSTs are, in fact, random binary search trees, irrespective of the order in which
the keys were inserted or deleted, the actual pattern of insertions and deletions, etc. Hence, RBSTs
have guaranteed logarithmic expected performance, provided that the random decisions made by the
algorithms remain unknown to an hypothetical adversary trying to force worst-case performance.

It is important to point out here that our deletion algorithm is the only one known that really
preserves randomness in a strict sense [14]; i.e., a subsequent insertion will not destroy randomness,
like it happens if Hibbard’s deletion algorithm or some of its variants is used [13]. ITn Theorem 3.1
we formally prove that our deletion algorithm always produces a random BST, if the input tree
was a random BST, and irrespective of the key that is deleted. This provides a satisfactory answer
to the long standing open question about the existence of such a randomness-preserving deletion
algorithm [14].

Our algorithms yield similar results to those for randomized treaps [3]. Rather than discussing
similarities and differences between RBSTs and randomized treaps at different places of this paper,
we will make a single general comment about these topics at this point. Considering their external
behavior, randomized treaps and RBSTs yield exactly the same results under insertions and deletions,
because those results are, in both cases, always random binary search trees. In particular, the main
results of Sections 2 and 3 apply for both RBSTs and randomized treaps because the insertion and
deletion algorithms are externally equivalent: the random choices for RBSTs and randomized treaps
are made using quite different mechanisms, but the probability that a given random choice 1s taken
is the same in both RBSTs and randomized treaps. One of the differences between our insertion and
deletion algorithms and those of Aragon and Seidel is that ours generate random integers in the range
0..n, where n is the current size of the RBST, while randomized treaps use theoretically unbounded
random numbers in the unit interval (the so-called random priorities). In practice, though, only finite
precision numbers need to be generated, since it is rather unlikely that two random priorities have a
very large common prefix in their binary representations.

This difference between RBSTs and randomized treaps is significant, since the random choices
made by our algorithms are based upon structural information, namely, the size of the subtree
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rooted at each node of the RBST. Hence, RBSTs support searches and deletions by rank and the
computation of the rank of a given item without additional storage requirements or modification of the
data structure. In contrast, the random choices of treaps are based upon non-structural information:
each node stores a random priority, a real number in [0, 1], which is only useful for the randomization
process. A similar discussion applies if we compare our algorithms with random skip lists.

Regarding the analysis of the performance of our algorithms, we will exploit the large amount of
known results about random BSTs, after we will have explicitly noticed and proved that a RBST
is always a random BST. In contrast, Aragon and Seidel (see also [21, 16]) made use of Mulmuley
games to analyze the performance of randomized treaps.

The paper is organized as follows. In Sections 2 and 3, the insertion and deletion algorithms
are described and their main properties stated. We present the analysis of the performance of the
basic operations in Section 4. Section 5 describes other operations: a variant for the insertion of
repeated keys, set operations over RBSTs and a family of related self-adjusting strategies. In Section 6
we discuss several implementation-related issues: efficient strategies for the dynamic management
of subtree sizes, space requirements, etc. In Section 7 we introduce a formal framework for the
description of randomized algorithms and the study of their properties, and show how to derive all
the results in the preceding sections in a unified, rigorous and elegant way. We conclude in Section 8
with some remarks and future research lines.

An early version of this work appeared in [22].

2. INSERTIONS

We assume that the reader is familiar with the definition of binary search tree and its standard
insertion algorithm [15, 23, 9]. To make the description and analysis simpler, we will assume w.l.o.g.
that each item in the tree consists of a key with no associated information, and that all keys are
nonnegative integers. The empty tree or external node is denoted by .

Besides the definition of random BSTs in terms of random insertions given in the introduction,
there are several equivalent characterizations of random BSTs that we will find useful in our investi-
gation [15, 17]. In particular, we will use the following nice recursive definition for random BSTs.

Definition 2.1 Let T be a binary search tree of size n.
e If n =0 then T'= O and it is a random binary search tree;

e Ifn >0, the tree T is a random binary search tree if and only if both its left subtree I and its
right subtree R are independent random binary search trees, and

Pr{size(L):i|size(T):n}:l, i=0,...,n—=1, n>0. (1)

An immediate consequence of Equation (1) in the definition above is that any of the keys of a
random BST of size n > 0 has the same probability, namely %, of being the root of the tree. This
property of random BSTs is crucial in our study, as it provides the basic idea for the randomized
insertion algorithm that we describe next (see Algorithm 1). Informally, in order to produce random
BSTs, a newly inserted key should have some chance of becoming the root, or the root of one of the
subtrees of the root, and so forth. We assume for simplicity that z, the key to be inserted, is not
yet in the tree T. The algorithm is written in C-like notation and we assume that a tree is actually
represented by a pointer to its root. The field T — key is the key at the root of T. The fields
T — size, T — left and T — right store the size, the left subtree and the right subtree of the tree T,
respectively. We assume that the expression T' — size is correct even if 7' = [ (that is, 7 is a null
pointer), and evaluates to 0 in that case.
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We begin generating a random integer 7 in the range 0..n, where n = 1" — size. If n = 0 then the
test » = n? will succeed and the call to insert_at_root will return a tree with a single node containing
z at its root and two empty subtrees.

If the tree T' is not empty, with probability an we place z as the root of the new RBST using

insert_at_root (notice that the new RBST will have size n + 1), and with probability 1 — nL_H = nL_H
we recursively insert z in the left or right subtree of T, depending on the relation of z with the key
at the root of T'. To keep the algorithm as simple as possible, we have refrained to include the code

that updates the size field when a new item is inserted. We address this question later, in Section 6.

Algorithm 1 Insertion

bst insert(int x, bst T) {
int n, r;

n = T—osize;
r = random(0,n);
if (r == n)

return insert_at_root(x,T);
if (x < T—key)

T—left = insert(x, T—left);
else

T—right = insert(x, T—right);
return T;

We have not said yet how to insert z at the root of 7', that is, how to build a new tree 1"
containing z and the keys that were present in T', such that 7/ — key = x. This is the job performed
by insert_at_root(z,T'), which implements the algorithm developed by Stephenson [26]. The process
is analogous to the partition of an array around a pivot element in the quicksort algorithm. Here,
the tree T is split into two trees T and T, which contain the keys of T' that are smaller than z
and larger than z, respectively. Then T, and T are attached as the left and right subtrees of a new
node holding # (see Algorithm 2). We present a recursive implementation of split(z, ), but it is also
straightforward to write a non-recursive top-down implementation.

If T is empty, nothing must be done and both T, and 7%, are also empty. Otherwise, if 2 < T — key
then the right subtree of T" and the root of T" belong to 75 . To compute T« and the remaining part
of Ty, that is, the subtree that contains the keys in 7" — left which are greater than z, we make a
recursive call to split(z, T — left). If > T' — key, we proceed in a similar manner.

It is not difficult to see that split(x, T') compares « against the same keys in T" as if we were making
an unsucessful search for x in T". Therefore, the cost of an insertion at the root is proportional to the
cost of the insertion of the same item in the same tree using the standard insertion algorithm.

The randomized insertion algorithm always preserves randomness, no matter which is the item
x that we insert (we should better say that the algorithm forces randomness). We give a precise
meaning to this claim and prove it in Theorem 2.1, but first we need to establish an intermediate
result that states that the splitting process carried out during an insertion at root also preserves
randomness. This result is given in the following lemma.

Lemma 2.1 Let T and T be the BSTs produced by split(z, T). If T is a random BST containing
the set of keys K, then T and 'l are independent random BS'T's containing the sets of keys K<, =
{lyeT|y<z} and Ksy, ={y €T |y > x}, respectively.
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Algorithm 2 Insertion at the root

bst insert_at_root(int x, bst T) {
bst S, G;

split(x, T, &S, &G); /* S = T<«, G = Ty */
T = new_node();

T—key = x; T—left = S; T—right = G;
return T;

}

void split(int x, bst T, bst *S, bst *G) {

if (T == 0O) {
*¥S = %G = [;
return;

}
if (x < T—key) {
*G = T;
split(x, T—left, S, &(¥G—left));

else { /* x > T—key */
*S = T;
split(x, T—right, &(*S—right), G);

}

return;

Proof. We prove the lemma by induction on n, the size of T. If n = 0, then 7'= [ and split(z, T")
yields T« =15 = [, so the lemma trivially holds.

