A New Weight Balanced Binary Search Tree!

Seonghun Cho and Sartaj Sahni
Department of Computer and Information Science and FEngineering
University of Florida

Gainesville, FL 32611, U.S.A.

Technical Report 96-001

Abstract

We develop a new class of weight balanced binary search trees called 3-balanced
binary search trees (5-BBSTs). 3-BBSTs are designed to have reduced internal path
length. As a result, they are expected to exhibit good search time characteristics.
Individual search, insert, and delete operations in an n node S-BBST take O(logn)
time for 0 < 3 < v/2—1. Experimental results comparing the performance of 3-BBSTs,
WB(a) trees, AVL-trees, red/black trees, treaps, deterministic skip lists and skip lists
are presented. Two simplified versions of 3-BBSTs are also developed.

Keywords and Phrases. data structures, weight balanced binary search trees

1 Introduction

A dictionary is a set of elements on which the operations of search, insert, and delete are
performed. Many data structures have been proposed for the efficient representation of a
dictionary [HORO94]. These include direct addressing schemes such as hash tables and
comparison schemes such as binary search trees, AVL-trees, red/black trees [GUIBT7S], trees
of bounded balance [NIEVT73], treaps [ARAGS89], deterministic skip lists [MUNR92], and skip
lists [PUGH90]. Of these schemes, AVL-trees, red/black trees, and trees of bounded balance
(WB(«)) are balanced binary search trees. When representing a dictionary with n elements,
using one of these schemes, the corresponding binary search tree has height O(logn) and

individual search, insert, and delete operations take O(logn) time. When (unbalanced)

!This research was supported, in part, by the Army Research Office under grant DAA H04-95-1-0111,
and by the National Science Foundation under grant MIP91-03379.

binary search trees, treaps, or skip lists are used, each operation has an expected complexity
of O(logn) but the worst case complexity is O(n). When hash tables are used, the expected
complexity is O(1) per operation. However, the worst case complexity is O(n). So, in
applications where a worst case complexity guarantee is critical, one of the balanced binary
search tree schemes is to be performed.

In this paper, we develop a new balanced binary search tree called 3-BBST (3-balanced
binary search tree). Like WB(«) trees, this achieves balancing by controlling the relative
number of nodes in each subtree. However, unlike WB(«) trees, during insert and delete
operations, rotations are performed along the search path whenever they reduce the internal
path length of the tree (rather than only when a subtree is out of balance). As a result, the
constructed trees are expected to have a smaller internal path length than the corresponding
WB(a) tree. Since the average search time is closely related to the internal path length, the
time need to search in a -BBST is expected to be less than that in a WB(«a) tree.

In Section 2, we define the total search cost of a binary search tree and show that the
rebalancing rotations performed in AVL and red/black trees might increase this metric. We
also show that while similar rotations in WB(«) trees do not increase this metric, insert and
delete operations in WB(«) trees do not avail of all opportunities to reduce the metric. In
Section 3, we define 3-BBSTs and show their relationship to WB(«) trees. Search, insert,
and delete algorithms for 5-BBSTs are developed in Section 4. A simplified version of -
BBSTs is developed in Section 5. Search, insert and delete operations for this version also
take O(logn) time each. An even simpler version of 3-BBSTs is developed in Section 6.
For this version, we show that the average cost of an insert and search operation is O(logn)
provided no deletes are performed.

An experimental evaluation of 3-BBSTs and competing schemes for dictionaries (AVL,
red/black, skip lists, etc.) was done and the results of this are presented in Section 7. This
section also compares the relative performance of 3-BBSTs and the two simplified versions

of Sections 5 and 6.

2 Balanced Trees and Rotations

Following an insert or delete operation in a balanced binary search tree (e.g., AVL, red/black,
WB(a), etc.), it may be necessary to perform rotations to restore balance. The rotations
are classified as LL, RR, LR, and RL [HORO94]. LL and RR rotations as well as LR and
RL rotations are symmetric. While the conditions under which the rotations are performed
vary with the class of balanced tree considered, the node movement patterns are the same.
Figure 1 shows the transformation performed by an LL and an LR rotation. In this figure,
nodes whose subtrees have changed as a result of the rotation are designated by a prime.
So, p' is the original node p however its subtrees are different.

Let h(x) be the height of the subtree with root x. Let s(x) be the number of nodes in this
subtree. When searching for an element x, = is compared with one element at each of [(x)
levels, where [(x) is the level at which « is present (the root is at level 1). So, one measure
of the “goodness” of the binary search tree, T, for search operations (assuming each element
is searched for with equal probability) is its total search cost defined as:

(1) =3 I(x).

zeT

Notice that C(T) = I(T) + n where I(T') is the internal path length of T" and n is the
number of elements/nodes in 7. The cost of unsuccessful searches is equal to the external
path length E(T). Since E(T) = I(T) + 2n, minimizing C'(T') also minimizes E(T).

Total search cost is important as this is the dominant operation in a dictionary (note
that insert can be modeled as an unsuccessful search followed by the insertion of a node
at the point where the search terminated and deletion can be modeled by a successful
search followed by a physical deletion; both operations are then followed by a rebalanc-
ing/restructuring step).

Observe that in an actual implementation of the search operation in programming lan-
guages such as C++4, C, and Pascal, the search for an « at level [(«) will involve upto two

comparisons at levels 1,2,... (). If the code first checks @ = ¢; where ¢; is the element

(a) LL rotation

(b) LR rotation

Figure 1: LL and RL rotations

at level ¢ to be compared and then = < e; to decide whether to move to the left or right
subtree, then the number of element comparisons is exactly 2/() — 1. In this case, the total
number of element comparisons is
NO(T)=2> l(z) —n=2C(T)—n
z€T
and minimizing C(T') also minimizes NC(T'). If the code first checks x < e; and then © = ¢;
(or > ¢;), the number of element comparisons done to find x is [(2)+r(x)+1 where r(x) is the

number of right branches on the path from the root to x. The total number of comparisons

is bounded by 2C(T'). For simplicity, we use C'(T') to motivate our data structure.

In an AVL tree, when an LL rotation is performed, h(q) = h(c)+ 1 = h(d) + 1 (see
Figure 1(a)). At this time, the balance factor at gp is h(p) — h(d) = 2. The rotation restores
height balance which is necessary to guarantee O(logn) search, insert, delete operations in
an n node AVL tree. The rotation may, however, increase the total search cost. To see
this, notice that an LL rotation affects the level numbers of only those nodes that are in the
subtree with root gp prior to the rotation. We see that I(¢') = {(¢)—1,1(p') = I(p)—1,1(gp") =
I(gp) + 1, the total search cost of the subtree with root a is decreased by s(a) as a result of

the rotation, etc. Hence, the increase in C'(T') due to the rotation is:
I(p") = Up) + 1(¢') — Uq) + U(gp') — Ulgp) — s(a) — s(b) + s(d)

=—1—1+1—s(q)+1+s(d) = s(d) — s(q).

A similar analysis shows that an LR rotation increases C'(7T') by s(d) — s(q).
If the LL rotation was triggered by an insertion, s(¢) is at least one more than the
minimum number of nodes in an AVL tree of height ¢ = h(q) — 1. So, s(q) > ¢'*?/\/5 where

¢ = (14++/5)/2. The maximum value for s(d) is 2/ — 1. So, an LL rotation has the potential

of increasing total search cost by as much as
28— 1 — ¢ /VE a2t — 1 —1.62172/2.24.

This is negative for ¢ < 2 and positive for ¢ > 2. When ¢t = 10, for example, an LL
rotation may increase total search cost by as much as 877. As t gets larger, the potential
increase in search cost gets much greater. This analysis is easily extended to the remaining
rotations and also to red/black trees.

Definition (WB(«) [NIEVT73]) The balance, B(p), of a node p in a binary tree is the ratio
(s(l) + 1)/(s(p) + 1) where [is the left child of p. For o € [0,1/2], a binary tree T is in
WB(a) iff @ < B(p) < 1—a for every node p in T. By definition, the empty tree is in WB(«)

for all a.

Lemma 1 (1) The maximum height, hmax(n), of an n node tree in WB(«a) is ~ logﬁ(n—l—
1) [NIEV73]

(2) Inserts and deletes can be performed in an n node tree in WB(«a) in Oflogn) time for
2/11 < a <1 —+/2/2 [BLUMS0).

(3) Fach search operation in an n node tree in WB(«) takes Oflogn) time [NIEV73].

In the case of weight balanced trees WB(«), an LL rotation is performed when B(gp) ~
1 —aand B(p) > o/(1 — «) (see Figure 1(a)) [NIEVT73]. So,

s(p)+1 s +1
s(gp) +1 s(p) +s(d) +2

]l —a~

or
« 200 — 1
d) ~
) 2 s(p) o+ T
and
o s(g)+1
< B(p) = @)
1—« s(p)+1
or
« 20— 1

s(q) > s(p)

l -« l—a
So, LL rotations (and also RR) do not increase the search cost. For LR rotations

INIEVT73], B(gp) = 1 —a and B(p) < o/(1 — a). So, s(d) ~ s(p)72= + 22=L and with

11—«

respect to Figure 1(b),

a s(p) — s(q)
— > B(p) S+ 1
s(q) > s(p) 11__2; 1 fa

For o < 1/3, s(¢q) > s(d) and LR (RL) rotations do not increase search cost. Thus, in the

case of WB(«) trees, the rebalancing rotations do not increase search cost. This statement

remains true if the conditions for LI, and LR rotation are changed to those in [BLLUMS0].
While rotations do not increase the search cost of WB(«) trees, these trees miss per-

forming some rotations that would reduce search cost. For example, it is possible to have

6

a < B(gp) < 1—a, B(p) > %=, and s(q) > s(d). Since B(gp) isn’t high enough, an LL

rotation isn’t performed. Yet, performing such a rotation would reduce search cost.

3 A3-BBSTs

Definition A cost optimized search tree (COST) is a binary search tree whose search cost

cannot be reduced by performing a single LL, RR, LR, or RL rotation.
Theorem 1 If T is a COST with n nodes, its height is at most log(b(\/g(n +1))—2.

Proof Let Nj be the minimum number of nodes in a COST of height k. Clearly, Ny = 0
and Ny = 1. Consider a COST () of height 2 > 2 having the minimum number of nodes Nj.
() has one subtree R whose height is A — 1 and another, .S, whose height is < h — 1. R must
be a minimal COST of height ~ — 1 and so has N,_; nodes. R, in return, must have one
subtree, U, of height h — 2 and another, V', of height < A — 2. Both U and V are COSTs
as R is a COST. Since R is a minimal COST, U is a minimal COST of height A — 2 and
so has Nj_s nodes. Since @) is a COST, |S| > max{|U|,|V]}. We may assume that N is
a nondecreasing function of h. So, |S| > Nj_3. Since () is a minimal COST of height £,
|S| = Np—z. So,
Ny=Np1+Nyo+1, h >2

NOZO,Nl - 1

This recurrence is the same as that for the minimum number of nodes in an AVL tree

of height h. So, N, = Fjys — 1 where F; is the 2’th Fibbonacci number. Consequently,

Ny~ ¢"2//5 —1 and h < 10&;5(\/5(” +1)) =2 i

Corollary 1 The mazimum height of a COST with n nodes is the same as that of an AVL

tree with this many nodes.

Definition Let a and b be the root of two binary trees. a and b are -balanced, 0 < 3 <1,

with respect to one another, denoted j3-(a, b), iff

A binary tree T is #-balanced iff the children of every node in T are -balanced.

A full binary tree is 1-balanced and a binary tree whose height equals its size (i.e., number

of nodes) is 0-balanced.

Lemma 2 [f the binary tree T is B-balanced, then it is y-balanced for 0 < ~ < 3.

Proof Follows from the definition of balance. O

Lemma 3 [f the binary tree T is 3-balanced, 0 < 8 < 1/2, then it is in WB(a) for a =
B/ +5).

Proof Consider any node p in T'. Let [and r be node p’s left and right children.

Blp) = s(l)+1 B 1
T4 +2 T i

Since T is -balanced, s(I) — 1 < s(r)/B or s(I) +1 < s(r)/ 3 + 2. So,

s()+1 28 — 1

S 11 §1/5+m§1/5
s(r)+1
s(h+1 2 B

So, B(p) < 1/(1 +). Further, s(r) — 1 < s(l)/5. So,

s(r)+1
s()+1

<1/8.

/\

Figure 2: A tree in WB(1/4) that is not :-balanced

And, B(p) > 1/(1 4 1/8) = /(1 + B). Hence 5/(1 1) < B(p) < 1/(1 + B) for every p in
T. So, T is in WB(«) for o = /(1 + 3). O

Remark While every (-balanced tree, 0 < g < 1/2, is in WB(«) for a« = 3/(1 + 3),
there are trees in WB(«) that are not f-balanced. Figure 2 shows an example of a tree in

WB(1/4) that is not :-balanced.
Lemma 4 If T ts a COST then T is %-balanced.

Proof 1If T is a COST, then every subtree of T' is a COST. Consider any subtree with
root p, left child /, and right child r. If neither [nor r exist, then s(I) = s(r) = 0 and p
is +-balanced. If 5(I) = 0 and s(r) > 1, then r has a nonempty subtree with root ¢ and
s(t) > s(I). So p is not a COST. Hence, s(r) < 1 and p is I-balanced. The same is true
when s(r) = 0. So, assume s(/) > 0 and s(r) > 0.

If s(I) = 1, then s(r) < 3 as otherwise, one of the subtrees of r has m > 2 nodes and
m > s(I) implies p is not a COST. Since s(r) < 3, L(s(r) — 1) < s(I) and L(s(1) = 1) < s(r).
So, p is L-balanced. The same proof applies when s(r) = 1. When s(I) > 1 and s(r) > 1,
let @ and b be the roots of the left and right subtrees of [. Since p is a COST, s(a) < s(r)
and s(b) < s(r). So, s(I) = s(a) + s(b) + 1 < 2s(r) + 1 and (s(I) — 1) < s(r). Similarly,
L(s(r) — 1) < s(1). So, L-(I,r). Since this proof applies to every nodes in T, the children of

every p are %—balanced and T is %—balanced. a

o 5
Jey o o
o 0

Figure 3: %—balanced tree that is not a COST

Remark There are %—balanced trees that are not COSTs (see Figure 3).

