A New Weight Balanced Binary Search Tree ${ }^{1}$

Seonghun Cho and Sartaj Sahni
Department of Computer and Information Science and Engineering
University of Florida
Gainesville, FL 32611, U.S.A.

Technical Report 96-001

Abstract

We develop a new class of weight balanced binary search trees called β-balanced binary search trees (β-BBSTs). β-BBSTs are designed to have reduced internal path length. As a result, they are expected to exhibit good search time characteristics. Individual search, insert, and delete operations in an n node β-BBST take $\mathrm{O}(\log n)$ time for $0<\beta \leq \sqrt{2}-1$. Experimental results comparing the performance of β-BBSTs, $\mathrm{WB}(\alpha)$ trees, AVL-trees, red/black trees, treaps, deterministic skip lists and skip lists are presented. Two simplified versions of β-BBSTs are also developed.

Keywords and Phrases. data structures, weight balanced binary search trees

1 Introduction

A dictionary is a set of elements on which the operations of search, insert, and delete are performed. Many data structures have been proposed for the efficient representation of a dictionary [HORO94]. These include direct addressing schemes such as hash tables and comparison schemes such as binary search trees, AVL-trees, red/black trees [GUIB78], trees of bounded balance [NIEV73], treaps [ARAG89], deterministic skip lists [MUNR92], and skip lists [PUGH90]. Of these schemes, AVL-trees, red/black trees, and trees of bounded balance $(\mathrm{WB}(\alpha))$ are balanced binary search trees. When representing a dictionary with n elements, using one of these schemes, the corresponding binary search tree has height $\mathrm{O}(\log n)$ and individual search, insert, and delete operations take $O(\log n)$ time. When (unbalanced)

[^0]binary search trees, treaps, or skip lists are used, each operation has an expected complexity of $\mathrm{O}(\log n)$ but the worst case complexity is $\mathrm{O}(n)$. When hash tables are used, the expected complexity is $\mathrm{O}(1)$ per operation. However, the worst case complexity is $\mathrm{O}(n)$. So, in applications where a worst case complexity guarantee is critical, one of the balanced binary search tree schemes is to be performed.

In this paper, we develop a new balanced binary search tree called β-BBST (β-balanced binary search tree). Like $\mathrm{WB}(\alpha)$ trees, this achieves balancing by controlling the relative number of nodes in each subtree. However, unlike $\operatorname{WB}(\alpha)$ trees, during insert and delete operations, rotations are performed along the search path whenever they reduce the internal path length of the tree (rather than only when a subtree is out of balance). As a result, the constructed trees are expected to have a smaller internal path length than the corresponding $\mathrm{WB}(\alpha)$ tree. Since the average search time is closely related to the internal path length, the time need to search in a β-BBST is expected to be less than that in a $\mathrm{WB}(\alpha)$ tree.

In Section 2, we define the total search cost of a binary search tree and show that the rebalancing rotations performed in AVL and red/black trees might increase this metric. We also show that while similar rotations in $\mathrm{WB}(\alpha)$ trees do not increase this metric, insert and delete operations in $\mathrm{WB}(\alpha)$ trees do not avail of all opportunities to reduce the metric. In Section 3, we define β-BBSTs and show their relationship to $\mathrm{WB}(\alpha)$ trees. Search, insert, and delete algorithms for β-BBSTs are developed in Section 4. A simplified version of β BBSTs is developed in Section 5. Search, insert and delete operations for this version also take $\mathrm{O}(\log n)$ time each. An even simpler version of β-BBSTs is developed in Section 6 . For this version, we show that the average cost of an insert and search operation is $\mathrm{O}(\log n)$ provided no deletes are performed.

An experimental evaluation of β-BBSTs and competing schemes for dictionaries (AVL, red/black, skip lists, etc.) was done and the results of this are presented in Section 7. This section also compares the relative performance of β-BBSTs and the two simplified versions of Sections 5 and 6.

2 Balanced Trees and Rotations

Following an insert or delete operation in a balanced binary search tree (e.g., AVL, red/black, $\mathrm{WB}(\alpha)$, etc.), it may be necessary to perform rotations to restore balance. The rotations are classified as LL, RR, LR, and RL [HORO94]. LL and RR rotations as well as LR and RL rotations are symmetric. While the conditions under which the rotations are performed vary with the class of balanced tree considered, the node movement patterns are the same. Figure 1 shows the transformation performed by an LL and an LR rotation. In this figure, nodes whose subtrees have changed as a result of the rotation are designated by a prime. So, p^{\prime} is the original node p however its subtrees are different.