Now assume n > 0 and let y =T — key, L. = T" — left and R = T" — right. If > y then the root
of T¢ is y and its left subtree is L. The tree T and the right subtree of T« (let us call it R') are
computed when the splitting process is recursively applied to R. By the inductive hypothesis this
splitting process will produce two trees that are independent random BSTs; one of them, R’, contains
the set of keys {z € t|y < z < z} and the other is 7. The subtree L of T is not modified in any
way and is a random BST, since T is, by hypothesis, a random BST. Furthermore, I is independent
of R and T, since L and R are independent, too. Tt follows then that the trees T¢ and T are also
independent because R’ and T are independent. Finally, in order to show that the lemma is true
when n > 0 and 2 > y = T — key, we have to prove that, for any z € T, the probability that z is
the root of T is %, where m is the size of T¢. Indeed, it is the case, since

. ) P [z is root of T' and root of T' is < z] 1/n 1
P [z is root of T« |root of T"is < z] Plroot of 7 is < ] mn = m

The same reasoning applies for the case # < y, interchanging the roles of T and T, left and right,
and so on. O

We are now ready to state the main result of this section, which is also one of the main results in
this work.
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Figure 1: Insertion of = 3 in a random BST for the set K = {1,2,4}.
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Theorem 2.1 IfT" is a random BS'T that contains the set of keys K and x is any key not in K, then
insert(z,T") produces a random BST containing the set of keys K U {x}.

Proof. Again, we use induction on n, the size of T. If n = 0 then T = O (indeed it is a random
BST), and insert(z, T) returns the random BST with z at its root and two empty subtrees.

Assume now that n > 0 and that the theorem is true for all sizes < n. Consider an item y € K.
The probability that y is the root of T', before the insertion of z, is %, since T is a random BST.
The only way for y to stay as the root of T" after the insertion of z is that the random choice made
durlng the first stage of the insertion is not to insert x at the root. This happens with probablhty
731 hence, the probability that some item y € K is the root of T = insert(z,T) is % X = n+1
Moreover, 1f x 1s not inserted at the root during the first stage, it will be inserted at either the left
or the right subtree of T'; by the inductive hypothesis the result will be a random BST. To finish the
proof we shall now consider the case where z is inserted at the root of 7. First, this is the only way
to have x at the root of 7”; then we may conclude that z is the root of 7" with probability an, as
expected. On the other hand, from Lemma 2.1 we know that both the left and the right subtrees
of T", constructed by the splitting process, are independent random BSTs; therefore, 77 is a random

BST. O

Figure 1 shows the effects of the insertion of z = 3 in a random BST when K = {1,2,4}. The
probability that each BST has according to the random BST model appears enclosed in parentheses.
The arrows indicate the possible outcomes of the insertion of 2 = 3 in each tree and are labelled by
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the corresponding probabilities. This figure also gives us an example of Lemma 2.1. Consider only
the arrows that end in trees whose root is 3. These arrows show the result of inserting at root the
key 3 in a random BST for the set of keys {1,2,4}. Notice that the root of the left subtree is either
1 or 2 with the same probability. Hence, the tree containing the keys smaller than 3 in the original
random BST is also a random BST for the set of keys {1,2}.

As an immediate consequence of the Theorem 2.1, the next corollary follows.

Corollary 2.1 Let K = {z1,...,2,} be any set of keys, where n > 0. Let p = z;,,...,%;, be any
fixed permutation of the keys in K. Then the RBST that we obtain after the insertion of the keys of
p into an initially empty tree is a random binary search tree. More formally, if

T =insert(x;,,insert(x;,_,,...,insert(x;,, ) ...))
then T is a random BST for the set of keys K.

This corollary can be put into sharp contrast with the well known fact that the standard insertion
of a random permutation of a set of keys into an initially empty tree yields a random BST; the
corollary states that for any fired permutation we will get a random BST if we use the RBST
insertion algorithm.

3. DELETIONS

The deletion algorithm uses a procedure called join, which actually performs the removal of the
desired key (see Algorithm 3). To delete a key a from the given RBST we first search for x, using
the standard search algorithm until an external node or « is found. In the first case, z is not in the
tree, so nothing must be done. In the second case, only the subtree whose root i1s z will be modified.
Notice that most (if not all) deletion algorithms work so.

Algorithm 3 Deletion
bst delete(int x, bst T) {

bst Aux;
if (T == )
return [];

if (x < T—key)
T—left = delete(x, T—left);
else if (x > T—key)
T—right = delete(x, T—right);
else { /* x == T—key */
Aux = join(T—left, T—right);
free_node(T);
T = Aux;
}

return T;

Let T be the subtree whose root is z. Let L and R denote the left and right subtrees of T,
respectively, and K., and K, denote the corresponding sets of keys. To delete the node where z is
located (the root of T') we build a new BST T = join(L, R) containing the keys in the set K¢z UKs,



RANDOMIZED BINARY SEARCH TREES 8

| —

L

(77) 77) (12) (57) 7 ()

ey

A

1
@ 0 S 0 0
OO RO <%> ORISR ONT!
o @ OO

! / TN TN

3 3 1
(3) (3) ORRO (D) (1) (D)
OIRONOIROIONENO (2) () ©
@ O ORENOIONR OO0 (2)
® (@) OO
() (}) @ G) (&) (30) (37)

Figure 2: Deletion of z = 3 from a random BST for the set K = {1,2,3,4}.

—
o
~—

|
N

Wl
Wl
[SSI1N)

|—
|—

oo|—
ool

and replace T' by T”. By hypothesis, the join operation does only work when none of the keys in its
first argument is larger than any of the keys in its second argument.

Our definition of the result of joining two trees when one of them is empty is trivial: join(, ) =
O, join(L, ) = L, and join(, R) = R. Notice, however, that Hibbard’s deletion algorithm does not
follow all these equations.

Now, assume that L and R are trees of size m > 0 and n > 0, respectively. A common way to
perform the join of two non-empty trees, I and R, is to look for the maximum key in L, say z, delete
it from I and let z be the common root of I/ and R, where L’ denotes the tree that results after the
deletion of z from L. Alternatively, we might take the minimum item in R and put it as the root of
join(L, R), using an analogous procedure. Deleting the maximum (minimum) item in a BST is easy,
since it cannot have a non-empty right (left) subtree.

Our definition of join, however, selects either the root of L or the root of R to become the root of
the resulting tree and then proceeds recursively. Let L, and L, denote the left and right subtrees of
L and similarly, let R, and R, denote the subtrees of R. Further, let a and b denote the roots of the
trees L and R. As we already said, join chooses between a and b to become the root of 77 = join(L, R).
If a 1s selected, then its left subtree is L, and its right subtree is the result of joining L, with R. If b
were selected then we would keep R, as the right subtree of 7" and obtain the left subtree by joining
L with R,. The probability that we choose either a or b to be the root of T” is m’in for a and min
for b.

Just as the insertion algorithm of the previous section preserves randomness, the same happens
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with the deletion algorithm described above (Theorem 3.1). The preservation of randomness of our
deletion algorithm stems from the corresponding property of join: the join of two random BSTs yields
a random BST. As we shall see soon, this follows from the choice of the probabilities for the selection
of roots during the joining process.

Lemma 3.1 Let L and R be two independent random BSTs, such that the keys in L are strictly
smaller than the keys in R. Let K1 and Kg denote the sets of keys in L and R, respectively. Then
T = join(L, R) is a random BST that contains the set of keys K = K, U K.

Proof. The lemma is proved by induction on the sizes m and n of L and R. f m =0orn =0
the lemma trivially holds, since join(L, R) returns the non-empty tree in the pair, if there is any, and
O if both are empty. Consider now the case where both m > 0 and n > 0. Let a = . — key and
b= R — key. If we select a to become the root of T, then we will recursively join L, = L — right
and R. By the inductive hypothesis, the result is a random BST. Therefore, we have that: 1) the
left subtree of T'is L — left and hence it is a random BST (because so was L); 2) the right subtree
of T is join(L,, R), which is also random; 3) both subtrees are independent; and 4) the probability
that any key  in L becomes the root of T is min, since this probability is just the probability that
x was the root of L times the probability that it is selected as the root of T % X m’in = m1+n.