While a COST is in WB(1/3) and WB(«) trees can be maintained efficiently only for
2/11 <o <1 —1/y/2=0.293, a COST is better balanced than WB(«) trees with « in the
usable range. Unfortunately, we are unable to develop O(logn) insert/delete algorithms for
a COST.

In the next section, we develop insert and delete algorithms for 3-balanced binary search
trees (3-BBST) for 0 < 8 < v/2 — 1. Note that every (v/2 — 1)-BBST is in WB(«a) for
a = 1 — 1/4/2 which is the largest permissible a. Since our insert and delete algorithms
perform rotations along the search path whenever these result in improved search cost,
BBSTs are expected to have better search performance than WB(«) trees (for o = 8/(14/3)).

Each node of a §-BBST has the fields Left Child, Size, Data, and RightChild. Since every
B-BBST, 8 >0, is in WB(a), for a > 0, 3-BBSTs have height that is logarithmic in n, the

number of nodes (provided 3 > 0).

4 Search, Insert, and Delete in a 3-BBST

To reduce notational clutter, in the rest of the paper, we abbreviate s(a) by « (i.e., the node

name denotes subtree size).

4.1 Search

This is done exactly as in any binary search tree. Its complexity is O(h) where h is the

height of the tree. Notice that since each node has a size field, it is easy to perform a search

10

LL

q c c d

(a) before (b) after

Figure 4: LL rotation for insertion

based on index (i.e., find the 10°th smallest key). Similarly, our insert and delete algorithms

can be adapted to indexed insert and delete.

4.2 Insertion

To insert a new element z into a f-BBST, we first search for x in the §-BBST. This search
is unsuccessful (as @ is not in the tree) and terminates by falling off the tree. A new node y
containing x is inserted at the point where the search falls off the tree. Let p’ be the parent
(if any) of the newly inserted node. We now retrace the path from p’ to the root performing
rebalancing rotations.

There are four kinds of rotations LI, LR, RL, and RR. LL and RR rotations are symmetric
and so also are LR and RL rotations. The typical configuration before an LL rotation is
performed is given in Figure 4(a). p’ denotes the root of a subtree in which the insertion
was made. Let p be the (size of the) subtree before the insertion. Then, since the tree was
a (3-BBST prior to the insertion, 3-(p,d). Also, for the LL rotation to be performed, we
require that (¢ > ¢) and (¢ > d). Note that ¢ > d implies ¢ > 1. We shall see that 3-(q,c)
follows from the fact that the insertion is made into a -BBST and from properties of the

rotation. Following an LL rotation, p’ is updated to be the node p”.

Lemma 5 [LL insertion lemmal If [B-(p,d) N B-(q¢,c) N (¢ > ¢) AN (g > d)] for 0 <3< 1/2

11

d
9 = v)
v (a
b C

(a) before (b) after substep (i)

Figure 5: Substep (i) of insertion LR rotation

before the rotation, then $-(q,gp’) and $-(c,d) after the rotation.

Proof Assume the before condition.

(a) Blg—1) <c(as B-(q,¢)) < gp'. Also, B(gp’ — 1) = B(c+d) <28q (as 3> 0,9 > c and
q>d) <q(as 8 <1/2). So, B-(q,9p).

bd<g=d-1<qg-1= B(d-1) < Blg—1) < c(as f-(g,¢)). Also, f(c—1) <
Bla+ec—1)=B(p'=2)=B(p—1) < d (as -(p,d)). So, B-(¢,d). =

In an LR rotation, the before configuration is as in Figure 4(a). However, this time ¢ < c.
Figure 4(a) is redrawn in Figure 5(a). In this, the node labeled ¢ in Figure 4(a) has been

labeled ¢ and that labeled ¢ in Figure 4(a) has been labeled a. With respect to the labelings

of Figure 5(a), rotation LR is applied when
[(q > a) Alg > d)].
The other conditions that apply when an LR rotation is performed are
[8-(p, d) N B-(a, q) A B-(b, c)].
Here p denotes the (size of the) left subtree of gp prior to the insertion. An LR rotation is

12

accomplished in two substeps (or two subrotations). The first of these is shown in Figure 5(b).

Following an LR rotation, p’ is updated to be node ¢'.

Lemma 6 [LR substep(i) insertion lemma] If [3-(p, d)A\B-(a,q) \B-(b,c)A(q > a)A(q > d)]
for 0 < 3 < 1/2 before the subrotation, then [B-(p”,gp") A {(B-(a,b) A %-(C, d)) v (%-
(a,b) A B-(c,d))}] after the subrotation.

Proof Assume the before condition. First, we show that 3-(p”, gp') after the rotation.
Note that g(p" — 1) = Bla+b) = pla+b+c+1)—Fc+1)=58p —1)—Fc+1) =
Blp—1)—pec<d—pc<d<gp. Also, Blgp) — 1) = Ble+d) < b+ [+ d (as $-(b,¢))
<b+pglasqg>d) <b+a+ 3 (as f-(a,q)) < p' (as f < 1/2 and p" = a+ b+ 1). So,
B-(p", g1').-

Next, we prove two properties that will be used to complete the proof.
P1: B(b—1) < a.
To see this, note that 8(b—1) < B(qg—1) < a (as B-(a, q)).
P2: B(c—1) < d.
For this, observe that p' — 1 =a+4¢ > 8(¢— 1)+ q (as f-(a,q)) = (64 1)(¢—1) + 1. So,
¢—1 <872 ==L Similarly, g — 1 = b+ e > fle—1) +c (as f-(b,c) = (B+1)(c—1) + 1.
So, Ble—1) < F7(¢—2) < #5(g — 1) < A < s (as B-(p,) < d.

To complete the proof of the lemma, we need to show

3 3
{(B-(a,b) A m'(ca d)) v (1 5

We do this by considering the two cases b > ¢ and b < c.

-(a,b) A B-(¢,d)) ;.

Case b > ¢: Sincea < ¢ = b+c+1,B8(a—1) < B(b+¢) <28b < b. This and P1 imply $-(a, b).

Also, d < q¢=b+c+ 1. So, ﬁ(d 1)< ﬁ+1<b+c_1) ﬁ+1c+ﬁ+1(b_1) ﬁ+1c+ﬁ+1

(¢,d). So, B-(a,b) A ~£=-(c,d).

(as #-(b,¢)) = ¢. This, together with P2 implies -2 T

145"

Case b < ¢ Since a < ¢g =b4+c+1l,a—1 < b+4+e¢c. So,a—1 < b+c—1or

ﬁ(ﬁ__ﬁl) < libﬁ + ﬁﬁj_ﬁl) < 1-|—ﬁ + m (as f-(b,¢)) = b. This and P1 imply %—(a,b). Also,

d—1<qg—2=b+ec—1. 50, f(d—1) < f(b+c—1) < B(2¢—1) < e. This, together with

13

O »)
LR (ii)

d ')
Q LL 4

q c c d

(a) before (b) after

Figure 6: Case LL for LR(ii) rotation

P2 implies 3-(¢,d). So, %—(a, b) A B-(¢,d). O

Since an LR(i) rotation can cause the tree to lose its -balance property, it is necessary
to follow this with another rotation that restores the [(-balance property. It suffices to
consider the two cases of Figures 6 and 7 for this follow up rotation. The remaining cases
are symmetric to these. In Figures 6 and 7, p and d denote the nodes that do not satisfy
B-(p,d). Note, however, that these nodes do satisfy %—(p, d).

Since the follow up rotation to LR(i) is done only when

B
1+ 0

(pv d) A (‘6‘(}77 d))v

either #(p—1) > dor f(d—1) > p. When f(p — 1) > d, the second substep rotation is one
of the two given in Figures 6 and 7. When 3(d — 1) > p, rotations symmetric to these are
performed. In the following, we assume B(p — 1) > d. Further, we may assume d > 0, as

d =0 and %—(p, d) imply p < 1. Hence, 3-(p,d). Also, d > 0 and S(p—1) > dimply p > 1.

The LR(ii) LL rotation is done when the condition

A=(g>d)A(c<(1+8)g+(1—=8))AB where

p

B=-—_.
1+ 0

(p, d) A (=B-(p,d)) A B-(q,¢) A (B(p—1) > d > 0).

14

Lemma 7 [Case LR(ii) LL rotation] If A holds before the rotation of Figure 6, then (-
(q,9p") and B-(¢c,d) after the rotation provided 0 < 3 < /2 —1.

Proof (a) 3-(¢,gp"):

Blag—1) < c(as B-(q,c)) < gp'. Also, Blgp’ —1) = Ble+d) <B((1+ B)g+ (1= B)+d) <
Bl +B)g+ 81 —B)+Blg—1) (as ¢ > d) = B2+ B)g— B < q (as B2+ 3) < 1 for
0<p3<VvV2-1). So, 5-(¢,9p).

(b) B-(c, d):

Lemma 8 [f (e < (1 4+ 8)g+ (1 —=0)AN(B(p—1) > d) in Figure 6, then d < q provided
0<p<V2-1.

Proof Sinced < 8(p—1) = Blg+¢) < Blg+(1+8)g+1-5) = S(f+2)¢+B(1-F) < q+1
(as B(B+2)<land B(1—B)<1for0<B<vV2—1). So,d<q. 0

So, the only time an LR(ii) LL rotation is not done is when C' = (C; V C3) A B holds

where
Ci=(g=dn(e<(l+8)g+1-0)
Cy=c=(1+p)g+(1-p).
At this time, the LR rotation of Figure 7 is done. In terms of the notation of Figure 7, the

condition C' becomes D = (Dy V D3) A E where
Dy=(a=d)N(g<(1+B)at1-p5)

E= ~(p,d) A =B-(p,d) A B-(a,q) A B-(b,c) A (B(p—1) > d > 0).

B
1+ 0

15

d
v LR(ii)
v ()

b C d

b C

(a) before (b) after

Figure 7: Case LR for LR(ii) rotation

Lemma 9 When an LR(ii) LR rotation is performed and 8 < /2 —1, ¢ > d and so search

cost is reduced.

Proof If Dy, then sinced < B(p—1) = Bla+q) = B(d+q),q > d/B—d > das f < /2—1.

If Dy, then d < B(p— 1) = Bla+ q) < BT + q) = K2 — B0 < A0 < g (as

B<V2-1). O

Lemma 10 When (d = a) A B-(b,e) A (B(p — 1) > d) A (B < V2 — 1) (see Figure 7),
Bla—1)<band B(d—1) < ec.

Proof Since f(p—1)>dandd=a,B(p—1) > aor fla+¢q) > aora(l —3) < fqor
a <250 S0, fla—1) < L0 —B={50b+c+1) - B
Ifcﬁ%—l-ﬂ,then

3 b
1_6(b+g‘|‘ﬂ—|—1)—ﬂ
BB BB+

- g Y
BB+Lb BB+ B—1+0)

1—5 1_5

Bla—1) <

16

5(6+1)b+6(ﬂ2+25—1)
1-5 1-5
< b (as B(f+1)<1—pBfor B<V2—1and g2 +28—1<0for f<V2-1).

Since f(c—1) < b,e < %—I— 1. So,

p? p? b BB+1b 3878
6(a_1)<1—5(b+c+1)§1—5(b+5+2)§ - + 5
So,
g+1, 35-1
a—1<1_ﬂb—|-1_ﬂ.

However, since #2428 —1 < 0for 8 <v2—1,(148)/(1—8) < L and (33 —1)/(1—3) < 5.
So,a—1<b/f+p. Ifa>c+1,thenc<a—1<b/f+ 3. We have already shown that for
¢ <b/B+ 3, Bla—1) < b. So, assume a < ¢+ 1. Now, a < cand Bla—1) < flc—1) < b (as
B-(b,¢)). So, Bla —1) < bin all cases. B(a — 1) < ¢ may be shown in a similar way. Since

a=d, weget f(d—1) <ec O

Lemma 11 [Case LR(ii) LR rotation] If D holds before the rotation of Figure 7, then (-
(P, gp'), B-(a, b), and B-(c,d) following the rotation provided 0 < 3 < /2 — 1.

Proof (a) 3-(p', gp'):

Blgp' —1) = Ble+d) < b+ B+ Bd (as B-(b, ¢)) < b+ 3+ g (from Lemmas 9 and 10, ¢ > d)
< bt+ftatf=a+b+28 < atbtl=p'. Also,since {2=-(p,d) and ¢ > d, B(p—1) < (B+1)d
or flatq) < (B+1D)doratqg<(I+5)dora<(l+35)d—q<(l+3)d—d=d/s. So,
B —1)=pa+b) <d+pb<d+c+(as p-(b,c)) <d+c+1=ygp.

(b) B-(a, b):

Since b < ¢ and f-(a,q),B3(b—1) < B(¢g—1) < a.

When Dy, 3(a — 1) < b was proved in Lemma 10. So, (-(a, b).

When Dy, g > a(14)+ 1— . So,

o4 1—3 b4+c+1 1-p
a — = — :
“ 145 144 144 1+ 4

17

So,

b+ Be+p 1-p pb+b+28 1-0 _
e B s e (R)
So, -(a,b).
(c) B-(c,d):

Note that f(c—1) < B(¢—1) < %(q -1)< %(p— 1) <d.