Let $h(x)$ be the height of the subtree with root x. Let $s(x)$ be the number of nodes in this subtree. When searching for an element x, x is compared with one element at each of $l(x)$ levels, where $l(x)$ is the level at which x is present (the root is at level 1). So, one measure of the "goodness" of the binary search tree, T, for search operations (assuming each element is searched for with equal probability) is its total search cost defined as:

$$
C(T)=\sum_{x \in T} l(x) .
$$

Notice that $C(T)=I(T)+n$ where $I(T)$ is the internal path length of T and n is the number of elements/nodes in T. The cost of unsuccessful searches is equal to the external path length $E(T)$. Since $E(T)=I(T)+2 n$, minimizing $C(T)$ also minimizes $E(T)$.

Total search cost is important as this is the dominant operation in a dictionary (note that insert can be modeled as an unsuccessful search followed by the insertion of a node at the point where the search terminated and deletion can be modeled by a successful search followed by a physical deletion; both operations are then followed by a rebalancing/restructuring step).

Observe that in an actual implementation of the search operation in programming languages such as $\mathrm{C}++, \mathrm{C}$, and Pascal, the search for an x at level $l(x)$ will involve upto two comparisons at levels $1,2, \ldots, l(x)$. If the code first checks $x=e_{i}$ where e_{i} is the element

(a) LL rotation

\qquad
(b) LR rotation

Figure 1: LL and RL rotations
at level i to be compared and then $x<e_{i}$ to decide whether to move to the left or right subtree, then the number of element comparisons is exactly $2 l(x)-1$. In this case, the total number of element comparisons is

$$
N C(T)=2 \sum_{x \in T} l(x)-n=2 C(T)-n
$$

and minimizing $C(T)$ also minimizes $N C(T)$. If the code first checks $x<e_{i}$ and then $x=e_{i}$ (or $>e_{i}$), the number of element comparisons done to find x is $l(x)+r(x)+1$ where $r(x)$ is the number of right branches on the path from the root to x. The total number of comparisons
is bounded by $2 C(T)$. For simplicity, we use $C(T)$ to motivate our data structure.
In an AVL tree, when an LL rotation is performed, $h(q)=h(c)+1=h(d)+1$ (see Figure 1(a)). At this time, the balance factor at $g p$ is $h(p)-h(d)=2$. The rotation restores height balance which is necessary to guarantee $\mathrm{O}(\log n)$ search, insert, delete operations in an n node AVL tree. The rotation may, however, increase the total search cost. To see this, notice that an LL rotation affects the level numbers of only those nodes that are in the subtree with root $g p$ prior to the rotation. We see that $l\left(q^{\prime}\right)=l(q)-1, l\left(p^{\prime}\right)=l(p)-1, l\left(g p^{\prime}\right)=$ $l(g p)+1$, the total search cost of the subtree with root a is decreased by $s(a)$ as a result of the rotation, etc. Hence, the increase in $C(T)$ due to the rotation is:

$$
\begin{gathered}
l\left(p^{\prime}\right)-l(p)+l\left(q^{\prime}\right)-l(q)+l\left(g p^{\prime}\right)-l(g p)-s(a)-s(b)+s(d) \\
=-1-1+1-s(q)+1+s(d)=s(d)-s(q)
\end{gathered}
$$

A similar analysis shows that an LR rotation increases $C(T)$ by $s(d)-s(q)$.
If the LL rotation was triggered by an insertion, $s(q)$ is at least one more than the minimum number of nodes in an AVL tree of height $t=h(q)-1$. So, $s(q) \geq \phi^{t+2} / \sqrt{5}$ where $\phi=(1+\sqrt{5}) / 2$. The maximum value for $s(d)$ is $2^{t}-1$. So, an LL rotation has the potential of increasing total search cost by as much as

$$
2^{t}-1-\phi^{t+2} / \sqrt{5} \approx 2^{t}-1-1.62^{t+2} / 2.24
$$

This is negative for $t \leq 2$ and positive for $t>2$. When $t=10$, for example, an LL rotation may increase total search cost by as much as 877 . As t gets larger, the potential increase in search cost gets much greater. This analysis is easily extended to the remaining rotations and also to red/black trees.

Definition (WB (α) [NIEV73]) The balance, $B(p)$, of a node p in a binary tree is the ratio $(s(l)+1) /(s(p)+1)$ where l is the left child of p. For $\alpha \in[0,1 / 2]$, a binary tree T is in $\mathrm{WB}(\alpha)$ iff $\alpha \leq B(p) \leq 1-\alpha$ for every node p in T. By definition, the empty tree is in $\mathrm{WB}(\alpha)$ for all α.