The same reasoning shows that the lemma is also true if b were selected to become the root of 7. O

Algorithm 4 Join of two RBSTs
bst join(bst L, bst R) {
int m, n, r, total;

m = L—size; n = R—size; total = m + n;
if (total == 0) return [1;
r = random(0, total - 1);

if (r <m) { /% with probability 7 */
L—right = join(L—right, R);
return L;

}

else { /* with probability _Z— */
R—left = join(L, R—left);
return R;

Theorem 3.1 If T is a random BST that contains the set of keys K, then delete(z,T) produces a
random BST containing the set of keys K \ {z}.

Proof. If z is not in T, then delete does not modify T" and the theorem trivially holds.

Let us supose now that z is in 7. The theorem 1is proved by induction on the size n of T. If n = 1,
then delete(z,T) produces the empty tree, and the theorem holds. Let us assume that n > 1 and
the theorem is true for all sizes < n. If z was not the root of T, then we delete 2 from the left or
right subtree of T" and, by induction, this subtree will be a random BST. If z was the root of T
T’ = delete(z,T) is the result of joining the left and right subtrees of 7', which by last lemma will be
a random BST. Therefore, both the left and right subtrees of 77 are independent random BSTs. It
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is left to prove that every y € K not equal to z has the same probability, n]Tl’ of being the root of
T'. This can be easily proved.

P [y is the root of T'] = P[y is the root of T" |z was the root of T| x P[z was the root of T
+ P[y is the root of T' | # was not the root of T] x P[z was not the root of T
= P[join brings y to the root of 7] x 1/n
+ P[y was the root of T'|  was not the root of 7] x (n —1)/n

T =

X — X = .
n+n—1 n n—1

n—1
O

Figure 2 shows the effects of the deletion of z = 3 from a random BST when K = {1,2,3,4}. The
labels, arrows, etc. follow the same conventions as in Figure 1. Again, we can use this figure to give
an example of the result of another operation, in this case join. Notice that the arrows that start in
trees with root 3 show the result of joining two random BSTs, one with the set of keys K; = {1,2}
and the other with the set of keys Kp = {4}. The outcome is certainly a random BST with the set
of keys {1,2,4}.

On the other hand, comparing Figures 1 and 2 produces this nice observation: For any fixed BST
T, let P[T] be the probability of T" according to the random BST model. Let 77 and 75 be any given
BSTs with n and n + 1 keys, respectively, and let z be any key not in 71. Then

P[T1] x P[Inserting z in 77 produces T3] = P[713] x P[Deleting z from 7% produces T1].

Combining Theorem 2.1 and Theorem 3.1 we get this important corollary.

Corollary 3.1 The result of any arbitary sequence of insertions and deletions, starting from an
initially empty tree is always a random BST. Furthermore, if the insertions are random (not arbitrary),
then the result is still a random BST even if the standard insertion algorithm or Stephenson’s insertion
at root algorithm is used instead of the randomized insertion algorithm for RBSTs.

4. PERFORMANCE ANALYSIS

The analysis of the performance of the basic algorithms is immediate, since both insertions and
deletions guarantee the randomness of their results. Therefore, the large collection of results about
random BSTs found in the literature may be used here. We will use three well known results (see
for instance [15, 17, 24, 27]) about random BSTs of size n: the expected depth of the i-th internal
node, the expected depth of the i-th external node (leaf), and the total expected lenght of the right
and left spines of the subtree whose root is the i-th node. We will denote the corresponding random
variables D,(Li), [;55') and &(f). Recall that the right spine of a tree is the path from the root of the
right son to the smallest element in that subtree. Analogously, the left spine is the path from the
root of the left son to its largest element (see Figure 3). The expected values mentioned above are:

E[Dr(Li)}:Hi+Hn+]—i_2; i=1,...,n;

E{ﬁg)}:Hi—l‘i‘Hn-kl—i; 1:1))n+1a
1 1

R [s,&”] .- [ﬁg)+£g+1> _2@;;')“)} =2-c- s i=loom

where Hy, =37, ¢;¢,1/j=Inn+~v+ O(1/n) denotes the n-th harmonic number, and y = 0.577 . ..

1s Euler’s constant.
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Figure 3: Left and right spines of the i¢-th internal node.

To begin with, let Sr(zi) and U,(Li) be the number of comparisons in a successful search for the i-th
key and the number of comparisons in a unsuccessful search for a key in the i-th interval of a tree of
size n, respectively. It is clear that

S = pli) 41, i=1,...,n.
Ur(li):[’g)’ i=1,...,n+1

Let us consider now the cost of an insertion in the i-th interval (1 <i < n+ 1) of a tree of size n.

(1)

If this cost is measured as the number of visited nodes, then its expected value is E {ﬁn } + 1, since

the visited nodes are the same as those visited in an unsuccessful search that ends at the i-th external
node, plus the new node. However, the insertion of a new item has two clearly differentiated phases
and the cost of the stages differ in each of these two phases. Before the insertion at root, we generate
a random number in each stage, compare it to another integer, and (except in the last step) compare
the new key with the key at the current node. Notice that a top-down (non-recursive) implementation
of the insertion algorithm would not update the pointer to the current node, as Algorithm 1 does. In
each stage of the insertion at root, a comparison between keys and updating of pointers take place,
but no random number is generated.

Hence, for a more precise estimate of the cost of an insertion, we will divide this cost into two

(1)

contributions: the cost of the descent until the new item reaches its final position, Ry’, plus the cost
of restructuring the tree beneath, that is, the cost of the insertion at the root, [,(j). We measure these
quantities as the number of steps or visited nodes in each. Consider the tree after the insertion. The
number of nodes in the path from the root of the tree to the new item is Rﬁf). The nodes visited
while performing the insertion at root are those in the left and the right spines of the subtree whose

root is the i-th node. Since the tree produced by the insertion is random, we have that

Rfj):pgil_FL [r(Zi):Sr(j_‘)_l, i1=1,...,n4+1.
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As expected, E [Rﬁf) + [7(11')} =F [L‘,g)} + 1. A more precise estimation of the expected cost of an

insertion in the i-th interval is then

aF {R,(f)} +8E [I,(f)} =a(Hj+Hnypoi = 1)+ <2— % - ﬁ) )

where a and § are constants that reflect the different costs of the stages in each of the two phases of
the insertion algorithm. Notice that the expected cost of the insertion at root phase is @(1), since
less than two rotation-like operations take place (on average).

The cost of the deletion, measured as the number of visited keys, of the i-th key of a tree of size
n is also easy to analyze. We can divide it into two contributions, as in the case of insertions: the
cost of finding the key to be deleted, F,Ei), plus the cost of the join phase, J,(Li). Since the input tree
is random, we have that

FO =D+, =P, =L

Notice that the number of visited nodes while deleting a key is the same as while inserting it, because
we visit the same nodes. The expected number of local updates per deletion is also less than two. A
more precise estimation of the expected cost of the deletion of the i-th element is

1 1
! . ; — ! T
of (Hi+ Hnyi-i = 1) + (2 i n+1—i>’

where o’ and @' are constants that reflect the different costs of the stages in each of the two phases of
the deletion algorithm. Altogether, the expected cost of any search (whether successful or not) and
the expected cost of any update operation is always ©(logn).

The algorithms in the next section can also be analyzed in a straightforward manner. It suffices
to relate their performance to the probabilistic behavior of well known quantities like the depth of
internal or external nodes in random BSTs, like we have done here.

5. OTHER OPERATIONS

5.1. Duplicate keys. In Section 2 we have assumed that whenever we insert a new item in a
RBST its key is not present in the tree. An obvious way to make sure that this is always the case is
to perform a search of the key, and then insert it only if it were not present. But there is an important
waste of time if this is naively implemented. There are several approaches to cope with the problem
efficiently.

The bottom-up approach performs the search of the key first, until it either finds the sought item
or reaches an external node. If the key is already present the algorithm does nothing else. If the
search was unsuccessful, the external node is replaced with a new internal node containing the item.
Then, zero or more single rotations are made, until the new item gets into its final position; the
rotations are done as long as the random choices taken with the appropiate probabilities indicate so.
This is just like running the insertion at root algorithm backwards: we have to stop rotations at the
same point where we would have decided to perform an insertion at root. We leave the details of this
kind of implementations as an exercise.