When Dy, 3(d — 1) < ¢ was proved in Lemma 10. So, 3-(¢, d).
When Dy, ifd <b+1, thend < band g(d—1) < g(b—1) < e So, assume d > b+ 1. Now,

b<d—1<pB(p—1)—1. So,

b < pla+b+c+1)—1

—1
< ﬂ(qH;ﬁ
B
I

+b4+c+1)—1

ﬂ(b—l-c—l—ﬂ—l—(l—l-ﬂ)(b—l-c—l-l))—l

< 2

9

(—+1+c+6+(1+6)(5+1+c+1))—1

& SRV SO

3
+(1+8)c+28-1

Q
QQ

+
+ 83 c+2))—1
B

= (24 B)c+38-1< (24 B)c+f(as B<V2—1)

%+ﬂ<asﬁ§ﬂ—1>-

Also, from d < 3(p — 1) and the above derivation, we get

IA

d < %(b—l—c—l—ﬂ—l—(l—l-ﬁ)(b—l—c—l—l))
< %(%-I—ﬂ—l—c—l-ﬂ—l-(l—l-ﬁ)(%—l-ﬁ—l—c—l—l))
- B B s g s
= (2+ﬁ)c+12f;+ﬁ(ﬁ+1)
_ (2+ﬂ)c+zf +ﬁ21++ﬁﬁ+ﬂ+ﬂ
e B

18

< (24 8)c+1 (as BPH42+ B <1+ ffor F<V2—1).

So, B(d — 1) < B2+ B)e < ¢ (as B < VI~ 1). So, B-(c,d). 0

Theorem 2 If T is B-balanced, 0 < 3 < /2 — 1, prior to insertion, it is so following the

insertion.

Proof First note that since all binary search trees are balanced for 3 = 0, the rotations
(while unnecessary) preserve 0-balance. So, assume 3 > 0. Consider the tree T" just after
the new element has been inserted but before the backward restructuring pass begins.

If the newly inserted node, z, has no parent in 17, then T" was empty and 1" is 3-balanced.
It z has a parent but no grandparent, then T" has at most one nonempty subtree X. Since
T is f-balanced, 5(|X| —1) < 0. So, |X| < 1. Following the insertion, 7" has one subtree
with < 1 nodes and one with exactly one. So, T" is 3-balanced. We may therefore assume
that z has a grandparent in 7".

From the downward insertion path, it follows that all nodes w in 7" that have children
[and r for which =f-(I,r) must lie on the path from the root to z. During the backward
restructuring pass, each node on this path (other than z and its parent) play the role of gp
in Figures 4 and 5. The g-property cannot be violated at z as z has no children. It cannot
be violated at the parent, s, of z as s satisfied the F-property prior to insertion. As a result
its other subtree has < 1 element. So, following the insertion, s satisfies the -property. As
a result, each node in T” that might possibly violate the 3-property becomes the gp node
during the restructuring pass. Consider one such gp node. It has children in 77 denoted by
p’ and d. Its children in T" are p and d. Figures 4 and 5 show the case when d is the right
subtree of gp in both T" and T". The cases RR and RL arise when d is the left subtree.

During the restructuring pass, gp begins at the grandparent of z and moves up to the
root of T". If z is at level r in T, (the root being at level 1), then gp takes on r — 2 values

during the restructuring pass. We shall show that at each of these r — 2 positions either

19

(a) no rotation is performed and all descendants of gp satisfy the 3-property or

(b) a rotation is performed and following this, all descendants of node p” (Figure 4) or of
node ¢’ (Figure 5) satisfy the S-property.

As a result, following the rotation (if any) performed when gp becomes the root of T, the
restructured tree is -balanced. The proof is by induction on r. When r = 3 (recall, we
assume z has a grandparent), gp begins at the root of T” and its descendants satisfy the
B-property.

Without loss of generality, assume that the insertion took place in the left subtree of gp.
With respect to Figure 4, we have three cases: (i) ¢ > ¢ and ¢ > d, (ii) ¢ < ¢ and ¢ > d,
and (iii) ¢ < d and ¢ < d. In case (i), all conditions for an LL rotation hold and such a
rotation is performed. In case (ii), an LR rotation is performed. Following either rotation,
T" is B-balanced. In case (i), B(p — 1) = B(qg+¢) < 28d < d (as B < V2 —1). Also,
Bld—1)<p<p+1=p.So, 8(d—1) < p'. Hence, 3-(p',d) and T' is B-balanced.

For the induction hypothesis, assume (a) and (b) whenever r < k. In the induction step,
we show (a) and (b) for trees T' with r = k 4+ 1. The subtree in which the insertion is done
has r = k. So, (a) and (b) hold for all gp locations in the subtree. We need to show (a) and
(b) only when gp is at the root of T”. This follows from Lemmas 5, 6, 7, and 11.

The theorem now follows. O

Lemma 12 The time needed to do an insertion in an n node 3-BBST is O(logn) provided
0<p<V2-1.

Proof Follows from the fact that insertion takes O(h) time where h is the tree height and

h = O(logn) when > 0 (Lemmas 1 and 3). O

20

4.3 Deletion

To delete element = from a 3-BBST, we first use the unbalanced binary search tree deletion
algorithm of [HORO94] to delete x and then perform a series of rebalancing rotations. The

steps are:

Step 1 [Locate x| Search the $-BBST for the node y that contains z. If there is no such

node, terminate.

Step 2 [Delete z] If y is a leaf, set d' to nil, gp to the parent of y, and delete node y. If
y has exactly one child, set d’' to be this child; change the pointer from the parent (if
any) of y to point to the child of y; delete node y; set gp to be the parent of d'. If y
has two children, find the node z in the left subtree of y that has largest value; move
this value into node y; set y = z; go to the start of Step 2. { note that the new y has
either 0 or 1 child }

Step 3 [Rebalance] Retrace the path from d' to the root performing rebalancing rotations.

There are four rebalancing rotations LL, LR, RR, and RL. Since LL. and RR as well as
LR and RL are symmetric rotations, we describe LL. and LR only. The discussion is very
similar to the case of insertion. The differences in proofs are due to the fact that a deletion
reduces the size of encountered subtrees by 1 while an insertion increases it by 1. In an
LL rotation, the configuration just before and after the rotation is shown in Figure 8. This
rotation is performed when ¢ > ¢ and ¢ > d’. Following the rotation, d’ is updated to the
node p'.

Let d denote the size of the right subtree of gp before the deletion. So, d = d + 1. Since

prior to the deletion the 3-BBST was -balanced, it follows that 3-(p,d) and 3-(q, ¢).

Lemma 13 [LL deletion lemma] If [B-(p, d) A B-(q,c) A (g > c)A(g > d)AN(1/3 < B <1/2)]

before the rotation, then [3-(¢q,gp") N B-(¢,d")] after the rotation.

21

LL
!
O T o
q c c d’

(a) before (b) after

Figure 8: LL rotation for deletion

Proof (a) 3-(¢,9p'):

Blg—1) < c(as B-(q,¢)) < gp'. Also, B(gp’ — 1) = Ble+d') < 28q (as ¢ < g and d' < q)
< ¢ (as B <1/2). So, B-(q,9p").

(b) B-(e, d'):

d<qg=d—-1<q—1=B(d—1)<plg—1)<ec. Also, when ¢ <1, Bc—1) <0 < d' (as
d'>0). Whene>1,g>c=q>2and p=g+e+1>c+3. So, fle—1)< B(p—1)—38 <
d—38 (as B-(p,d)) <d—1 (as 8 >1/3) = d'. Hence, 3-(c,d). O

In an LR rotation, the before configuration is as in Figure 8(a). However, this time ¢ < c.
Figure 8(a) is redrawn in Figure 9(a). In this, the node labeled ¢ in Figure 8(a) has been
relabeled ¢ and that labeled ¢ in Figure 8(a) has been relabeled a. With respect to the

labelings of Figure 9(a), rotation LR is applied when

[(q > a) A (g >d))].

The other conditions that apply when an LR rotation is performed are

[6-(p,d) A B-(a, q) A 5-(b, ¢)].

Here d denotes the (size of) right subtree of gp prior to the deletion. As in the case of

insertion, an LR rotation is accomplished in two substeps (or two subrotations). The first

22

d/
O e O (o)
SN)
b C d’

b c
(a) before (b) after substep (i)

Figure 9: LR rotation for deletion

of these is shown in Figure 9. Following an LR rotation, d’' is updated to node ¢'.

Lemma 14 [LR substep(i) deletion lemma] If [B-(p, d)AB-(a, ¢)AB-(b,c)A\(q > a)N(g > d')]
before the subrotation LR (i), then [B-(p', gp")N{(B-(a, b)/\lfﬁ (¢,d))V (Lﬁ (a,b)NB-(c,d'))}]

after the subrotation provided 1/3 < 8 <1/2 .

Proof Assume the before condition.
(a) Ifb=c =0, then g = b+c+1 = 1. Furthermore, (¢ > a) and (¢ > ') imply a = ' =
So, gp' = p’ = 1. Hence, [3-(p', gp") A 5-(a,0) A 5-(c, d")]
(b)Ifb=1and c=0, then g = 2,a <1,and d < 1. So, 1 < p' <3 and 1 < gp/ < 2.
Hence, [3-(p', gp') A 3-(a,0) A 3-(c, d')]
(c)Ifb=0and c=1,theng=2,a<1,and d < 1. So, 1 < p' <2and 1 < gp’ < 3. Hence,
[5-(0's 9p") A 5-(a,b) A 5-(c, d')]
As a result of (a) — (c), to complete the proof, we may assume that b > 1 and ¢ > 1. So,
g>3,a>1(as B-(a,q) = Blg—1) < aora>28>0),p=a+qg+1>54d>2 (as
B-(p.d)= Blp—1)<dand > 1/3), and &' =d — 1 > 1.

First, we show that 5-(p', gp'). For this, note that a +b+c+1 = p— 1. From f-(p, d), it
follows that #(a+b+c+1) = B(p—1) < d. So, Bla+b) < d— Bc— B. From Figure 9(b), we

23

see that B(p'—1) = B(a+b). Hence, B(p'—1) <d—pe—p=d—PFe+1-3 < d'+1-28 < gp'.
Also,

Blgp' —1) = Ble+d) < b+ B+ Bd (as §-(b,¢))
< b+ Bg+ B (as g > d)
< b4a+28 (as B-(a,q))

/

< p.

So, B-(p', gp')-
Next, we prove two properties that will be used to complete the proof.
P1: B(b—1) < a.
To see this, note that B(b— 1) < (g — 1) < a (as f-(a, q)).
P2: fle—1) < d.
For this, observe that B¢ — 1) < 8(¢q—2) (as ¢ < q—1) < B(p—4) (as ¢ = p—a — 1 and
a>1)=p(p—1)-33<d~-1(as p-(p,d) and $ > 1/3) = d".

To complete the proof of the lemma, we need to show

3)
{(B-(a,b) A m'(ca d))Vv(

B
1+ 0

-(a,0) A B-(c, d'))}.

For this, consider the two cases b > ¢ and b < ¢ (as in Lemma 6).

Case b>c¢: Sincea < qg=b+c+1,8(a—1) < B(b+ ¢) <25b < b. This, together with P1
implies #-(a,b). Also, d" < ¢ = b+c+1. So, %(d’—l) < %(b—l—c—l) = %c—l— %(b—l) <
Lt += = ¢. This, together with P2 implies L(e,d'). So, B-(a,b) A L=-(c, d").

B+1 G+ 1+8° 1+8°
Case b < ¢: Sincea < g=b+c+1l,a—1<b+ec So,a—lgb—l—c—lorﬁ(l(:__ﬁl)g
%—I—ﬂl%l < %—I—ﬁzb. This and P1 imply %—(a,b). Also,d'—1<¢—2=b+c—1.

So, f(d'—1) < B(b+c¢—1) < B(2¢—1) < ¢. This and P2 imply -(¢,d’). Hence, %—

(a,b) A p-(c,d"). O

The substep(ii) rotations are the same as for insertion.

24

Theorem 3 If T is 3-balanced, then following a deletion the resulting tree T' is also [3-

balanced provided 1/3 < 5 < /2 — 1.

Proof Similar to that of Theorem 2. O

When 0 < 8 < 1/3, we need to augment the LL rotation by a transformation for the case
d =0 Whend =0,8(p—1) <d=d+1=1.So, p<1/f+1and gp = p+d' +1 < 1/3+2.
To f-balance at gp, the at most 1/8 + 2 nodes in gp are rearranged into any -BBST in
constant time (as 1/5+2 is a constant). When d’ > 0, the proof of Lemma 13 part (b) can be
changed to show 3(c—1) < d for 0 < 3 < /2—1. The new proof is: since ¢ < ¢,¢ < (p—1)/2
and fle—1) < pBp—1)/2—-p<d/2—-p=d—-d/2—p<d—-1—-<d. The LR rotation
needs to be augmented by a transformation for the case d = d — 1 < —=— — 1. At this

B(2+05)

time, B(p —)<d< So, gp=p+d< (2—|—ﬁ)+1+ (2+ﬁ To f-balance at gp, we

2-I—ﬁ

rearrange the fewer than m +14 m nodes in the subtree, in constant time, into any

f-balanced tree. When d' > — 1, the proof for f(c—1) < d" in Lemma 14 needs to be

(2+ﬁ)
changed to show that the LR substep(i) lemma holds. The new proof is:

d > Blp—1)=Blatbtct1)>p(Bg—1)+b+c+1)
= BBlb+c)+b+c+1)
=z BA+8)Fe—1)+ 1+ B)ec+1)
= B(1+8)(e=1)+2+5).

=d.

d—28-3>
So, fle—1) < (12-|—ﬁ) <d-1(asd> (2—|—ﬁ))

Also, note that when 3 =0, all trees are -balanced so the rotations (while not needed)

preserve balance.

Theorem 4 With the special handling of the case d' = 0, the tree T' resulting from a deletion

in a B-BBST is also B-balanced for 0 < < /2 —1.

Lemma 15 The time needed to delete an element from an n node 3-BBST is Oflogn)

provided 0 < 3 <2 —1.