Lemma 1 (1) The maximum height, hmax(n), of an n node tree in $W B(\alpha)$ is $\sim \log _{\frac{1}{1-\alpha}}(n+$ 1) [NIEV73]
(2) Inserts and deletes can be performed in an n node tree in $W B(\alpha)$ in $O(\log n)$ time for $2 / 11<\alpha \leq 1-\sqrt{2} / 2$ [BLUM80].
(3) Each search operation in an n node tree in $W B(\alpha)$ takes $O(\log n)$ time [NIEV73].

In the case of weight balanced trees $\mathrm{WB}(\alpha)$, an LL rotation is performed when $B(g p) \approx$ $1-\alpha$ and $B(p) \geq \alpha /(1-\alpha)$ (see Figure 1(a)) [NIEV73]. So,

$$
1-\alpha \approx \frac{s(p)+1}{s(g p)+1}=\frac{s(p)+1}{s(p)+s(d)+2}
$$

or

$$
s(d) \approx s(p) \frac{\alpha}{1-\alpha}+\frac{2 \alpha-1}{1-\alpha}
$$

and

$$
\frac{\alpha}{1-\alpha} \leq B(p)=\frac{s(q)+1}{s(p)+1}
$$

or

$$
s(q) \geq s(p) \frac{\alpha}{1-\alpha}+\frac{2 \alpha-1}{1-\alpha}
$$

So, LL rotations (and also RR) do not increase the search cost. For LR rotations [NIEV73], $B(g p) \approx 1-\alpha$ and $B(p)<\alpha /(1-\alpha)$. So, $s(d) \approx s(p) \frac{\alpha}{1-\alpha}+\frac{2 \alpha-1}{1-\alpha}$ and with respect to Figure 1(b),

$$
\frac{\alpha}{1-\alpha}>B(p)=\frac{s(p)-s(q)}{s(p)+1}
$$

or

$$
s(q)>s(p) \frac{1-2 \alpha}{1-\alpha}-\frac{\alpha}{1-\alpha} .
$$

For $\alpha \leq 1 / 3, s(q) \geq s(d)$ and LR (RL) rotations do not increase search cost. Thus, in the case of $\mathrm{WB}(\alpha)$ trees, the rebalancing rotations do not increase search cost. This statement remains true if the conditions for LL and LR rotation are changed to those in [BLUM80].

While rotations do not increase the search cost of $\mathrm{WB}(\alpha)$ trees, these trees miss performing some rotations that would reduce search cost. For example, it is possible to have
$\alpha<B(g p)<1-\alpha, B(p) \geq \frac{\alpha}{1-\alpha}$, and $s(q)>s(d)$. Since $B(g p)$ isn't high enough, an LL rotation isn't performed. Yet, performing such a rotation would reduce search cost.

3β-BBSTs

Definition A cost optimized search tree (COST) is a binary search tree whose search cost cannot be reduced by performing a single LL, RR, LR, or RL rotation.

Theorem 1 If T is a COST with n nodes, its height is at most $\log _{\phi}(\sqrt{5}(n+1))-2$.

Proof Let N_{h} be the minimum number of nodes in a COST of height h. Clearly, $N_{0}=0$ and $N_{1}=1$. Consider a COST Q of height $h \geq 2$ having the minimum number of nodes N_{h}. Q has one subtree R whose height is $h-1$ and another, S, whose height is $\leq h-1$. R must be a minimal COST of height $h-1$ and so has N_{h-1} nodes. R, in return, must have one subtree, U, of height $h-2$ and another, V, of height $\leq h-2$. Both U and V are COSTs as R is a COST. Since R is a minimal COST, U is a minimal COST of height $h-2$ and so has N_{h-2} nodes. Since Q is a COST, $|S| \geq \max \{|U|,|V|\}$. We may assume that N_{h} is a nondecreasing function of h. So, $|S| \geq N_{h-2}$. Since Q is a minimal COST of height h, $|S|=N_{h-2}$. So,

$$
\begin{gathered}
N_{h}=N_{h-1}+N_{h-2}+1, h \geq 2 \\
N_{0}=0, N_{1}=1 .
\end{gathered}
$$

This recurrence is the same as that for the minimum number of nodes in an AVL tree of height h. So, $N_{h}=F_{h+2}-1$ where F_{i} is the i 'th Fibbonacci number. Consequently, $N_{h} \approx \phi^{h+2} / \sqrt{5}-1$ and $h \leq \log _{\phi}(\sqrt{5}(n+1))-2$.

Corollary 1 The maximum height of a COST with n nodes is the same as that of an AVL tree with this many nodes.