There is an equivalent recursive approach that uses a variant of split that does nothing (does not
split) if it finds the key in the tree to be split. The sequence of recursive calls signal back such event
and the insertion is not performed at the point where the random choice indicated so.

Yet there is another solution, using the top-down approach, which is more efficient than the other
solutions considered before. We do the insertion almost in the usual way, with two variations:
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1. The insertion at root has to be modified to remove any duplicate of the key that we may find
below (and we will surely find it when splitting the tree). This is easy to achieve with a slight
modification of the procedure split;

2. If we find the duplicate while performing the first stage of the insertion (that is, when we are
finding a place for the inserted key), we have to decide whether the key remains at the position
where 1t has been found, or we push it down.

The reason for the second variation is that, if we never pushed down a key which is repeatedly
inserted, then this key would promote to the root and have more chances than other keys to become
the root or nearby (see Subsection 5.3). The modified insertion algorithm is exactly like Algorithm 1
given in Section 2, except that it now includes

if (x == T—key)
return push_down(T);

after the comparison r == n has failed.

In order to push down an item, we basically insert it again, starting from its current position.
The procedure push_down(T') (see Algorithm 5) pushes down the root of the tree T'; in each step, we
decide either to finish the process, or to push down the root to the left or to the right, mimicking
single rotations. The procedure push_down(T') follows next theorem.

Theorem 5.1 Let T' be a BST such that its root is some known key x, and its left and right subtrees
are random BSTs. Then push_down(T') produces a completely random BST (without information on
the root of the tree).

Algorithm 5 Push down
bst push_down(bst T) {
/* T £ 0O */

bst P;

int m, n, r, total;

m = Toleft—size; n = Toright—size;
total = m + n;
r = random(0, total);
if (r <m) { /* with probability
P = T—left;
T—left = T—left—right;
P—right = push_down(T);
return P;

m
m+n+1 */

}

else if (r < total) { /* with probability
P = Toright;
T—right = Toright—left;
P—left = push_down(T);
return P;

n
m+n+1 */

}

return T; /* with probability m */
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We shall not prove it here, but the result above allows us to generalize Theorem 2.1 to cope with
the insertion of repeated keys.

Theorem 5.2 If T is a random BST that contains the set of keys K and x is any key (that may or
may not belong to K ), then insert(z,T') produces a random BST containing the set of keys K U{x}.

Although, for the sake of clarity, we have given here a recursive implementation of the inser-
tion and push_down procedures, it is straightforward to obtain efficient iterative implementations of
both procedures, with only additional constant auxiliary space (no stack) and without using pointer
reversal.

5.2. Set operations. We consider here three set operations: union, intersection and difference.

Given two trees A and B, union(A, B) returns a BST that contains the keys in A and B, deleting
the duplicate keys. If both trees are empty the result is also the empty tree. Otherwise, a root is
selected from the roots of the two given trees, say, we select a = A — key. Then, the tree whose root
was not selected is split w.r.t. the selected root. Following the example, we split B with respect to a,
yielding B« and Bs. Finally, we recursively perform the union of the left subtree of A with B< and
the union of the right subtree of A with Bs . The resulting unions are then attached to the common
root a. If we select b = B — key to be the root of the resulting tree, then we check if b was already
in A. If this is the case, then b was duplicate and we push it down. Doing so we compensate the fact
that b has had twice the chances of being the root of the final tree than any non-duplicate key.

Algorithm 6 Union

bst union(bst A, bst B) {
bst Al, Ar, Bl, Br;
int m, n, u, total, rep;

m = A—size; n = B—size; total = m + n;
if (total == 0) return [1;
u = random(1, total);
if (u <=m) { /* with probability - */
split(A—key, B, &Bl, &Br);
A—left = union(A—left, Bl);
A—right = union(a—right, Br);
return 4;

}
else { /* with probability _f— */
rep = split(B—key, A, &Al, &Ar);
B—left = union(B—left, Al);
B—right = union(B—right, Ar);
if (rep) return push_down(B);
else return B;

This algorithm uses a slight variant of the procedure split, which behaves like the procedure
described in Section 2, but also removes any duplicate of z, the given key, and returns 0 if such a
duplicate has not been found and 1 otherwise.
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The correctness of the algorithm is clear. A bit more involved proof shows that union(A, B) is a
random BST if both A and B are random BSTs. The expected cost of the union is ©(m + n), where
m = A — size and n = B — size.

The intersection and set difference of two given trees A and B are computed in a similar vein.
Algorithms 7 and 8 always produce a RBST) if the given trees are RBSTs. Notice that they do not
need to use randomness. As in the case of the union of two given RBST's, their expected performance
is ©(m+n). Both intersection and difference use a procedure free_tree(7"), which returns all the nodes
in the tree T to the free storage.

Algorithm 7 Intersection

bst intersection(bst A, bst B) {
bst B1l, Br, il, ir;

int rep;

if (A== ) {
free_tree(B);
return [1;

}
rep = split(A—key, B, &Bl, &Br);
il = intersection(A—left, Bl);
ir = intersection(A—right, Br);
if (rep) {

A—left = il;

A—right = ir;

return 4;
}
else {

free_node(4);

return join(il, ir);

As a final remark, notice that for all our set algorithms we have assumed that their parameters
had to be not only combined to produce the output, but destroyed. It is easy to write slightly different
versions that preserve their inputs.

5.3. Self-adjusting strategies. In Subsection 5.1 we have mentioned that to cope with the prob-
lem of duplicate keys, we either make sure that the input tree is not modified at all if the new key
is already present, or we add a mechanism to “push down” duplicate keys. The reason is that, if we
did not have such a mechanism, a key that were repeatedly inserted would promote to the root. Such
a key would be closer to the root with probability larger than the one corresponding to the random
BST model, since that key would always be inserted at the same level that it already was or closer
to the root.

This observation immediately suggests the following self-adjusting strategy: each time a key is
searched for, the key is inserted again in the tree, but now it will not be pushed down if found during
the search phase, we just stop the insertion. As a consequence, frequently accessed keys will get closer
and closer to the root (because they are never inserted at a level below the level they were before the
access), and the average cost per access will decrease.
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Algorithm 8 Difference

bst difference(bst A4, bst B) {
bst Bl, Br, d1, dr;

int rep;

if (a == 0) {
free_tree(B);
return [];

}
rep = split(A—key, B, &Bl, &Br);
dl = difference(A—left, Bl);
dr = difference(A—right, Br);
if (rep) {

free_node(A);

return join(dl, dr);
}
else {

A—left = d1;

A—right = dr;

return A;

We can rephrase the behavior of this self-adjusting strategy as follows: we go down the path from
the root to the accessed item; at each node of this path we decide, with probability %, whether we
replace that node with the accessed item and rebuild the subtree rooted at the current node, or we
continue one level below, unless we have reached the element we were searching for. Here, n denotes
the size of the subtree rooted at the current node. When we decide to replace some node by the
sought element, the subtree is rebuilt and we should take care to remove the duplicate key.

Since it is not now our goal to maintain random BSTs, the probability of replacement can be
totally arbitrary, not necessarily equal to % We can use any function 0 < a(n) < 1 as the probability
of replacement. If a(n) is close to 1 then the self-adjusting strategy reacts quickly to the pattern of
accesses. The limit case a(n) = 1 is the well known move-to-root strategy [2], because we always
replace the root with the most recently accessed item and rebuild the tree in such a way that the
result is the same as if we had moved the accessed item up to the root using single rotations. If «(n)
is close to 0, convergence occurs at a slower rate, but it is more difficult to fool the heuristic with
transient patterns. Obviously, the self-adjusting strategy that we have originally introduced is the
one where a(n) = 1.

Notice that the different self-adjusting strategies that we consider here are just characterized by
their corresponding function a; no matter what a(n) is we have the following result, that will be
proved in Section 7.