25

4.4 Enhancements

Since our objective is to create search trees with minimum search cost, the rebalancing
rotations may be performed at each positioning of ¢gp during the backward restructuring
pass so long as the conditions for the rotation apply rather than only at gp positions where
the tree is unbalanced.

Consider Figure 4(a). If p’ < d, then the conditions of Lemmas 5 and 6 cannot apply as
g < p' < d. However, it is possible that ¢ > p’ where ¢ is the size of either the left or right
subtree of d. In this case, an RR or RL rotation would reduce the total search cost. The
proofs of Lemmas 5 and 6 are easily extended to show that these rotations would preserve
balance even though no insertion was done in the subtree d. The same observation applies
to deletion. Hence the backward restructuring pass for the insert and delete operations can
determine the need for a rotation at each gp location as below (I and r are, respectively, the
left and right children of gp).

if s(1) > s(r) then check conditions for an LI and LR rotation

else check conditions for an RR and RL rotation.
The enhanced restructuring procedure used for insertion and deletion is given in Figure 10.
In the RR and RL cases, we have used the relation ‘>’ rather than ‘>’ as this results in
better observed run time.

Since it can be shown that the rotations preserve balance even when there has been no
insert or delete, we may check the rotation conditions during a search operation and perform
rotations when these improve total search cost.

Finally, we note that it is possible to use other definitions of -balance. For example,
we could require 3(s(a) — 2) < s(b) and F(s(b) — 2) < s(a) for -(a,b). One can show that
the development of this paper applies to these modifications also. Furthermore, when this
new definition is used, the number of comparisons in the second substep of the LR and RL

rotations is reduced by one.

26

procedure Restructuring ;
begin
while (¢p) do
begin
if s(gp.left) > s(gp.right) then { check conditions for an LL and LR rotation }
begin
p=gpleft;
if (s(p.left) > s(p.right)) then
begin if (s(p.left) > s(gp.right)) then do LL rotation; end
else
begin
if (s(p.reght) > s(gp.right)) then { LR }
begin
do LR rotation ;
{ now notations a, b, ¢, and d follow from figure 1(b) }
if (B(s(a)—1) > s(b)) then
if ((s(a.right) < (1 4 f)s(a.left)+1 —) and
(s(b) < s(a.left))) then
do LL rotation
else do LR rotation
else if (8(s(d) — 1) > s(c)) then
if ((s(d.left) < (1 + B)s(d.right) + 1 — f3) and
(s(c) < s(d.right))) then
do RR rotation
else do RL rotation ;
end
end
end
else { check conditions for an RR and RL rotation }
begin
p =gp-right ;
if (s(p.left) > s(p.right)) then
begin
if (s(p.left) > s(gp.left)) then { RL }
do symmetric to the above LR case ;
end
else
begin if (s(p.right) > s(gp.left)) then do RR rotation; end ;
gp = gp-parent ;
end ;

end

?

end ;

Figure 10: Restructuring procedure

27

4.5 Top Down Algorithms

As in the case of red/black and WB(«) trees, it is possible to perform, in O(logn) time,
inserts and deletes using a single top to bottom pass. The algorithms are similar to those

already presented.

5 Simple 3-BBSTs

The development of Section 4 was motivated by our desire to construct trees with minimal
search cost. If instead, we desire only logarithmic performance per operation, we may simplity
the restructuring pass so that rotations are performed only at nodes where the f-balance
property is violated. In this case, we may dispense with the LL/RR rotations and the first
substep of an LR/RL rotation. Only LR/RL substep (ii) rotations are needed. To see this,

observe that Lemmas 7 and 11 show that the second substep rotations rebalance at gp (see

B

1+ﬁ'(p7 d) (The remaining conditions are ensured by the bottom-up

Figures 6 and 7) provided
nature of restructuring and the fact the tree was f-balanced prior to the insert or delete).

If the operation that resulted in loss of balance at gp was an insert, then F(p — 2) < d
(as p > d, the insert took place in subtree p and gp was (-balanced prior to the insert)
and B(p—1) > d (gp is not p-balanced following the insert). For the substep (ii) rotation
to restore balance, we need F(p — 1) < (1 + 5)d. This is assured if d + 5 < (S + 1)d (as
B(p—2) <d). So,weneedd>1. If d <1, then d=0. Now g(p—2) < dand f(p—1)>d
imply p = 2. One may verify that when p = 2, the LR(ii) rotations restore balance.

If the loss of -balance at gp is the result of a deletion (say from its right subtree), then
B(p—1) <d+1 (as gp was -balanced prior to the delete). For the substep (ii) rotation to
accomplish the rebalancing, we need f(p—1) < (f+41)d. This is guaranteed if d+1 < (8+1)d
ord>1/8. When d < 1/ and g > 1/3, d < 2. Since f(p—1) < d+1and 3 > 1/3,
when d =2, p < 10; when d =1, p < 7; and when d = 0, p < 4. We may verify that for all

these cases, the LR(ii) rotations restore balance. Hence, the only problematic case is when

f<1/3and d<1/p.

28

procedure Restructuring? ;
begin
while (¢p) do
begin
if (B(s(gp.left) —1) > s(gp.right)) then { do an LL or LR rotation }
begin
p=gpleft;
if ((s(p.reght) < (14 B)s(p.left)+1—) and
(s(gp.right) < s(p.left))) then
do LL rotation
else do LR rotation ;
end
else
do symmetric to the above L case ;
gp = gp-parent ;
end ;

?
end ;

Figure 11: Simple restructuring procedure for insertion

When 8 < 1/3, an LL rotation fails to restore balance only when d = 0 (see discussion

following Theorem 3). So we need to rearrange the at most 1/ + 2 nodes in gp into any

fB-balanced tree when d = 0. An LR rotation fails only when d < m —1. To see this, note

that in the terminology of Lemma 14, d is d’. The proof of P2 is extended to the case 5 < 1/3

when d' > 5(214-5) —1. Also, since d’ < 1/3, for the case b > ¢, we get f(d'—1) < 1—3 < ¢ (as

¢ > 1). For the case b < ¢, we need to show (e —1) < b. Since an LR rotation is done only

when condition D1V D2 holds, from Lemmas 10 and 11, it follows that 3(a — 1) < b. So, an

LR rotation rebalances when 5 < 1/3 provided d > m — 1. For smaller d, the at most

BQ(QI_I_B) + 5(214-5) + 1 nodes in the subtree gp may be directly rearranged into a -balanced
tree.
The restructuring algorithm for simple 3-BBSTs is given in Figures 11 and 12. The
algorithm of Figure 11 is used following an insert and that of Figure 12 after a delete.
Simple 3-BBSTs are expected to have higher search cost than the 3-BBSTs of Section 4.
However, they are a good alternative to traditional WB(«) trees as they are expected to be

“better balanced”. To see this, note that from the proof of Lemma 3, the balance, B(p), at

29

procedure Restructurings ;
begin
while (¢p) do
begin
if (B(s(gp.left) —1) > s(gp.right)) then
if (8 < 1/3) and (s(gp.right) < 1/8(2+) — 1) then
rearrange the subtree rooted at gp into any -balanced tree
else { do an LL or LR rotation }
begin
p=gpleft;
if ((s(p.reght) < (14 B)s(p.left)+1—) and
(s(gp.right) < s(p.left))) then
do LL rotation
else do LR rotation ;
end
end
else
do symmetric to the above L case ;
gp = gp-parent ;
end ;

?

end ;

Figure 12: Simple restructuring procedure for deletion

any node p in a #-balanced tree satisfies

o 1+3(r)—|—1
B(p) s(l)+1
1

I+ 26—1

1B+ 50t
L+ 4+ 555,

Bls()+1)
251 :
5+ 500+

So,
1

1 25-1
L+ 5+ st

B(p) <1 -

2

Also, since s(r) —1 < s(l)/3, s(r)+1 < s(1)/5 + 2. Hence, 1 + SQ(T)H— <1+ (())

So,
1

B(p)

Y

1 1 2
'+ 53— 5o T oom
1

1 26-1 "
1+ 3+ 560

30

T s

Consequently,

| |
< B(p)<1-— .

1 -1 = > 1 25-1
L+ 5+ st L+ 5+ st

When 3 =v2 — 1,

1 1
<1-—
24+ V24 242+

— < B(p) <
0+1

S

1—/2 "

()11

If s(p) <10, 0.296 < B(p) < 1—0.296. So, every -balanced subtree with 10 or fewer nodes
is in WB(«) for o &~ 0.296. Similarly, every subtree with 100 or fewer nodes is in WB(«) for
a & 0.293. In fact, for every fixed k, subtrees of size k or less are in WB(«) for « slightly
higher than 1 — % ~ 0.2929 which is the largest value of « for which WB(«) trees can be

maintained.

6 BBSTs without Deletion

In some applications of a dictionary, we need to support only the insert and search operations.

In these applications, we can construct binary search trees with total cost
C(T) < nlog,(V5(n +1))
by using the simpler restructuring algorithm of Figure 13.

Theorem 5 When the only operations are search and insert and restructuring is done as in

Figure 13, C(T') < nlog(b(\/g(n +1)).

Proof Suppose T' currently has m — 1 elements and a new element is inserted. Let u be
the level at which the new element is inserted. Suppose that the restructuring pass performs
rotations at ¢ < u of the nodes on the path from the root to the newly inserted node. Then
C(T) increases by at most v = u — ¢ as a result of the insertion. The number of nodes on
the path from the root to the newly inserted node at which no rotation is performed is also
v. Let these nodes be numbered 1 through v bottom to top. Let S; denote the number of

elements in the subtree with root ¢ prior to the restructuring pass. We see that 57 > 1 and

31

procedure Restructuring4 ;
begin
while (¢p) do
begin
if s(gp.left) > s(gp.right) then { check conditions for an LL and LR rotation }
begin
p=gpleft;
if (s(p.left) > s(p.right)) and (s(p.left) > s(gp.right)) then
do LL rotation
else if (s(p.left) < s(p.right)) and (s(p.right) > s(gp.right)) then
do LR rotation ;
end
else { check conditions for an RR and RL rotation }
do symmetric to the above L case ;

gp = gp.parent ;
end ;
end ;

Figure 13: Simple restructuring procedure without a § value

Sy > 2. For node 2, 2 < 7 < v, one of its subtrees contains node ¢« — 1. Without loss of

generality, let this be the left subtree of 2. Let the root of the right subtree of ¢ be d. So,
Si > Sii +s(d) + 1.

If ¢ — 1 is not the left child of ¢, then since no rotation is done at 7, s(d) > S;—1. If ¢ — 1
is the left child of ¢, then consider node ¢« — 2. This is in one of the subtrees of 7. Since no

rotation is performed at ¢ — 1, s(d) > S;_3. Since S;_1 > S;_q, we get
S > Sici+ Si—a + 1.

Hence, S, > N, where N, is the minimum number of elements in a COST of height
v. So, v < log(b(\/g(m + 1)). So, when an element is inserted into a tree that has m — 1
elements, its cost C'(T') increases by at most log(b(\/g(m + 1)). Starting with an empty tree

and inserting n elements results in a tree whose cost is at most nlog(b(\/g(n + 1)). O

Corollary 2 The expected cost of a search or insert in a BBST constructed as above is
O(logn).

32

Proof Since C(T) < nlog(b(\/g(n—l— 1)), the expected search cost is C(T')/n < log(b(\/g(n—l—
1)). The cost of an insert is the same order as that of a search as each insert follows the

corresponding search path twice (top down and bottom up). a

7 Experimental Results

For comparison purposes, we wrote C programs for BBSTs, SBBSTs (simple BBSTs), BB-
STDs (BBSTs in which procedure Restructuring4 (Figure 13) is used to restructure follow-
ing inserts as well as deletes), unbalanced binary search trees (BST), AVL-trees, top-down
red-black trees (RB-T), bottom-up red-black trees (RB-B) [TARJ83], weight balanced trees
(WB), deterministic skip lists (DSL), treaps (TRP), and skip lists (SKIP). For the BBST and
SBBST structures, we used = 207/500 while for the WB structure, we used o = 207/707.
While these are not the highest permissible values of # and «, this choice permitted us to use
integer arithmetic rather than the substantially more expensive real arithmetic. For instance,
B-(a,b) for 3 =207/500 can be checked using the comparisons 207(s(a) — 1) > 500s(b) and
207(s(b) — 1) > 500s(a). The randomized structures TRP and SKIP used the same random
number generator with the same seed. SKIP was programmed with probability value p = 1/4
as in [PUGH90].

To minimize the impact of system call overheads on run time measurements, we pro-
grammed all structures using simulated pointers (i.e., an array of nodes with integer pointers
[SAHNO93]. Skip lists use variable size nodes. This requires more complex storage manage-
ment than required by the remaining structures which use nodes of the same size. For our
experiments, we implemented skip lists using fixed size nodes, each node being of the max-
imum size. As a result, our run times for skip lists are smaller than if a space efficient
implementation had been used. In all our tree structure implementations, null pointers were
replaced by a pointer to a tail node whose data field could be set to the search /insert/delete

key and thus avoid checking for falling off the tree. Similar tail pointers are part of the de-

33

fined structure of skip and deterministic skip lists. Each tree also had a head node. WB(«)
trees were implemented with a bottom-up restructuring pass. Our codes for SKIP and DSL
are based on the codes of [PUGH90] and [PAPA93], respectively. Our AVL and RB-T codes
are based on those of [PAPA93] and [SEDG94]. The treap structure was implemented using
joins and splits rather than rotations. This results in better performance. Furthermore,
AVL, RB-B, WB, and BBST were implemented with parent pointers in addition to left and
right child pointers. For BBSTs, the enhancements described in Section 4.4 for insert and
delete (see Figure 10) were employed. No rotations were performed during a search when
using any of the structures.

For our experiments, we tried two versions of the code. These varied in the order in which
the ‘equality’ and ‘less than’ or ‘greater than’ check between = and e (where z is the key
being searched /inserted/deleted and e is the key in the current node) is done. In version 1,
we conducted an initial experiment to determine if the total comparison count is less using
the order L:

if © < e then move to left child
else if © £ e then move to right child
else found
or the order R:
if © > e then move to right child
else if © £ e then move to left child
else found.
Our experiment indicated that doing the ‘left child’” check first (i.e. order L) worked better
for AVL, BBST, BBSTD, and DSL structures while R worked better for the RB-T, RB-B,
WB, SBBST, and TRP structures. No significant difference between L. and R was observed
for BSTs. For skip lists, we do not have the flexibility to change the comparison order. The
version 1 codes performed the comparisons in the order determined to be better. For BSTs,

the order R was used.

34

In the version 2 codes the comparisons in each node took the standard form

if + = ¢ then found
else if * < e then move to left child
else move to right child.

The version 2 restructuring code for BBSTs differed from that of Figure 10 in that the
‘>’ test in the second, third, and forth if statements was changed to ‘>’. No change was
made in the corresponding if statements for RR and RL rotations. While this increased the
number of comparisons, it reduced the run time.

We experimented with n = 10,000, 50,000, 100,000, and 200,000. For each n, the following
experiments were conducted:

(a) start with an empty structure and perform n inserts;

(b) search for each item in the resulting structure once; items are searched for in the order
they were inserted

(c) perform an alternating sequence of n inserts and n deletes; in this, the n elements inserted
in (a) are deleted in the order they were inserted and n new elements are inserted

(d) search for each of the remaining n elements in the order they were inserted

(e) delete the n elements in the order they were inserted.

For each n, the above five part experiment was repeated ten times using different random
permutations of distinct elements. For each permutation, we measured the total number of
element comparisons performed and then averaged these over the ten permutations.

First, we report on the relative performance of SBBSTs, BBSTDs, and BBSTs. For this
comparison, we used only version 1 of the code. Table 1 gives the average number of key
comparisons performed for each of the five parts of the experiment. The three versions of our
proposed data structure are very competitive on this measure. BBSTDs and BBST's generally
performed fewer comparisons than did SBBSTs. All three structures had a comparison count

within 2% of one another. However, when we used ordered data rather than random data

(Table 2), SBBSTs performed noticeably inferior to BBSTDs and BBSTs; the later two

35

n ‘operation H SBBST ‘ BBSTD ‘ BBST ‘

insert 212495 212223 212111

search 194661 191599 191578

10,000 ins/del 416125 416967 416862

search 194957 191666 191676

delete 168033 166441 166487

insert 1241080 | 1236682 | 1236114
search 1152137 | 1135131 1134969
50,000 ins/del 2437918 | 2438083 | 2437639
search 1153821 | 1134277 | 1134062
delete 1018675 | 1007766 | 1007688
insert 2635913 | 2624829 | 2623792
search 2458079 | 2423988 | 2423613
100,000 | ins/del 5183619 | 5180383 | 5179653
search 2461221 | 2420282 | 2419990
delete 2190798 | 2168049 | 2168110
insert 5580139 | 5555190 | 5553256
search 5223989 | 5148220 | 5147698
200,000 | ins/del 10981441 | 10969578 | 10968053
search 5229172 | 5144808 | 5144148
delete 4692447 | 4641349 | 4641389

Table 1: The number of key comparisons on random inputs (version 1 code)

remained very competitive.

Tables 3 and 4 give the average heights of the trees using random data and using ordered
data, respectively. The first number gives the height following part (a) of the experiment
and the second following part (¢). The numbers are identical for BBSTDs and BBSTs and
slightly higher (lower) for SBBSTs using random (ordered) data.

The average number of rotations performed by each of the three structures is given in
Tables 5 and 6. A single rotation (i.e., LL or RR) is denoted ‘S’ and a double rotation
(i.e., LR or RL) denoted ‘D’. In the case of BBSTs, double rotations have been divided into
three categories: D = LR and RL rotations that do not perform a second substep rotation;
DS = LR and RL rotations with a second substep rotation of type LL. and RR; DD = LR
and RL rotations with a second substep rotation of type LR and RL. BBSTDs and BBST's

36

n ‘ operation H SBBST ‘ BBSTD ‘ BBST
insert 170182 150554 | 150554

search 188722 185530 | 185530

10,000 ins/del 425305 315177 | 314998
search 191681 184155 | 184155

delete 215214 135311 | 135131

insert 991526 872967 | 872967

search 1117174 | 1101481 | 1101481

50,000 ins/del 2472808 | 1806346 | 1805439
search 1116390 | 1098065 | 1098065

delete 1277756 | 792717 | 791815

insert 2103808 | 1850548 | 1850548

search 2384327 | 2354757 | 2354757

100,000 | ins/del 5249194 | 3823415 | 3821594
search 2382759 | 2346118 | 2346128

delete 2738294 | 1686397 | 1684584

insert 4449143 | 3903083 | 3903083

search 5068632 | 4946753 | 4946753

200,000 | ins/del 11105525 | 8051695 | 8048058
search 5065496 | 5001967 | 5001967

delete 5842168 | 3580856 | 3577223

Table 2: The number of key comparisons on ordered inputs (version 1 code)

I

[SBBST [BBSTD [BBST |

10,000 | 17,17 | 16,16 | 16,16
50,000 || 20,20 | 19,19 | 19,19
100,000 | 21,21 | 20,20 | 20,20
200,000 | 2223 | 21,21 | 21,21

Table 3: Height of the trees on random inputs (version 1 code)

I

[SBBST [BBSTD [BBST |

10,000 [16,15 | 17,17 | 17,17
50,000 || 20,20 | 20,20 | 20,20
100,000 || 21,21 | 21,21 | 21,21
200,000 | 22,22 | 2322 | 23,22

Table 4: Height of the trees on ordered inputs (version 1 code)

37

SBBST BBSTD BBST

n operation S ‘ D S ‘ D S ‘ D ‘ DS ‘ DD
insert 2341 | 2220 5045 4314 5025 3938 151 93

10,000 ins/del 4269 | 3216 | 10158 6311 10104 5849 232 | 103
delete 1607 | 1110 5235 2104 5201 2018 51 28

insert 11719 | 11120 | 25216 | 21596 | 25059 | 19732 | 754 | 455
50,000 ins/del 21330 | 16125 | 51238 | 31499 | 50979 | 29198 | 1161 | 531
delete 8058 | 5648 | 26214 | 10462 | 26068 | 10033 | 248 | 131
insert 23450 | 22262 | 50283 | 43230 | 50047 | 39461 | 1527 | 920
100,000 | ins/del 42780 | 32203 | 102218 | 62967 | 101836 | 58491 | 2275 | 1046
delete 16095 | 11306 | 52227 | 21022 | 51943 | 20147 | 496 | 260
insert 46934 | 44525 | 100664 | 86605 | 100205 | 79013 | 3054 | 1840
200,000 | ins/del 85283 | 64417 | 204459 | 125960 | 203568 | 116940 | 4593 | 2059
delete 32233 | 22551 | 104344 | 41884 | 103826 | 40157 | 990 | 523

Table 5: The number of rotations on random inputs (version 1 code)

performed a comparable number of rotations on both data sets. However, on random data
SBBSTs performed about halt as many rotations as did BBSTDs and BBSTs. On ordered
data, SBBSTs performed 15 to 20% fewer rotations on part (a), 34% fewer on part (¢), and
51% fewer on part (e).

The run-time performance of the structures is significantly influenced by compiler and
architectural features as well as the complexity of a key comparison. The results we report
are from a SUN SPARC-5 using the UNIX C compiler cc with optimization option. Because
of instruction pipelining features, cache replacement policies, etc., the measured run times
are not always consistent with the compiler and architecture independent metrics reported
in Tables 1 through 6 and later in Tables 11 through 16. For example, since the search codes
for all tree based methods are essentially identical, we would expect methods with a smaller
comparison count to have a smaller run time for parts (b) and (d) of the experiment. This
was not always the case.

Tables 7 and 8 give the run times of the three BBST structures using integer keys and

Tables 9 and 10 do this for the case of real (i.e., floating point) keys. The sum of the run

38

SBBST BBSTD BBST
S [D S | D [DS][DD
0985 | 2387 | 9985 | 2387 | 0 | 0
16567 | 6130 | 16644 | 5797 | 25 | 154
6570 | 3726 | 6647 | 3392 | 26 | 154
19983 | 11956 | 49983 | 11956 | 0 | 0
82862 | 30659 | 83247 | 28982 | 137 | 770
32859 | 18686 | 33242 | 17018 | 136 | 766
09983 | 23917 | 99983 | 23917 | 0 | 0
165738 | 61327 | 166504 | 57969 | 280 | 1540
65733 | 37392 | 66505 | 34040 | 278 | 1536
199982 | 47839 | 199982 | 47839 | 0 | 0
331473 | 122653 | 333012 | 115938 | 559 | 3078
131478 | 74795 | 133016 | 68086 | 557 | 3076

n operation S ‘

insert 9984

10,000 ins/del 14997
delete 4989

insert 49980
50,000 | ins/del 74996
delete 24987
insert 99979
100,000 | ins/del 149996
delete 49986
insert 199978
200,000 | ins/del 299996
delete 99985

OO oo oo oo o oldT

Table 6: The number of rotations on ordered inputs (version 1 code)

time for parts (a) — (e) of the experiment is graphed in Figure 14. For random data, SBBSTs
significantly and consistently outperformed BBSTDs and BBSTs. On ordered data, however,
BBSTDs were slightly faster than BBSTs and both were significantly faster than SBBSTs.

Since BBST's generated trees with the least search cost, we expect BBSTs to outperform
SBBSTs and BBSTDs in applications where the comparison cost is very high relative to that
of other operations and searches are done with a much higher frequency than inserts and
deletes. However, with the mix of operations used in our tests, SBBSTs are the clear choice
for random inputs and BBSTDs for ordered inputs.

In comparing with the other structures, our tables repeat the data for BBSTs. The reader
may make the comparison with SBBSTs and BBSTDs.

The average number of comparisons for each of the five parts of the experiment are given
in Table 11 for the version 1 implementation. On the comparison measure, AVL, RB-B, WB,
and BBSTs are the front runners and are quite competitive with one another. On parts (a)
(insert n elements) and (c) (insert n and delete n elements), AVL trees performed best while

on the two search tests ((b) and (d)) and the deletion test (e), BBSTs performed best.

39

n ‘ operation H SBBST ‘ BBSTD ‘ BBST ‘

insert 0.27 0.30 0.34
search 0.06 0.06 0.07
10,000 ins/del 0.57 0.62 0.70
search 0.06 0.06 0.06
delete 0.22 0.25 0.26
insert 1.48 1.61 1.75
search 0.35 0.36 0.37
50,000 ins/del 2.90 3.47 3.84
search 0.36 0.38 0.39
delete 1.13 1.47 1.62
insert 3.00 3.57 3.80
search 0.78 0.83 0.84
100,000 | ins/del 6.28 7.78 3.41
search 0.83 0.87 0.88
delete 2.54 3.31 3.58
insert 6.56 7.74 8.37
search 1.80 1.89 1.89
200,000 | ins/del 13.89 17.32 18.57
search 1.86 1.98 1.98
delete 5.64 7.41 8.02

Time Unit : sec

Table 7: Run time on random inputs using integer keys (version 1 code)

40

n ‘ operation H SBBST ‘ BBSTD ‘ BBST ‘

insert 0.32 0.20 0.27
search 0.05 0.03 0.05
10,000 ins/del 0.58 0.43 0.57
search 0.07 0.03 0.03
delete 0.20 0.17 0.23
insert 1.38 1.20 1.10
search 0.25 0.20 0.20
50,000 ins/del 2.63 2.18 2.40
search 0.25 0.20 0.20
delete 0.95 0.92 1.05
insert 3.43 2.23 2.53
search 0.72 0.45 0.42
100,000 | ins/del 5.97 4.70 5.13
search 0.55 0.47 0.42
delete 2.10 1.98 2.15
insert 6.65 4.95 5.25
search 1.20 0.92 0.90
200,000 | ins/del 13.13 10.23 10.88
search 1.17 0.90 0.90
delete 4.63 4.25 4.58

Time Unit : sec

Table 8: Run time on ordered inputs using integer keys (version 1 code)

41

n ‘ operation H SBBST ‘ BBSTD ‘ BBST ‘

insert 0.23 0.34 0.36
search 0.07 0.10 0.10
10,000 | ins/del 0.44 0.75 0.79
search 0.08 0.10 0.10
delete 0.17 0.29 0.30
insert 1.43 1.76 1.93
search 0.47 0.53 0.52
50,000 ins/del 2.76 3.89 4.22
search 0.50 0.54 0.55
delete 1.13 1.62 1.76
insert 2.96 3.94 4.36
search 1.08 1.17 1.16
100,000 | ins/del 6.11 8.58 9.30

search 1.12 1.20 1.22
delete 2.50 3.66 3.95
insert 6.85 8.92 9.33

search 2.41 2.58 2.57
200,000 | ins/del 13.86 19.49 20.46
search 2.49 2.69 2.66
delete 5.61 8.25 8.80

Time Unit : sec

Table 9: Run time on random real inputs (version 1 code)

42

n ‘ operation H SBBST ‘ BBSTD ‘ BBST ‘

insert 0.27 0.23 0.20
search 0.08 0.07 0.07
10,000 ins/del 0.53 0.50 0.43
search 0.08 0.07 0.05
delete 0.18 0.23 0.20
insert 1.43 1.25 1.12
search 0.40 0.30 0.30
50,000 | ins/del 2.80 2.17 2.37
search 0.40 0.30 0.30
delete 1.07 0.90 0.97
insert 3.28 2.58 2.77
search 0.90 0.62 0.63
100,000 | ins/del 6.15 4.70 5.13
search 0.87 0.62 0.63
delete 2.35 1.93 2.10
insert 7.37 4.55 4.92
search 1.85 1.32 1.32
200,000 | ins/del 13.35 10.03 10.93
search 1.87 1.33 1.33
delete 5.08 4.17 4.43