Theorem 5.3 Let X = {z1,...,zy} and let T be a BST that contains the items in X. Furthermore,
consider a sequence of independent accesses to the items in X such that z; is accessed with probability
p;. If we use any of the self-adjusting strategies described above to modify T at each access, the
asymptotic probability distribution is the same for all strategies and independent of a(n), namely, it
is the one for the move-to-root strategy.
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We know thus that after a large number of accesses have been made and the tree reorganized
according to any of the heuristics described above, the probability that z; is an ancestor of z; is, for
i< j, pi/(pi+---+p;). Moreover, the average cost of a successful search is

Ov=1+2 Y —Ph__
i<igen Pt

In the paper of Aragon and Seidel [3], they describe another self-adjusting strategy for randomized
treaps: each time an item is accessed, a new random priority is computed for that item; if the new
priority is larger than its previous priority, the older priority is replaced by the newer and the item
is rotated upwards until heap order in the tree is restablished. This strategy does not correspond to
any of the strategies in the family that we have discussed before, but it also satisfies Theorem 5.3.
The analysis of the strategy suggested by Aragon and Seidel becomes simpler once we notice that its
asymptotic distribution is the same as that of move-to-root.

The main difference between the self-adjusting strategies that we have discussed here is that they
have different rates of convergence to the asymptotic distribution. In [2], Allen and Munro show
that, for move-to-root, the difference between the average cost in the asymptotic distribution and the
average cost after ¢ accesses is less than 1 if ¢ > &g— and the initial tree is random. If a(n) < 1,
it is clear that the rate of convergence should be slower than that for move-to-root. We have been
able to prove that if a( n) is constant, then the result of Allen and Munro holds for ¢t > M We
conjecture that this is also true for any «(n), but we have not been able to prove it. On the other
hand, Aragon and Seidel did not address the question of the rate of convergence for their strategy
and it seems also quite difficult to compute it.

In a more practical setting, the strategy of Aragon and Seidel has a serious drawback, since
frequently accessed items get priorities close to 1. Then the lenght of the prorities tends to infinity
as the number of accesses grows. The situation gets even worse if the p;’s, the probabilities of access,
changed from time to time, since their algorithms react very slowly after a great number of accesses
have been made.

6. IMPLEMENTATION ISSUES

6.1. Number of random bits. Let us now consider the complexity of our algorithms from the
point of view of the number of needed random bits per operation.

For insertions, a random number must be generated for each node visited before the placement
of the new item at the root of some subtree is made. If the currently visited node y is the root of
a subtree of size m, we would generate a random number between 0 and m; if this random number
is m then we insert at root the new element, otherwise the insertion continues either on the left or
right subtree of y. If random numbers are generated from high order to low order bits and compared
with prefixes of the binary representation of m, then the expected number of generated random
bits per node is ©(1) —most of the times the comparison fails and the insertion continues at the
appropriate subtree—. Recall that the expected number of nodes visited before we insert at root
the new item is O(logn). The total expected number of random bits per insertion is thus ©(logn).
Further refinements could reduce the expected total number of random bits to ©(1). Nevertheless,
the reduction is achieved at the cost of performing rather complicated arithmetic operations for each
visited node during the insertion.

In the case of deletions, the expected lenght of left and right spines of the node to be deleted is
constant, so the expected number of random bits is also constant.

A practical implementation, though, will use the straightforward approach. Typical random
number generators produce one random word (say of 32 or 64 bits) quite efficiently and that is
enough for most ordinary applications.
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6.2. Non-recursive top-down implementation of the operations. We have given recursive
implementations of the insertion and deletion algorithms, as well as for other related procedures. Tt is
not very difficult to obtain efficient non-recursive implementations of all considered operations, with
two interesting features: they only use a constant amount of auxiliary space and they work in pure
top-down fashion. Thus these non-recursive implementations do not use stacks or pointer reversal,
and never traverse backwards a search path. We also introduce an apparently new technique to
manage subtree sizes without modifying the top-down nature of our algorithms (see next Subsection
for more details). As an example, Algorithm 10 in Appendix A shows a non-recursive implementation
of the deletion algorithm, including the code to manage subtree sizes.

6.3. Management of subtree sizes & space complexity. Up to now, we have not considered
the problem of managing the sizes of subtrees. In principle, each node of the tree has to store
information from which we can compute the size of the subtree rooted at that particular node. If
the size of each subtree is stored at its root then we face the problem of updating this information
for all nodes in the path followed during insertion and deletion operations. The problem gets more
complicated if one has to cope with insertions that may not increase the size of the tree (when the
element was already in the tree) and deletions that may not decrease the size (when the element to
be deleted was not in the tree).

A good solution to this problem is to store at each node the size of its left son or its right son,
rather than the size of the subtree rooted at that node. An additional orientation bit indicates
whether the size is that of the left or the right subtree. If the total size of the tree is known and
we follow any path from the root downwards, it is easy to see that, for each node in this path, we
can trivially compute the sizes of its two subtrees, given the size of one of them and its total size.
This trick notably simplifies the management of the size information: for instance, while doing an
insertion or deletion, we change the size and orientation bit of the node from left to right if the
operation continues in the left subtree and the orientation bit was ’left’; we change from right to left
in the symmetric case. When the insertion or deletion finishes, only the global counter of the size of
tree has to be changed if necessary (see Algorithm 10 in Appendix A). Similar rules can be used for
the implementation of splits and joins.

We emphasize again that the information about subtree sizes —required by all our algorithms—
can be advantageously used for operations based on ranks, like searching or deleting the i-th item.
In fact, since we store either the size of the left or the right subtree of each node, rank operations are
easier and more efficient. By contrast, if the size of the subtree were stored at the node, one level of
indirection (examining the left subtree root’s size, for instance) would be necessary to decide if the
rank operation had to continue either to the left or to the right.

Last but not least, storing the sizes of subtrees is not too demanding. The expected total number
of bits that are necessary to store the sizes is ©(n) (this result is the solution of the corresponding
easy divide-and-conquer recurrence). This is well below the ©(nlogn) number of bits needed for
pointers and keys.

7. FORMAL FRAMEWORK AND ALGEBRAIC PROOFS

7.1. Randomized algorithms. While the behaviour of deterministic algorithms can be neatly
described by means of algebraic equations, this approach has never been used for the study of ran-
domized algorithms in previous works. We now present an algebraic-like notation that allows a
concise and rigorous description and further reasoning about randomized algorithms, following the
ideas introduced in [18§].

The main idea is to consider any randomized algorithm F' as a function from the set of inputs A
to the set of probability functions (or PFs, for short) over the set of outputs B. We say that f is a
probability function over B if and only if f : B — [0, 1] and ZyEB f(y) =1, as usual.
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Let fi,..., fn be PFs over B and let a1, ...,a, € [0,1] be such that >, ,., @ = 1. Consider
the following process: T

1. Choose some PF from the set {fi}i=]7___7n in such a way that each f; has a probability «; of
being selected.

2. Choose one element from B according to the probabilities defined by the selected f;, namely,
choose y € B with probability f;(y).

Let h be the PF over B related to the process above: for any y € B, h(y) is the probability that we
select the element y as the outcome of the whole process. Clearly, h is the linear combination of the
fi’s with coefficients «;’s:

h=ai-fit - tan fo= mez (2)
1<i<n
The linear combination of PFs modelizes the common situation where a randomized algorithm h
makes a random choice and depending on 1t performs some particular task f; with probability a;.
Let f be a PF over B such that f(h) = 1 for some b € B (i.e. f(y) = 0 for all y # b). Then we

will write f = b. Thus we are considering each element in B as a PF over B itself:

(1, ify=b,
b) _{ 0, otherwise. (3)

This convention is useful, since it will allow us to uniformly deal with both randomized and deter-
ministic algorithms.

Let f be any PF over B = {y;};, and let p; denote f(y;). Then the convention above allows us to
write f =, pi - ¥i, since for any y; € B we have that f(y;) = D_; i - %l(y;) = D pi - vi(y;) = pj.
Taking into account that p; = f(y;), we get the following equality, that may look amazing at first:

F=Y 1w v (4)
yeB
Let F be a randomized algorithm from the input set A to the output set B. Fix some input
xz € A. We denote by F(z) the PF over B such that, for any y € B, [F'(2)](y) is the probability that
the algorithm F' outputs y when given input z. Let {y1,...,ym} be the set of possible outputs of
F', when z is the input given to F', and let p; be the probability that y; is the actual output. Then,
using the notation previously introduced, we may write

Flz)=pi-yi+ -+ pm Ym- (5)

Notice that, if for some a € A the result of F'(a) is always a fixed element b € B, then the expression
above reduces to F'(a) = b.

Finally, we characterize the behaviour of the sequential composition of randomized algorithms.
Let g be a PF over A, and let F' be a function from A to B. By F(g) we will denote the PF over B
such that [F(g)](y) is the probability that y is the output of algorithm F' when the input is selected
according to g. It turns out that F(g) is easily computed from g and the PFs F(z) for each element
zin A.