Time Unit : sec

Table 10: Run time on ordered real inputs (version 1 code)

43

n | operation || BST AVL | RB-T | RB-B WB | BBST DSL TRP [SKIP
insert 264175 | 211401 | 262838 [211836 | 211916 | 212111 | 276247 | 296866 | 224757
search | 254175 | 193253 | 194606 | 194291 | 194153 | 191578 | 258089 | 258662 | 255072
10,000 | ins/del || 516853 | 411220 | 515184 | 414990 | 414635 | 416862 | 923524 | 601137 | 519430
search || 252200 | 193141 | 197399 | 195525 | 194442 | 191676 | 256578 | 254119 | 256124
delete || 215555 | 167312 | 200218 | 167455 | 167531 | 166487 | 526242 | 242743 | 231745
insert || 1560958 | 1234911 | 1550701 | 1236968 | 1238628 | 1236114 | 1640660 | 1717037 | 1357076
search | 1510958 | 1147273 | 1150466 | 1146754 | 1149970 | 1134969 | 1512093 | 1503452 | 1537547
50,000 | ins/del | 3061868 | 2417733 | 3058045 | 2424944 | 2431281 | 2437639 | 5351715 | 3456045 | 2996512
search | 1500504 | 1145808 | 1173662 | 1152764 | 1151578 | 1134062 | 1499657 | 1497081 | 1501731
delete || 1316917 | 1013535 | 1242426 | 1013144 | 1015988 | 1007688 | 3077266 | 1451835 | 1373858
insert [3329780 | 2623894 | 3305332 | 2626314 | 2631411 | 2623792 | 3513401 | 3632046 | 2919371
search || 3229780 | 2445659 | 2451137 | 2446466 | 2453855 | 2423613 | 3244497 | 3247143 | 3188621
100,000 | ins/del || 6537563 | 5137280 | 6564352 | 5154118 | 5170695 | 5179653 | 11545200 | 7476441 | 6399463
search | 3208453 | 2443038 | 2502098 | 2457531 | 2456748 | 2419990 | 3229747 | 3310823 | 3225343
delete || 2839934 | 2181327 | 2692672 | 2177946 | 2185213 | 2168110 | 6561272 | 3177135 | 2981173
insert || 7076132 | 5553640 | 7016676 | 5558174 | H571133 | 5553256 | 7483199 | 7682439 | 6178596
search | 6876132 | 5191730 | 5209189 | 5199786 | 5215568 | 5147698 | 6887196 | 6797942 | 6697223
200,000 | ins/del | 13907058 | 10862426 | 13940982 | 10921880 | 10956496 | 10968053 | 24207106 | 15543559 | 13377747
search | 6830718 | 5186737 | 5332771 | 5223154 | 5220965 | 5144148 | 6814733 | 6916150 | 6680642
delete || 6095324 | 4664876 | 5800203 | 4664344 | 4680768 | 4641389 | 13811271 | 6700557 | 6149268

Table 11: The number of key comparisons on random inputs (version 1 code)

44

n | operation || AVL RB-T | RB-B WB | BBST | DSL | TRP | SKIP |
insert 277234 | 376228 | 241383 | 171017 | 150554 | 435199 | 135989 | 247129
search | 191917 | 188246 | 190106 | 188722 | 185530 | 262423 | 271087 | 256706
10,000 | ins/del || 421032 | 718040 | 508810 | 425843 | 314998 | 983676 | 390899 | 354566
search | 195133 | 189494 | 190090 | 191681 | 184155 | 249694 | 269031 | 250538
delete 104038 | 276136 | 218216 | 214930 | 135131 | 468244 | 193080 | 84392
insert || 1618930 | 2233658 | 1436225 | 995720 | 872967 | 2585557 | 825390 | 1422120
search || 1120497 | 1117001 | 1120495 | 1117174 | 1101481 | 1509152 | 1540082 | 1467217
50,000 | ins/del | 2418422 | 4311748 | 3055100 | 2475487 | 1805439 | 6019215 | 2194668 | 1973416
search || 1124001 | 1168633 | 1126126 | 1116390 | 1098065 | 1481819 | 1568903 | 1449810
delete || 607478 | 1719212 | 1323918 | 1276262 | 791815 | 2785792 | 1181612 | 486498
insert || 3437858 | 4767564 | 3072389 | 2112201 | 1850548 | 5521408 | 1724473 | 2925618
search | 2390963 | 2383979 | 2390961 | 2384327 | 2354757 | 3218246 | 3564282 | 2970715
100,000 | ins/del || 5111850 | 9223606 | 6510188 | 5254541 | 3821594 | 12788447 | 4438266 | 4406427
search || 2397971 | 2487243 | 2402224 | 2382759 | 2346128 | 3163554 | 3281308 | 3277089
delete || 1289954 | 3737982 | 2847792 | 2735270 | 1684584 | 5971196 | 2403622 | 961283
insert || 7275714 | 10135418 | 6544713 | 4465935 | 3903083 | 11743159 | 3428355 | 6403207
search | 5081893 | 5067933 | 5081891 | 5068632 | 4946753 | 6836428 | 7174727 | 6443304
200,000 | ins/del | 10773706 | 19647336 | 13820364 | 11116226 | 8048058 | 27076911 | 9054078 | 9062233
search | 5095909 | 5274461 | 5104418 | 5065496 | 5001967 | 6727017 | 7006341 | 6458321
delete || 2729906 | 8075474 | 6095538 | 5836096 | 3577223 | 12741948 | 5094044 | 1995215

Table 12: The number of key comparisons on ordered inputs (version 1 code)

45

Time is sum of time for parts (a)—(e) of the experiment

45 T T T

40 + SBBST on random inputs <>—

BBSTD on random inputs -<—
35 BBST on random inputs -e—

SBBST on ordered inputs <»- -
30 - BBSTD on ordered inputs -X- -
BBST on ordered inputs -G - -
Time 25

(sec) 9

50000 100000 150000 200000
n

Figure 14: Run time on real inputs (version 1 code)

Table 12 gives the number of comparisons performed when ordered data (i.e., the elements
in part (a) are 1,2,...,n and are inserted in this order) and those in part (¢) are n+1,...,2n
(in this order) is used instead of random permutations of distinct elements. This experiment
attempts to model realistic situations in which the inserted elements are in “nearly sorted
order”. BSTs were not included in this test as they perform very poorly with ordered data
taking O(n?) time to insert n times. The computer time needed to perform this test on
BSTs was determined to be excessive. This test exhibited greater variance in performance.
Among the deterministic structures, BBSTs outperformed the others in parts (a) — (d) while
AVL trees were ahead in part (e). For part (a), BBSTs performed approximately 45%
fewer comparisons than did AVL trees and approximately 12% fewer than WB trees. The
randomized structure TRP was the best of the eight structures reported in Table 12 for part
(a). It performed approximately 10% fewer comparisons than did BBST trees. However, the
BBST remained best overall on parts (b), (¢), and (d).

The heights of the trees (number of levels in the case of DSL and SKIP) for the exper-

46

n || BST [AVL [RB-T | RB-B| WB | BBST | DSL | TRP | SKIP |
10,000 || 31,31 | 16,16 | 17,18 | 16,17 | 17,17 | 16,16 | 12,11 | 32,31 | 8,8
50,000 | 38,38 | 19,19 | 20,21 | 19,20 | 20,20 | 19,19 | 13,12 | 38,37 | 9.9
100,000 || 41,41 | 20,20 | 21,22 | 20,21 | 21,22 | 20,20 | 14,13 | 41,40 | 9.9
200,000 || 44,43 | 21,21 | 22,24 | 21,22 | 23,23 | 21,21 | 15,14 | 43,44 | 9.9

Table 13: Height of the trees on random inputs (version 1 code)

[n [AVL [RB-T|RB-B| WB | BBST | DSL | TRP | SKIP |
10,000 | 14,14 | 20,20 | 24,24 | 16,15 | 17,17 | 14,13 | 33,34 | S.8
50,000 || 16,16 | 23,23 | 29,28 | 20,20 | 20,20 | 16,16 | 41,41 | 9.9
100,000 || 17,17 | 25,25 | 31,30 | 21,21 | 21,21 | 17,17 | 46,41 | 9.9
200,000 || 18,18 | 27,27 | 33,32 | 22,22 | 23,22 | 18,18 | 47,46 | 9.9

Table 14: Height of the trees on ordered inputs (version 1 code)

iments with random and ordered data are given in Tables 13 and 14 respectively. The first
number in each table entry is the tree height after part (a) of the experiment and the second,
the height after part (c). In all cases, the number of levels using skip lists is fewest. However,
among the tree structures, AVL and BBST trees have least height on random data and AVL
has least with ordered data.

Tables 15 and 16, respectively, give the number of rotations performed by each of the
deterministic tree schemes for experiment parts (a), (¢), and (e). Note that none of the
schemes performs rotations during a search.

On ordered data, BBSTs perform about 25% more rotations than do the remaining
structures. These remaining structures perform about the same number of rotations. On
random data, AVL trees, bottom-up red-black trees and WB trees perform a comparable
number of rotations. Top-down red-black trees and BBST trees perform a significantly larger
number of rotations. In fact, BBSTs perform about twice as many rotations as AVL trees.

The average run times for the random data tests are given in Table 17 and in Table 18

for the ordered data test. Both of these use integer keys. The times using real keys are

47

AVL RB-T RB-B WB BBST
n operation S i D S i D S i D S i D S i D i DS i DD
insert 2328 | 2322 1964 1955 1946 | 1933 | 2274 | 2065 5025 3938 151 93
10,000 ins/del 4343 | 3224 | 14773 3213 4053 | 2591 | 4256 | 2978 | 10104 5849 232 | 103
delete 1645 | 1120 9558 2678 1845 | 1166 | 1595 | 1022 5201 2018 51 28
insert 11664 | 11614 | 9822 9815 9710 | 9689 | 11355 | 10352 | 25059 | 19732 | 7h4 | 455
50,000 ins/del 21585 | 16214 | 81895 | 45180 | 20255 | 12979 | 21266 | 14975 | 50979 | 29198 | 1161 | 531
delete 8231 | 5630 | 54806 | 13431 | 9196 | 5844 | 7963 | 5194 | 26068 | 10033 | 248 | 131
insert 23316 | 23254 | 19593 | 19677 | 19340 | 19414 | 22723 | 20730 | 50047 | 39461 | 1527 | 920
100,000 | ins/del 43243 | 32361 | 196769 | 103835 | 40618 | 25919 | 42567 | 29898 | 101836 | 58491 | 2275 | 1046
delete 16466 | 11264 | 119825 | 26953 | 18530 | 11708 | 16024 | 10420 | 51943 | 20147 | 496 | 260
insert 46631 | 46518 | 39290 | 39291 | 38797 | 38793 | 45458 | 41480 | 100205 | 79013 | 3054 | 1840
200,000 | ins/del 86218 | 64712 | 394187 | 209941 | 80892 | 52030 | 84927 | 59911 | 203568 | 116940 | 4593 | 2059
delete 33047 | 22477 | 247905 | 54046 | 37083 | 23379 | 31984 | 20800 | 103826 | 40157 | 990 | 523

Table 15: The number of rotations on random inputs (version 1 code)

48

AVL RB-T RB-B WB BBST

n operation S i D S i D S i D S i D S D i DS i DD

insert 9986 | 0 | 9980 | 0| 9976 | 0| 9984 | 0 | 9985 2387 0 0

10,000 ins/del 14996 | 0 | 14999 | 0 | 14995 | 0 | 14997 | 0 | 16644 5797 25 | 154
delete 4990 | 0| 4983 | 1| 4989 |0 | 4989 | 0 | 6647 3392 26 | 154

insert 49984 | 0 | 49977 | 0 | 49971 | 0 | 49980 | 0 | 49983 | 11956 0 0

50,000 ins/del 74994 | 0 | 75000 | O | 74994 | O | 74996 | 0 | 83247 | 28982 | 137 | 770
delete 24988 | 0 | 24978 | 1 | 24986 | 0 | 24987 | 0 | 33242 | 17018 | 136 | 766

insert 99983 | 0 | 99975 | 0 | 99969 | 0 | 99979 | 0 | 99983 | 23917 0 0
100,000 | ins/del 149994 | 0 | 150000 | 0 | 149994 | 0 | 149996 | 0 | 166504 | 57969 | 280 | 1540
delete 49987 | 0 | 49977 | 1 | 49985 | 0 | 49986 | 0 | 66505 | 34040 | 278 | 1536

insert 199982 | 0 | 199973 | 0 | 199967 | 0 | 199978 | 0 | 199982 | 47839 0 0
200,000 | ins/del || 299994 | 0 | 300000 | 0 | 299994 | 0 | 299996 | 0 | 333012 | 115938 | 559 | 3078
delete 99986 | 0 | 99976 | 1 | 99984 | 0 | 99985 | 0 | 133016 | 683086 | 557 | 3076

Table 16: The number of rotations on ordered inputs (version 1 code)