Flg) = F (ng ) =Y y@) - Fla). (6)
zcA €A
Recall that a single element a from A may be considered as a PF over A, and then the definition above
is consistent with the case g = a, that is, when the input of F' is fixed, since ) . 4 a(z)  F(z) = F(a).
We shall also use Iverson’s bracket convention for predicates, that is, [P] is 1 if the predicate
P is true, and 0 otherwise. This convention allows expressing the definitions by cases as linear
combinations.
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7.2. Binary search trees and permutations. We now introduce some definitions and notation
concerning the main types of objects we are coping with: keys, permutations and trees.

Given a finite set of keys K, we shall denote B(K) the set of all BSTs that contain all the keys in
K. For simplicity, we will assume that K C N. The empty tree is denoted by 0. We will sometimes
omit drawing empty subtrees, to make the figures simpler. A tree T' with root z, left subtree I and
right subtree R is depicted

=/ \ .

L R

Similarly, we denote P(K) the set of all permutations (sequences without repetition) of the keys
in K. We shall use the terms sequence and permutation with the same meaning for the rest of this
paper. The empty sequence is denoted by A and U |V denotes the concatenation of the sequences U
and V (provided that U and V do not have common elements).

The following equations relate sequences in P(K) and BSTs in B(K). Given a sequence S, bst(.5)
is the BST resulting after the standard insertion of the keys in .S from left to right into an initially
empty tree.

®
bst(A) = O, bst(z|S) = / \ , (7)

bst(sep. (z,5)) bst(seps, (z, 5))

where the algebraic function sep (, S) returns the subsequence of elements in S smaller than z, and
sep, (, S) returns the subsequence of elements in S larger than z. Both functions respect the order
in which the keys appear in S.

Let Random_Perm be a function such that, given a set K with n > 0 keys, returns a randomly
chosen permutation of the keys in K. It can be compactly written as follows:

Random_Perm(K) = Z i' - P. (8)
PePk) n!

Random BSTs can be defined in the following succint way, which turns out to be equivalent to the
assumption that a RBST of size n is built by performing n random insertions in an initially empty
tree:

RBST(K) = bst(Random_Perm(K)) = Z 1 / \ : 9)
zek " RBST(K.,)  RBST(Ks.)

The last expression in the equation above is clearly equivalent to the one we gave in Section 2,
provided we define its value to be O if n = 0.
For instance,

RBST({1,5,7}) = bst(Random_Perm({1, 5, 7}))

1 1
—bt BT+ = 175+ = 51T+ — - 571+ — - TI5 4 — - 751
s + 5 41 ; 4+ c + 1 ; 41 - )

2 e BoN
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We introduce now three useful algebraic functions over sequences: rm, shuffle and equiv. The first
function removes a key = from a sequence S € P(K), if present, without changing the relative order
of the other keys. For instance, rm(3,2315) = 215, rm(4,2315) = 2315.

The function shuffle produces a random shuffling of two given sequences with no common elements.
Let K; and K5 be two disjoint sets with m and n keys, respectively. Let U = uy|...|u, € P(K;)
and V = vy |...|v, € P(K3). We define S(U,V) as the set of all the permutations of the keys
in Ky U K5 that could be obtained by shuffling U and V', without changing the relative order of
the keys of U and V. Hence, S(U,V) is the set of all Y = y1 | ... | ymn € P(K1 U K3) such that
if y; = u; and yp = wjr, then i < 4/ if and only if j < j’ (and the equivalent condition for the
keys of V). For instance, §(21,ba) = {21ba, 2bla, 2bal,b21a,b2al,ba21}. The number of elements
in S(U, V) is clearly equal to (m;'n) Therefore, we can rigorously define shuffle as a function that,
given U and V|, returns a randomly choosen element from S(U, V). For instance, shuffle(21, ba) =

% - 21ba + % - 2bla + % - 2bal + % -b2la + % -b2al + % -ba21. The algebraic equations for shuffle are
shuffle(A, X) = A, shuffle(A, v | V) = vV, shuffle(u|U, A) = u| U,
shuffle(u|U,v|V) = m - u|shuffle(U, v| V) + - v|shuffle(u | U, V), (10)

m

+n m-+n

where m and n are the sizes of u|U and of v|V, respectively. It is no difficult to prove by induction
that this definition of the function shuffle is correct.

Let K be aset of keys and z a key not in K. We can use shuffle to define the function Random_Perm
in the following inductive way, equivalent to definition (8):

Random_Perm(0) = A,
Random_Perm(K U {z}) = shuffle(z, Random_Perm(K)). (11)

We define equiv as a function such that given input a sequence S € P(K), it returns a randomly
chosen element from the set of sequences that produce the same BST as S, i.e.

£(S) = {E € P(K)

bst(E) = bst(S)}.

For example, £(3124) = {3124,3142,3412} and equiv(3124) = % - 3124 + £ . 3142 + & - 3412, since
bst(3124) = bst(3142) = bst(3412) and no other permutation of the keys {1,2,3,4} produces the
same tree. Using the function shuffle, the equational definition of equiv is almost trivial:

equiv(A) = A, equiv(z | S) = x|shuffle(equiv(sep_ (z, S)), equiv(sep, (z, S))). (12)

7.3. The algorithms. In this subsection we give equational definitions for the basic algorithms in
our study: insert, insert_at_root, delete, join, etc.
Using our notation, the algebraic equations describing the behaviour of insert are

insert(xz, () = / \ ,
| O
insert | z, / \ = ! -insert_at_root | z, / \ (13)
r r) "t L R

® ®
L -([[a:<y]]~ /N 4 Esd N\ )
R L (z,R)

n+l insert(z, L) insert
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assuming that we never insert a key that was already in the tree.
The function insert_at_root can be defined as follows.

®
insert_at_root(z,T) = / \ , (14)

split . (z,T) splity (2, T')

where split_ and split, are functions that, given a tree T"and a key € T', return a BST with the keys
in T less than z and a BST with the keys in T greater than z, respectively. The algebraic equations
for the function split< are

split (z, 00) = 00,

® ®

split< | =, / \ =[x <y] splitc(z, L) + [z>y]: / \ . (15)
L R split. (z, R)

The function splity satisfies symmetric equations. We define
split(z, T) = [split (=, T'), split, (z, T)].
Let us now shift our attention to the deletion algorithm. Its algebraic form is

delete(z, 0) = O,

O © O
delete :c,L/ \R [+ < 4] / \ + >/ \ (16)

delete(x, L) L delete(x, R)

+ [ =y] - join(L, R).

The probabilistic behaviour of join can in turn be described as follows, when at least one of its
arguments is an empty tree

join(O,d) = O, join(L,0) =L, join(O, R) = R.

On the other hand, when both arguments are non-empty trees, with sizes m = . — size > 0 and

n = R — size > 0, respectively, we have

A N / N\ (17)

mtn L, join(L,, R) mtn join(L, Ry) RT

join(L, R) =

where a = L — key, Ly = L — left, L, = L — rightand b = R — key, Ry = R — left, R, = R — right.

7.4. The proofs. We consider here several of the results that we have already seen in previous
sections as well as some intermediate lemmas that are interesting on their own. We will not provide
proofs for all them, for the sake of brevity. Only the proof of Lemma 7.2 and Theorem 7.2 will be
rather detailed; in other cases, the proofs will be sketchy or just missing. However, the ones given
here should suffice to exemplify the basic manouvers that the algebraic notation allows and typical
reasoning using it.

The following lemma describes the result of split when applied to a fixed BST.
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Lemma 7.1 Let S be any permutation of keys and let x be any key not in S. Then

split(x, bst(S)) = [bst(sep (x, S)), bst(sepy, (z, S))].

From this lemma we can describe the behaviour of split when applied to a random BST. Our next
theorem is nothing but Lemma 2.1, now in the formal setting of this section.

Theorem 7.1 Let K be any set of keys and let x be any key not in K. Let K., and K, denote
the set with the keys in K less than = and the set with the keys in K greater than x, respectively.
Then

split(z, RBST(K)) = [RBST(K <), RBST(Ks )]

Lemma 7.1 relates split with sep, the analogous function over sequences. Our next objective is to
relate insert with shuffle and equiv, the functions that we have defined before. The idea is that the
insertion of a new item in a tree T has the same effect as taking at random any of the sequences
that would produce T, placing # anywhere in the chosen sequence (an insertion-like operation in a
sequence) and then rebuilding the tree. This is formally stated in the next lemma.