49

n__ | operation | BST | AVL [RB-T | RB-B| WB | BBST | DSL | TRP [SKIP |
insert [0.08 | 0.12 [0.15 | 0.12 [0.20 | 0.34 | 0.19 | 0.18 | 0.24
search || 0.05 | 0.05 | 0.05 | 0.06 | 0.05 | 0.07 | 0.09 | 0.09 | 0.18
10,000 | ins/del | 0.4 | 0.21 | 0.36 | 0.22 | 0.39 | 0.70 | 0.49 | 0.33 | 0.45
search || 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.06 | 0.09 | 0.09 | 0.18
delete || 0.05 | 0.08 | 0.12 | 0.09 | 0.16 | 0.26 | 0.20 | 0.08 | 0.16
fsert | 0.65 | 0.79 | 0.98 | 0.73 | 1.18 | 1.75 | 1.10 | 1.01 | 1.36
search || 0.40 | 0.36 | 0.36 | 0.36 | 0.35 | 0.37 | 0.58 | 0.56 | 1.25
50,000 | ins/del || 1.04 | 1.48 | 2.50 | 1.26 | 222 | 3.84 | 277 | 1.86 | 2.73
search || 0.40 | 0.41 | 0.44 | 0.36 | 0.36 | 0.39 | 0.57 | 0.56 | 1.16
delete || 0.39 | 0.54 | 1.01 | 0.51 | 0.94 | 1.62 | 1.16 | 0.51 | 1.10
fsert | 1.34 | 157 | 210 | 154 | 2.54 | 3.80 | 246 | 2.23 | 2.84
search || 0.88 | 0.80 | 0.80 | 0.83 | 0.78 | 0.84 | 1.36 | 1.30 | 2.63
100,000 | ins/del | 2.36 | 3.21 | 5.52 | 274 | 4.86 | 841 | 6.35 | 4.10 | 6.13
search || 0.93 | 0.94 | 1.00 | 0.84 | 0.83 | 0.88 | 1.33 | 1.29 | 2.61
delete || 0.88 | 1.24 | 2.26 | 1.14 | 211 | 358 | 2.64 | 1.23 | 241
fsert | 2.79 | 337 | 441 | 3.18 | 5.21 | 837 | 556 | 4.70 | 6.25
search || 2.00 | 1.80 | 1.81 | 1.81 | 1.78 | 1.89 | 3.03 | 291 | 5.85
200,000 | ins/del || 5.24 | 6.99 | 12,51 | 5.99 | 10.54 | 18.57 | 14.29 | 8.95 | 13.29
search || 2.08 | 212 | 2.25 | 1.91 | 1.87 | 1.98 | 3.04 | 2.93 | 5.81
delete || 2.01 | 2.69 | 5.06 | 2.51 | 4.55 | 8.02 | 581 | 2.76 | 5.35

Time Unit : sec

Table 17: Run time on random inputs using integer keys (version 1 code)

given in Tables 19 and 20. The sum of the run time for parts (b) and (d) of the experiment
is graphed in Figure 15 for random data and in Figure 16 for ordered data. The graph of
Figure 17 shows only one line MIX for AVL, RB-T, RB-B, WB, and BBST while that of
Figure 18 shows MIX for AVL, RB-T, RB-B, and WB as the times for these are very close.
With integer keys and random data, unbalanced binary search trees (BSTs) outperformed
each of the remaining structures. The next best performance was exhibited by bottom-up
red-black trees. They did marginally better than AVL trees. The remaining structures have
a noticeably inferior structure. For ordered integer keys, BSTs take more time than we were

willing to expend. Of the remaining structures, treaps generally performed best on parts

(a), (¢), and (e) while BBSTs did best on parts (b) and (d).

30

n__ | operation | AVL | RB-T [RB-B| WB | BBST [DSL | TRP [SKIP |

insert 0.12 | 0.17 | 0.12 | 0.18 | 0.27 | 0.23 | 0.08 | 0.20
search 0.05 | 0.03 | 0.03 | 0.07 | 0.05 | 0.07 | 0.05 | 0.12
10,000 ins/del 0.18 | 0.32 | 0.20 | 0.35 | 0.57 | 0.42 | 0.17 | 0.20
search 0.05 | 0.05 | 0.05 | 0.05 | 0.03 | 0.07] 0.05 | 0.13
delete 0.05 | 0.10 | 0.07 | 0.13 | 0.23 | 0.15 | 0.05 | 0.07

insert 0.75 | 1.02 | 0.92 | 1.25 1.10 | 0.98 | 0.47 | 0.92
search 0.32 | 0.27 | 0.27 | 0.28 | 0.20 | 0.33 | 0.32 | 0.62
50,000 ins/del 1.28 | 217 1.25 | 2.20 | 2.40 | 2.03 | 0.80 | 1.07
search 0.28 | 0.28 | 0.27 | 0.28 | 0.20 | 0.30 | 0.37 | 0.62
delete 0.30 | 0.75 | 0.37 | 0.85 1.05 | 0.65 | 0.30 | 0.27

insert 1.50 | 2.52 1.70 | 2.58 | 253 | 258 | 090 | 1.72
search 0.70 | 0.60 | 0.57 | 0.70 | 0.42 | 0.70 | 0.63 | 1.23
100,000 | ins/del 2.60 | 4.68 | 2.53 | 4.78 | 5.13 | 442 | 1.52 | 2.43
search 0.63 | 0.60 | 0.55 | 0.62 | 0.42 | 0.70 | 0.58 | 1.35
delete 0.62 | 1.65 | 0.78 | 1.87 | 2.15 | 1.42 | 0.45 | 0.55

insert 3.12 | 4.82 3.38 | 5.67 | 5.25 | 4.72 | 1.80 | 3.52
search 1.38 | 1.30 1.22 | 1.33 0.90 | 1.60 | 1.25 | 2.70
200,000 | ins/del 5.15 | 10.40 | 5.35 | 10.40 | 10.88 | 9.48 | 3.10 | 5.13
search 1.33 | 1.33 1.18 | 1.32 0.90 | 1.50 | 1.28 | 2.72
delete 1.35 | 3.63 1.68 | 4.12 | 4.58 | 298 | 0.93 | 1.12

Time Unit : sec

Table 18: Run time on ordered inputs using integer keys (version 1 code)

51

n__] operation | BST [AVL [RB-T | RB-B | WB | BBST | DSL | TRP | SKIP |
sert [0.14 [0.15 | 0.21 | 0.17 | 0.23 | 0.36 | 0.22 | 0.23 | 0.30
search || 0.09 | 0.07 | 0.09 | 0.10 | 0.08 | 0.10 | 0.13 | 0.13 | 0.21
10,000 | ins/del | 0.24 | 0.27 | 0.51 | 0.32 | 0.38 | 0.79 | 0.62 | 0.41 | 0.33
search || 0.09 | 0.08 | 0.09 | 0.10 | 0.08 | 0.10 | 0.12 | 0.12 | 0.21
delete || 0.09 | 0.09 | 0.17 | 0.14 | 0.14 | 030 | 0.28 | 0.11 | 0.19
sert | 0.94 | 0.97 | 1.22 | 0.86 | 1.29 | 1.93 | 148 | 1.19 | 1.67
search || 0.64 | 0.52 | 0.50 | 0.51 | 0.51 | 0.52 | 0.87 | 0.71 | 1.44
50,000 | ins/del | 1.68 | 1.77 | 274 | 1.53 | 2.20 | 4.22 | 3.93 | 217 | 3.15
search || 0.66 | 0.55 | 0.56 | 0.54 | 0.56 | 0.55 | 0.86 | 0.71 | 1.33
delete || 0.63 | 0.67 | 1.10 | 0.72 | 0.92 | 1.76 | 1.80 | 0.69 | 1.22
fsert | 2.06 | 1.85 | 2.31 | 1.90 | 2.66 | 4.36 | 3.05 | 2.67 | 3.61
search || 143 | 113 | 1.09 | 113 | 1.14 | 1.16 | 1.84 | 1.66 | 3.00
100,000 | ins/del | 3.63 | 3.93 | 6.18 | 3.33 | 4.96 | 9.30 | 8.45 | 4.84 | 7.10
search || 1.45 | 1.26 | 1.27 | 117 | 1.26 | 1.22 | 1.83 | 1.65 | 3.01
delete || 1.39 | 1.50 | 251 | 1.55 | 2.03 | 3.95 | 3.91 | 1.61 | 2.75
fnsert || 434 | 3.95 | 5.20 | 3.88 | 556 | 933 | 6.77 | 5.81 | 7.90
search || 3.19 | 249 | 242 | 250 | 245 | 2.57 | 4.14 | 3.67 | 6.62
200,000 | ins/del [8.01 | 8.25 | 13.78 | 7.29 | 10.65 | 20.46 | 18.88 | 10.48 | 15.83
search || 3.21 | 2.83 | 2.86 | 2.62 | 2.74 | 2.66 | 4.08 | 3.73 | 6.74
delete | 3.11 | 3.27 | 555 | 341 | 443 | 880 | 8.56 | 3.54 | 6.04

Time Unit : sec

Table 19: Run time on random real inputs (version 1 code)

With real keys and random data, BSTs did not outperform the remaining structures.
Now, the five balanced binary tree structure became quite competitive with respect to the
search operations (i.e., parts (b) and (d)). RB-B generally outperformed the other structures
on parts (a), (¢), and (e). Using ordered real keys, the treap was the clear winner on parts
(a), (c), and (e) while BBSTs handily outperformed the remaining structures on parts (b)
and (d).

Some of the experimental results using version 2 of the code are shown in Tables 21— 24.
On the comparison measure, with random data (Table 21), skip lists performed best on
part (a). Of the deterministic methods, BBSTs slightly outperformed the others on part
(a). On parts (b) — (e), AVL, RB-T, RB-B, WB, and BBSTs were quite competitive and

52

Time is sum of time for parts (b) and (d) of the experiment

14 T T T A
12F MIX &— RN
DSL <——
10 N BST @ - |
SKIP /-
TRP -X- - '
Time
(sec)

4:; ! ! !
50000 100000 150000 200000
n

Figure 15: Run time on random real inputs (version 1 code)

Time is sum of time for parts (b) and (d) of the experiment

8 T T T A
TE MIX &— R
BBST -+—
6 DSL -=— _|
SKIP £\ -
5 TRP - _
Time .
(sec)

0 . ! ! !
50000 100000 150000 200000
n

Figure 16: Run time on ordered real inputs (version 1 code)

33

n__ | operation | AVL | RB-T [RB-B| WB [BBST | DSL | TRP | SKIP |

insert 0.13 | 0.22 | 0.15 | 0.25 | 0.20 | 0.25 | 0.12 | 0.30
search 0.07 | 0.08 | 0.07 | 0.07 | 0.07 | 0.10 | 0.07 | 0.15
10,000 ins/del 0.23 | 042 | 0.27 | 0.40 | 0.43 | 0.47 | 0.18 | 0.28
search 0.07 | 0.05 | 0.08 | 0.08 | 0.05 | 0.08 | 0.08 | 0.12
delete 0.07 | 0.17 | 0.08 | 0.15 | 0.20 | 0.20 | 0.05 | 0.07

insert 1.15 | 1.58 1.12 | 1.85 1.12 1.30 | 0.67 | 1.35
search 042 | 0.42 0.43 0.40 0.30 0.53 | 0.38 | 0.82
50,000 ins/del 1.28 | 2.75 1.57 | 2.57 2.37 3.02 | 092 | 1.40
search 0.40 | 0.42 0.42 0.48 0.30 0.53 | 0.40 | 0.75
delete 0.38 | 0.95 0.55 | 0.93 0.97 1.15 | 0.33 | 0.35

insert 1.77 | 3.23 2.12 | 3.35 2,77 3.13 | 1.17 | 2.42
search 0.90 | 0.87 0.90 | 0.88 0.63 1.12 | 0.92 | 1.70
100,000 | ins/del 3.00 | 6.00 3.42 | 5.38 5.13 6.32 | 1.92 | 3.22
search 0.97 | 0.92 0.88 0.98 0.63 1.12 | 0.82 | 1.70
delete 0.87 | 2.08 1.17 | 2.05 2.10 2.40 | 0.70 | 0.67

insert 3.92 | 6.42 | 4.27 | 7.25 | 4.92 | 6.03 | 258 | 4.93
search 1.92 | 1.87 1.92 | 1.88 1.32 | 2.40 | 1.85 | 3.87
200,000 | ins/del 5.78 | 13.80 | 7.33 | 11.88 | 10.93 | 13.72 | 3.75 | 6.67
search 1.90 | 1.93 1.92 | 2.13 1.33 | 2.38 | 1.75 | 3.97
delete 1.67 | 4.55 | 248 | 445 | 443 | 5.10 | 1.40 | 1.35

Time Unit : sec

Table 20: Run time on ordered real inputs (version 1 code)

o4

outperformed BSTs and the randomized schemes. BBSTs performed best on parts (b) and
(d), RB-Ts did best on part (e) and RB-B and AVL did best on part (c). In comparing
the results of Table 21 to those of Table 11 (using version 1 code), we see that the change
to version 2 generally increased the comparison cost of the deterministic tree structures by
about 25%. For the DSL, the change in code had mixed results. Notice that for RB-T and
DSLs, the comparison count for parts (a), (c), and (e) are the same as for the version 1 code.
This is because for inserts and deletes, it is necessary to do the equal check first when using
these structures. For SKIPs the count is the same for all five parts as the version 1 and 2
codes are the same.

With ordered data (Table 22), treaps required the fewest comparisons for part (a). Skip
lists did best on parts (c) and (e), and AVL trees generally outperformed the other structures
on parts (b) and (d). Once again, the comparison counts were generally higher using the
version 2 code than using the version 1 code.

Run time data using real keys is given in Tables 23 and 24. The sum of the run time for
parts (b) and (d) of the experiment is graphed in Figure 17 for random data and in Figure 18
for ordered data. The graph of Figure 17 shows only one line MIX for AVL, RB-T, RB-B,
WB, and BBST while that of Figure 18 shows MIX for AVL, RB-T, RB-B, and WB as the
times for these are very close. With random data, RB-B generally performed best on part
(a), on parts (b) and (d), the front runner varied among AVL, RB-T, and WB, and on parts
(c) and (e) RB-Bs generally did best. On ordered data, TRPs did best on parts (a), (¢), and
(e) while BBSTs did best on parts (b) and (d).

& Conclusion

We have developed a new weight balanced data structure called g-BBST. This was developed
for the representation of a dictionary. In developing the insert/delete algorithms, we sought
to minimize the search cost of the resulting tree. Our experimental results show that BBSTs

generally have the best search cost of the structures considered. Furthermore, this translates

)

n | operation || BST AVL | RB-T | RB-B WB | BBST DSL TRP [SKIP
insert 332753 | 262193 | 262833 | 262726 | 263177 | 260896 | 276247 | 375693 | 224757
search || 322753 | 241557 | 242258 | 242262 | 242824 | 240126 | 348403 | 329411 | 255072
10,000 | ins/del || 650901 | 514371 | 515184 | 513920 | 515732 | 518124 | 923524 | 755629 | 519430
search || 318749 | 241536 | 247130 | 243191 | 242867 | 240126 | 335613 | 320612 | 256124
delete || 271004 | 206558 | 200218 | 206721 | 207622 | 207210 | 526242 | 300619 | 231745
insert || 1983939 | 1546988 | 1550701 | 1549795 | 1554520 | 1539666 | 1640660 | 2184066 | 1357076
search | 1933939 | 1443879 | 1447870 | 1446679 | 1452920 | 1435927 | 2043618 | 1921255 | 1537547
50,000 | ins/del | 3892221 | 3043090 | 3058045 | 3040654 | 3055092 | 3061443 | 5351715 | 4393520 | 2996512
search | 1913068 | 1443837 | 1476158 | 1451163 | 1452625 | 1435726 | 1969926 | 1909919 | 1501731
delete || 1674128 | 1267637 | 1242426 | 1268881 | 1275612 | 1270935 | 3077266 | 1815736 | 1373858
insert [4245062 | 3297162 | 3305332 | 3302792 | 3314410 | 3281959 | 3513401 | 4637264 | 2919371
search | 4145062 | 3090057 | 3098143 | 3096011 | 3111095 | 3074661 | 4387427 | 4161175 | 3188621
100,000 | ins/del || 8336846 | 6490752 | 6564352 | 6486464 | 6520729 | 6528606 | 11545200 | 9484761 | 6399463
search | 4102672 | 3089826 | 3176862 | 3105465 | 3110184 | 3074305 | 4270168 | 4224698 | 3225343
delete || 3623179 | 2738267 | 2692672 | 2740846 | 2756006 | 2744369 | 6561272 | 4008111 | 2981173
insert || 9045367 | 6999791 | 7016676 | 7012317 | 7040203 | 6969465 | 7483199 | 9834444 | 6178596
search | 8845367 | 6584279 | 6603044 | 6599643 | 6633218 | 6554714 | 9373163 | 8752856 | 6697223
200,000 | ins/del | 17782478 | 13790643 | 13940982 | 13789492 | 13862467 | 13867876 | 24207106 | 19825904 | 13377747
search | 8757433 | 6585758 | 6747566 | 6618833 | 6630334 | 6554354 | 8995685 | 8889053 | 6630642
delete || 7800524 | 5882302 | 5800203 | 5889983 | 5923552 | 5893982 | 13811271 | 8456931 | 6149268

Table 21: The number of key comparisons on random inputs (version 2 code)

56

n_ | operation | AVL RB-T | RB-B WB | BBST [DSL TRP [SKIP |
insert 267234 | 376228 | 442766 | 302034 | 261108 | 435199 | 216958 | 247129
search || 237262 | 239442 | 247706 | 237298 | 243110 | 372444 | 332060 | 256706
10,000 | ins/del || 493028 | 718040 | 727620 | 562808 | 558770 | 983676 | 482499 | 354566
search | 240910 | 238834 | 246330 | 238320 | 242736 | 349730 | 344982 | 250538
delete 178076 | 276136 | 208216 | 204930 | 239028 | 468244 | 183080 | 84392
insert || 1568930 | 2233658 | 2672450 | 1791440 | 1545934 | 2585557 | 1375770 | 1422120
search || 1418962 | 1421560 | 1459588 | 1420858 | 1455936 | 2159176 | 1990474 | 1467217
50,000 | ins/del | 2881762 | 4311748 | 4360200 | 3301668 | 3251450 | 6019215 | 2742877 | 1973416
search || 1419154 | 1444824 | 1444258 | 1424442 | 1452494 | 2131862 | 1956194 | 1449810
delete || 1064956 | 1719212 | 1273918 | 1226262 | 1427504 | 2785792 | 1131612 | 4864983
insert || 3337858 | 4767564 | 5744778 | 3824402 | 3301096 | 5521408 | 2898893 | 2925618
search | 3037892 | 3043084 | 3119128 | 3041676 | 3121098 | 4618272 | 4538718 | 2970715
100,000 | ins/del || 6113530 | 9223606 | 9320376 | 7027676 | 6930932 | 12788447 | 5492066 | 4406427
search | 3038276 | 3089612 | 3088470 | 3048844 | 3114012 | 4563600 | 4158994 | 3277089
delete || 2279908 | 3737982 | 2747792 | 2635270 | 3056908 | 5971196 | 2303622 | 961283
insert || 7075714 | 10135418 | 12289426 | 8131870 | 7006166 | 11743159 | 5756575 | 6403207
search | 6475750 | 6486128 | 6638204 | 6483310 | 6646168 | 9836456 | 9102954 | 6448304
200,000 | ins/del | 12927066 | 19647336 | 19340728 | 14904040 | 14671602 | 27076911 | 11290926 | 9062233
search | 6476518 | 6579184 | 6576890 | 6497646 | 6634260 | 9727066 | 8918638 | 6458321
delete || 4859812 | 8075474 | 5895538 | 5636096 | 6529928 | 12741948 | 4894044 | 1995215

Table 22: The number of key comparisons on ordered inputs (version 2 code)

57

n__] operation | BST [AVL [RB-T | RB-B | WB | BBST | DSL | TRP | SKIP |

insert 0.15] 0.14 | 0.20 0.18 | 0.25 0.36 0.23 | 0.25 | 0.31
search 0.10 | 0.08 | 0.10 0.11 | 0.09 0.11 0.13 | 0.16 | 0.21
10,000 ins/del 0.27 | 0.27 | 0.52 0.34 | 047 | 0.80 0.64 | 0.50 | 0.54
search 0.10 | 0.08 | 0.10 0.11 | 0.09 0.11 0.13 | 0.14 | 0.21
delete 0.10 | 0.10 | 0.20 0.14 | 0.18 0.32 0.29 | 0.14 | 0.19

insert 1.02 1 098 | 1.15 | 0.89 | 1.46 1.88 1.44 | 1.34 | 1.65
search 0.69 | 0.55 | 0.57 | 0.55 | 0.57 | 0.55 | 0.89 | 0.83 | 1.42
50,000 ins/del 1.79 | 1.80 | 2.99 1.59 | 2.93 | 3.97 | 3.82 | 244 | 3.16
search 0.71 1 0.60 | 0.63 | 0.55 | 0.57 | 0.56 | 0.87 | 0.79 | 1.32
delete 0.67 | 0.67 | 1.22 | 0.66 | 1.19 1.63 1.80 | 0.75 | 1.21

insert 2.15 | 2.00 | 2.58 1.90 | 3.18 | 4.01 3.11 | 295 | 3.69
search 1.52 | 1.21 | 1.24 1.18 | 1.23 1.23 1.97 | 1.84 | 3.04
100,000 | ins/del 3.88 | 3.92 | 6.74 | 3.46 | 6.28 8.73 8.50 | 5.39 | T7.18
search 1.55 | 1.32 | 1.45 1.25 | 1.29 1.27 1.95 | 1.82 | 2.98
delete 1.51 | 1.49 | 2.75 1.45 | 2.57 | 3.64 | 3.93 | 1.73 | 2.77

insert 5.04 | 445 | 5.79 | 4.28 | 6.92 | 9.20 7.05 | 6.81 | 8.01
search 3.43 | 263 | 2.70 | 2.64 | 2.73 | 2.69 | 4.43 | 4.00 | 6.60
200,000 | ins/del 8.92 | 887 | 15.36 | 7.88 | 13.85 | 19.53 | 19.55 | 12.17 | 16.11
search 3.43 | 298 | 3.13 | 2.73 | 2.83 | 2.77 | 4.37 | 4.02 | 6.70
delete 3.33 | 3.32 | 6.08 | 3.20 | 5.65 | 824 | 891 | 3.88 | 6.04

Time Unit : sec

Table 23: Run time on random real inputs (version 2 code)

38

Time is sum of time for parts (b) and (d) of the experiment

14 T T T
AN
12 MIX $— DR
BST -e--
10 - DSL -— i
SKIP /A -
TRP -X- - '
Time 8
(sec) !

vl | | L
50000 100000 150000 200000
n

Figure 17: Run time on random real inputs (version 2 code)

Time is sum of time for parts (b) and (d) of the experiment

8 T T T A
TF MIX &— PR
BBST -o—
6 DSL -—
SKIP /- -
TRP -X--
Time
(sec)

0) | | |
50000 100000 150000 200000
n

Figure 18: Run time on ordered real inputs (version 2 code)

39

n__ | operation | AVL | RB-T [RB-B| WB [BBST | DSL | TRP | SKIP |

insert 017 | 0.23 | 0.28 | 0.27 | 0.30 | 0.23 | 0.15 | 0.30
search 0.08 | 0.08 | 0.12 | 0.08 | 0.08 | 0.12 | 0.12 | 0.13
10,000 ins/del 0.23 | 043 | 0.40 | 0.47 | 0.60 | 0.48 | 0.17 | 0.27
search 0.08 | 0.08 | 0.07 | 0.08 | 0.08 | 0.08 | 0.10 | 0.13
delete 0.08 | 0.15 | 0.12 | 0.17 | 0.20 | 0.20 | 0.08 | 0.05

insert 0.83 | 1.45 1.43 | 1.57 1.37 1.35 | 0.82 | 1.18
search 0.45 | 0.48 0.48 | 0.47 0.38 0.60 | 0.50 | 0.83
50,000 ins/del 1.35 | 2.65 1.95 | 2.75 2.47 3.05 | 1.05 | 1.42
search 0.45 | 0.47 0.45 0.47 0.37 0.63 | 0.58 | 0.77
delete 0.45 | 1.05 0.50 | 1.00 1.03 1.17 | 0.43 | 0.33

insert 1.78 | 2.75 2.73 | 3.43 2.63 3.23 | 1.33 | 2.18
search 0.97 | 0.98 1.00 1.03 0.77 1.30 | 1.15 | 1.55
100,000 | ins/del 2.85 | 6.22 3.98 | 6.00 5.33 6.37 | 2.02 | 3.33
search 0.97 | 1.10 0.98 | 1.02 0.77 1.32 | 1.03 | 1.70
delete 0.97 | 2.18 1.05 | 2.15 2.22 2.43 | 0.63 | 0.67

insert 3.78 | 6.08 543 | T.18 5.37 | 6.07 | 2.87 | 5.23
search 2.08 | 2.13 213 | 217 1.63 3.10 | 2.27 | 3.47
200,000 | ins/del 6.13 | 13.93 | 8.48 | 13.42 | 11.33 | 13.60 | 4.10 | 7.02
search 2121 2.15 213 | 217 1.63 2.80 | 2.18 | 4.27
delete 2.03 | 4.75 227 | 497 | 4.72 5.18 | 1.35 | 1.35

Time Unit : sec

Table 24: Run time on ordered real inputs (version 2 code)

60

into reduced search time when the key comparison cost is relatively high (e.g., for real keys).
The insert and delete algorithms for 5-BBST's are not as efficient as those for other dictionary
structures (such as AVL trees). As a result, we recommend 3-BBSTs for environments where
searches are done with much greater frequency than inserts and/or deletes. Based on our
experiments, we conclude that AVL trees remain the best dictionary structure for general
applications.

We have also proposed two simplified versions of the BBST called SBBST and BBSTD.
The SBBST seeks only to provide logarithmic run time per operation and unlike the general
BBST, does not reduce search cost at every opportunity. The SBBST provides slightly
better balance than provided by WB(«) trees. The BBSTD does not attempt to maintain
B-balance. However it performs rotations to reduce search cost whenever possible. Both
versions are very competitive with BBSTs. The SBBST exhibited much better run time
performance than BBSTs on random data and the BBSTD slightly outperformed the BBST
on ordered data. However, BBSTs generated trees with the lowest search cost (though not

by much).

61

References

[ARAGS89] C. R. Aragon and R. G. Seidel, Randomized Search Trees, Proc. 30th Ann. [EEE

Symposium on Foundations of Computer Science, pp. 540-545, October 1989.

[BLUMS8O0] N. Blum and K. Mehlhorn, On the Average Number of Rebalancing Operations

in Weight-balanced Trees, Theoretical Computer Science, vol 11, pp.303-320, 1980.

[GUIBT78] L. J. Guibas and R. Sedgewick, A Dichromatic Framework for Balanced Trees,
Proc. 19th FOCS, pp. 8-21, 1978.

[HOROY4] E. Horowitz and S. Sahni, Fundatamentals of Data Structures in Pascal, 4th

Edition, New York: W. H. Freeman and Company, 1994.

[MUNR92] J. I. Munro, T. Papadakis and R. Sedgewick, Deterministic Skip Lists, 3rd An-
nual ACM-STAM Symposium on Discrete Algorithms, pp. 367-375, January 1992.

[INIEVT73] J. Nievergelt and E. M. Reingold, Binary Search Trees of Bounded Balance, STAM
J. Computing, Vol. 2, No. 2, pp. 33-43, March 1973.

[PAPA93] T. Papadakis, Skip Lists and Probabilistic Analysis of Algorithms, PhD Disser-

tation, Univ. of Waterloo, 1993.

[PUGH90] W. Pugh, Skip Lists: a Probabilistic Alternative to Balanced Trees, Communi-
cations of the ACM, vol. 33, no. 6, pp.668-676, 1990.

[SAHNO93] S. Sahni, Software Development in Pascal, Florida: NSPAN Printing and Pub-

lishing Co., 1993.
[SEDGY94] R. Sedgewick, Algorithms in C+4, Mass.: Addison-Wesley Pub. Co., 1994.

[TARJ83] R. E. Tarjan, Updating a Balanced Search Tree in O(1) Rotations, Information
Processing Letters, Vol. 16, pp. 253-257, June 1983.

62