Lemma 7.2 Let S be any permutation of keys and let x be any key not in S. Then
insert(z, bst(S)) = bst(shuffle(z, equiv(S))).

For instance, using Equations (7), (14) and (15) we get

(2)
insert(3, bst(241)) + - % o ee

On the other hand, by the definitions of shuffle and equiv (Equations (10) and (12)),

)

- shuffle(3, 214)>

1
bst(shuffle(3, equiv(241))) = bst <shuff|e ( ,= 241 4 -

NI—‘ [\)lb—‘

= bst <§ shuffle(3, 241) +

1 1 1 1 1 1 1
:bst(g~3241+§~2341+§~2431+§ 2413+§ 82144 5 - 2314+§-2134+§-2143),

which gives the same result as insert(3, bst(241)), since the sequences in {3241, 3214} produce the
first tree, those in {2341, 2314, 2134} produce the second tree, and the ones in {2431, 2413, 2143}

produce the third.

Proof. We prove the lemma by induction on n, the length of S. If n = 0,

O,

insert(z, bst(A)) = insert(z, ) = / \ ,
| O

but on the other hand, equiv(A) = A and shuffle(z, A) = z, so the lemma is true.
Assume now that n > 0, S = y| P and z is not present in S. Moreover, let us assume that z < y
(the case & > y is very similar).
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First of all, notice that, if y | @ is any permutation of n keys and z is any key not in y | @, then
shuffle[z, y| Q] = n1—+1 2 |y|Q + i1 - yIshuffle[z, Q]. Therefore,

shuffle[z, equiv(y| P)]
{by definition of equiv} =shuffle[x, y |shuffle[equiv(sep . (y, P)), equiv(sep, (y, P))]]

{by the observation above} = - x| y|shuffle[equiv(sep . (y, P)), equiv(seps, (y, P))]

n+1
+% -y |shuffle[z, shuffle[equiv (sep  (y, P)), equiv(seps, (y, P))]].
n

Now we can use the definition of equiv back in the first line. Furthermore, the shuffle operation is
associative —we do not prove it, but it is easy to do it and rather intuitive—. Therefore,

shuffle[z, equiv(y| P)] == i T z|equiv(y| P)
+n j_ T y|shuffle[shuffle[z, equiv(sep . (y, P))], equiv(sep, (y, P))].
Distributing through bst, we get
bst(shuffle[z, equiv(y| P)]) == l T bst(z | equiv(y| P)) (18)
+n i T bst(y |shuffle[shuffle[z, equiv(sep (y, P))], equiv(seps, (y, P))]).

Now we can use the facts that bst(xz | Q)) = insert_at_root(xz, bst(Q)) (this follows from Lemma 7.1)
and bst(equiv(Q)) = bst(()) to manipulate the expression in the first line of (18) as follows.
bst(x |equiv(y| P)) =insert_at_root(x, bst(equiv(y| P)))
=insert_at_root(z, bst(y| P))
=insert_at_root(z, bst(S)).

Let A = shuffle[shuffle[x, equiv(sep (y, P))], equiv(sep, (¥, P))]. The definition of bst allows us to
write the expression in the second line of (18) as

bst(y| A) = /@\

bst(sep (y, 4))  bst(seps (y, 4))
Notice that shuffle[z, equiv(sep (y, P))] does only contain keys smaller than y. Therefore,
sep (y, A) = shuffle[z, equiv(sep (y, P))],  seps (y, A) = equiv(sep, (y, F)).
Recall that shuffle does not modify the relative order of the keys in its parameters. Then,

bst(y| A) = /@\ '

bst(shuffle[z, equiv(sep . (y, P))]) bst(equiv(sep., (¥, P)))

Applying the inductive hypothesis in the left subtree, and the property bst(equiv(Q)) = bst(Q) in the
right one, we have

bst(y] A) = d @\

insert(z, bst(sep . (y, P))) bst(sep-, (¥, P))
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Finally, using the definition of bst and insert, we prove the statement of the lemma:

bst(shuffle(x, equiv(S))) = insert(x, bst(S5)).

O

Last lemma is relevant since it paves the way for the proof of one of the main results of this work,
namely, Theorem 2.1. We rephrase it again, using the notation introduced so far.

Theorem 7.2 Let K be any set of keys and let x be any key not in K. Then
insert(z, RBST(K)) = RBST(K U {z}).

Proof. Notice that taking S € P(K) at random and then chosing any permutation equivalent to S,
is the same as taking S € P(K) at random. Then,

insert(z, RBST(K))
{by definition of RBST} =insert(z, bst(Random_Perm(K)))
{by Lemma 7.2} =bst(shuffle(x, equiv(Random_Perm(K))))
{by the observation above} =bst(shuffle(z, Random_Perm(K)))
{by definition of Random_Perm} =bst(Random_Perm(K U {z}))

{by definition of RBST} =RBST(K U {z}).
O

The following results describe the behaviour of join when applied to a fixed BST and when applied
to a random BST, respectively. Notice that Theorem 7.3 is only a reformulation of Lemma 3.1 in
Section 3.

Lemma 7.3 Let U and V be two permutation of keys such that the keys in U are smaller than the
keys in V. Then
join(bst(U), bst(V)) = bst(shuffle(equiv(U), equiv(V))).

Theorem 7.3 Let K. and K be two sets of keys such that the keys in K. are all smaller than the
keys in K. Then
join(RBST(K),RBST(K+)) = RBST(K< UKs).

It only remains to describe the behaviour of delete, related with rm and equiv.

Lemma 7.4 Let S be any permutation of keys and let x be any key. Then
delete(z, bst(S)) = bst(rm(z, equiv(S))).

Theorem 3.1 follows as an immediate consequence from the results above. We state it again, for
the sake of completeness.

Theorem 7.4 Let K be any set of keys and let x be any key. Then
delete(x, RBST(K)) = RBST(K \ {z}).

Notice that the theorem holds even if z ¢ K, since in this case K \ {z} = K. It is also possible
to prove that any deletion algorithm such that
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1. it only modifies the subtree beneath the key  to be deleted;

2. its behaviour does not depend on the location of z within the BST;

3. its outcome is the result of rotating the key z left or right until it reaches a leaf; and
4. 1t preserves randomness

has to be equivalent to the one presented in this paper from the point of view of its probabilistic
behaviour. Tn other words, any deletion algorithm that fullfils the conditions 1-4 above must satisfy
Equations 16 and 17. The algorithm may use different mechanisms to make the random choices,
but its probabilistic behaviour must be the same as that of our algorithm. We claim thus that the
deletion algorithm that we present in this paper is, in a very strong sense, the deletion algorithm for

random BSTs.

The notation presented in this section has allowed to state most of the results in this work in a
very concise and rigorous manner. Qur purpose has been to show that the notation is not difficult to
understand. Tts meaning is rather intuitive, while at the same time it does not sacrifice rigour; and it
is not arduous to carry computations using it. As we have already seen, proofs become a mere issue
of rewriting and applying induction where appropriate.

7.5. Self-adjusting strategies. Last but not least, we apply the tools of this section to give a
proof of Theorem 5.3. The procedure self_adj performs a successful search of  in T and returns the
tree after reorganization (presumably, it also returns the information associated to x, but we will not
care about this associated information when describing the behaviour of self_adj). Let n denote the
number of elements in the tree. Let y =T — key, L =T — left and R = T' — right. The equation
for self_adj is

self_adj(x, T) = a(n) - insert_at_root(x, T)

O O
+(1—am)- |z <yl /N +Ek>d /S N\ +le=yT|.
R

self_adj(x, L) L self_adj(z, R)

To modelize the sequence of successful accesses, let K be the set of keys, and for each key z in
K, let p(z) > 0 denote the probability of access to z. Of course, we have

Z p(z) = 1.

reK

An independent successful access to an item in K, according to p, is given by

a(K) = Z p(z) - .

reK

Let m denote the asymptotic distribution that some self-adjusting strategy induces after an infinite
number of successful accesses have been made. First, we should prove that any of these self-adjusting
strategies produces a stationary probability distribution. Consider the (finite) Markov chain that
describes the transition probabilities of this process (see [7], for instance). On the one hand, we have
that all the states intercommunicate, that is, given two trees 77 and T built over the set K, the
probability of ever reaching 75 starting from 77 is strictly greater than zero. On the other hand, there
are no transitions with probability 1 (except when the tree contains only one element). Therefore,
we have an irreducible, persistent, aperiodic Markov chain, irrespective of a(n). This implies the
existence of such a unique stationary probability distribution.
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The characteristic feature of any asymptotic distribution 7 is that it is the unique fixed point for
its corresponding self_adj operation, when accesses are made according to a(K),

self_adj(a(K), ) = 7.

Clearly, 7 is a PF over the set B(K), and eventually depends on our choice of a(n), 7 = w(a(n)).

Theorem 5.3 states that m is the same for all possible a(n). Since it is true for a(n) = 1 we have
that 7 is the asymptotic distribution for the move-to-root strategy. Once we have shown that = is
the same for all a(n), the other claims in Subsection 5.3 follow directly from the results of Allen and
Munro concerning move-to-root [2].

Before we restate Theorem 5.3, we need some additional definitions.
Given a probability distribution p over the set of keys K, and a nonempty subset A C K, let

®
nay =29 TN

yeA p(A) H(A<y) H(A>y)

where p(A) = ZyeAp(y), Acy = {2 € A|lz < y} and Ay = {2z € A|z > y}. Notice that the
definition of TI(A) is independent of «(n). Furthermore, 7 = II(K) is the asymptotic distribution for
move-to-root, since y is the root of the tree with probability p(y), and the same applies recursively,
after proper normalization, for the left and right subtrees. By definition, II(#) = O.

Moreover, for any nonempty A C K, let

a(A) = Z p((fl)) Lz

TEA p

Thus, a(A) defines the event “choose an element from A according to p (renormalized)”.

Theorem 7.5 For any a(n) such that 0 < a(n) <1, and for any nonempty subset of keys A C K,
self_adj(a(A),TI(A)) = II(A).

Proof. We prove this result by induction on the size of A. If A contains only one key, then the claim
of the theorem is trivially true. If A contains more than one element, we have

self_adj(a(A),II(A)) = a(n) - insert_at_root(a(A), [I(A))

®
+(1—am) Y U \Boe) / \H

ey ) p(4) .self_adj(a(A<y),H(A<y).)

L PA>y) /@\

p(A) (Acy) self_adj(a(Asy), I[I(Asy))

(Asy)

A )y miasy))

Notice that, when y is the smallest element in A, the term a(A<y) is not defined, since we cannot
choose an element from the empty set. However, the factor p(A<,) is zero. For the sake of com-
pletness, it is enough to assume that 0 - “undefined” = 0. The same comment applies when y is the
largest element in A.
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Consider the equality above. On the one hand, we have that insert_at_root(a(A),II(A)) = II(A) (this
is just the result of Allen and Munro). On the other, we can use the induction hypothesis to deduce

that self_adj(a(A<y), TM(Acy)) = TI(Acy) and self_adj(a(Asy), TI(Asy)) = TI(As,). Therefore,

self_adj(a(A),II(A)) = a(n) - II(A)

®
F—am) SR TN

e P mal)  masy)

8. (CONCLUSIONS

We have presented randomized algorithms to insert and delete items into and from binary search
trees that guarantee that, given as input a random binary search tree, its output is also a random
binary search tree. Particularly important is the deletion algorithm, since it is the only one known
that preserves the random BST model. Furthermore, and as far as we know, this is the first time
that the randomness-preserving property of the deletion algorithm has been established.

Searches, insertions and deletions by key; splits and joins; searches and deletions by rank and
computations of rank can all be performed in ©(logn) expected time, independently of the input
distribution, where n is the size of the involved trees. All these operations should be fast in practice
(if generating random numbers is not very expensive), since they visit the same nodes as their standard
deterministic counterparts, and they can be implemented in a top-down fashion. We have shown that
these results can be achieved using only structural information, the subtree sizes. As a consequence,
an efficient implementation of rank operations follows at no additional cost.

Also, set operations (unions, intersections and differences) yielding random BSTs if their input is
a pair of random BSTs, can also be implemented in ©(n) expected time using similar ideas.

Another question that we have considered in this paper is that of self-adjusting strategies. We
have been able to prove that there exists a general family of self-adjusting strategies that behave
identically in the asymptotic state. The family includes the well known move-to-root heuristic.
However, the different strategies in this family must exhibit different rates of convergence to the
asymptotic distribution; we still lack of a quantitave analysis of this question and thus leave open
this problem. Other open problem (probably very difficult) concerns the robustness against malicious
adversaries. Since all the self-adjusting strategies that we have considered are randomized, the only
exception being move-to-root, it may be well that one or more of these strategies were competitive
against an oblivious adversary.

Other further lines of research that we are pursuing include the application of the techniques in
this paper to other kind of search trees, like m-ary trees, quadtrees, etc.

The randomized treaps of Aragon and Seidel satisfy all the Theorems and Lemmas of sections 2
and 3. In particular, their algorithms always produce random binary search trees. However, little use
of this fact was made by the authors when they analyzed their algorithms. Their recently published
work on randomized treaps [25] also mentions that the random priorities for randomized treaps can
be simulated using the sizes of subtrees, pointing out thus the main idea of the present work, but
the 1dea is not further developed there. From our point of view, randomizing through the sizes of
subtrees 1s more advantageous than through random priorities, since the mechanism that allows the
randomization process is useful information in the former case, while is not in the later.
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ApPPENDIX A. NON-RECURSIVE IMPLEMENTATION OF THE DELETION ALGORITHM

This appendix contains the non-recursive implementation of the deletion algorithm delete(z, T') as

well as the implementation of the auxiliary procedure join(A, B). This implementation also considers

the

management of subtree sizes (see Section 6).
The representation of trees has been slightly changed with respect to the one considered along the

main text. A tree 1" is now represented by a pointer to a record with two fields: T — size is the total
number of internal nodes in ', and 1" — root is a pointer to the root node. Each internal node stores
a key, pointers to the left and right subtrees, the size of one of its subtrees, and an orientation bit
which may be either LEFT or RIGHT thus indicating which is the subtree whose size is mantained
by the node.

Both delete and join make use of a function flip_orientation which is convenient for bookkeeping.
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Algorithm 9 Flip_orientation

/* LEFT = 0, RIGHT = -1 %/

/* Given the total size n of the tree rooted at p, flip_orientation
changes the orientation bit of p to indicate the opposite subtree,
assigns the old value of p—size to n,
and p—size is replaced by the size of the other subtree */

void flip_orientation(int #*n, struct node *p) {
int aux;

aux = *n - 1 - p—size;
*n = p—size;

p—size = aux;
p—orientation "= -1;

Algorithm 10 Nonrecursive deletion

void delete(int x, bst T) {
struct node *p, *parent, *aux;
int n;

n T—size;
p = T—root; parent = [];
while (p # ) {
if (x == p—key) {
aux = join(p, n);
T—size-—;
if (parent == [0) T—root = aux;
else if (parent—key > x) parent—left = aux;
else parent—right = aux;
break;

}

parent = p;

if (x < p—key) {
if (p—orientation == LEFT) flip_orientation(&n, p);
p = p—left;

}

else {
if (p—orientation == RIGHT) flip_orientation(&n, p);
p = p—right;
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Algorithm 11 Nonrecursive join

/* Given a pointer p to the root of a tree and the total size gs of this tree,
join performs the joining of the subtrees of p */

struct node *join(struct node *p, int gs) {
struct node *1, *r, *result;
(struct node*) #*parent;
int m, n, u, total;

if (p—orientation == LEFT) { m = p—size; n=gs - 1 - m; }
else { n = posize; m=gs - 1 - n; }
total = m + n;

if (total == 0) return [];

parent = &result;
1 = p—left; r = p—right;

while (total > 0) {

u = random(1, total);

if (u <=m) {
*parent = 1; parent = &(1—right);
if (l—orientation == RIGHT) flip_orientation(&m, 1);
1 = 1->right;

}

else {
*parent = r; parent = &(r—left);
if (r—orientation == LEFT) flip_orientation(&n, r);
r = r—left;

}

total = m + n;

}

free_node(p);
return result;

}