Definition Let a and b be the root of two binary trees. a and b are β-balanced, $0 \leq \beta \leq 1$, with respect to one another, denoted β - (a, b), iff
(a) $\beta(s(a)-1) \leq s(b)$
(b) $\beta(s(b)-1) \leq s(a)$

A binary tree T is β-balanced iff the children of every node in T are β-balanced.

A full binary tree is 1-balanced and a binary tree whose height equals its size (i.e., number of nodes) is 0 -balanced.

Lemma 2 If the binary tree T is β-balanced, then it is γ-balanced for $0 \leq \gamma \leq \beta$.

Proof Follows from the definition of balance.

Lemma 3 If the binary tree T is β-balanced, $0 \leq \beta \leq 1 / 2$, then it is in $W B(\alpha)$ for $\alpha=$ $\beta /(1+\beta)$.

Proof Consider any node p in T. Let l and r be node p 's left and right children.

$$
B(p)=\frac{s(l)+1}{s(l)+s(r)+2}=\frac{1}{1+\frac{s(r)+1}{s(l)+1}} .
$$

Since T is β-balanced, $s(l)-1 \leq s(r) / \beta$ or $s(l)+1 \leq s(r) / \beta+2$. So,

$$
\frac{s(l)+1}{s(r)+1} \leq 1 / \beta+\frac{2 \beta-1}{\beta(s(r)+1)} \leq 1 / \beta
$$

or

$$
\frac{s(r)+1}{s(l)+1} \geq \beta
$$

So, $B(p) \leq 1 /(1+\beta)$. Further, $s(r)-1 \leq s(l) / \beta$. So,

$$
\frac{s(r)+1}{s(l)+1} \leq 1 / \beta .
$$

Figure 2: A tree in $\mathrm{WB}(1 / 4)$ that is not $\frac{1}{3}$-balanced

And, $B(p) \geq 1 /(1+1 / \beta)=\beta /(1+\beta)$. Hence $\beta /(1+\beta) \leq B(p) \leq 1 /(1+\beta)$ for every p in T. So, T is in $\mathrm{WB}(\alpha)$ for $\alpha=\beta /(1+\beta)$.

Remark While every β-balanced tree, $0 \leq \beta \leq 1 / 2$, is in $\operatorname{WB}(\alpha)$ for $\alpha=\beta /(1+\beta)$, there are trees in $\mathrm{WB}(\alpha)$ that are not β-balanced. Figure 2 shows an example of a tree in $\mathrm{WB}(1 / 4)$ that is not $\frac{1}{3}$-balanced.

Lemma 4 If T is a COST then T is $\frac{1}{2}$-balanced.

Proof If T is a COST, then every subtree of T is a COST. Consider any subtree with root p, left child l, and right child r. If neither l nor r exist, then $s(l)=s(r)=0$ and p is $\frac{1}{2}$-balanced. If $s(l)=0$ and $s(r)>1$, then r has a nonempty subtree with root t and $s(t)>s(l)$. So p is not a COST. Hence, $s(r) \leq 1$ and p is $\frac{1}{2}$-balanced. The same is true when $s(r)=0$. So, assume $s(l)>0$ and $s(r)>0$.

If $s(l)=1$, then $s(r) \leq 3$ as otherwise, one of the subtrees of r has $m \geq 2$ nodes and $m>s(l)$ implies p is not a COST. Since $s(r) \leq 3, \frac{1}{2}(s(r)-1) \leq s(l)$ and $\frac{1}{2}(s(l)-1) \leq s(r)$. So, p is $\frac{1}{2}$-balanced. The same proof applies when $s(r)=1$. When $s(l)>1$ and $s(r)>1$, let a and b be the roots of the left and right subtrees of l. Since p is a COST, $s(a) \leq s(r)$ and $s(b) \leq s(r)$. So, $s(l)=s(a)+s(b)+1 \leq 2 s(r)+1$ and $\frac{1}{2}(s(l)-1) \leq s(r)$. Similarly, $\frac{1}{2}(s(r)-1) \leq s(l)$. So, $\frac{1}{2}-(l, r)$. Since this proof applies to every nodes in T, the children of every p are $\frac{1}{2}$-balanced and T is $\frac{1}{2}$-balanced.

Figure 3: $\frac{1}{2}$-balanced tree that is not a COST

Remark There are $\frac{1}{2}$-balanced trees that are not COSTs (see Figure 3).

While a COST is in $\mathrm{WB}(1 / 3)$ and $\mathrm{WB}(\alpha)$ trees can be maintained efficiently only for $2 / 11<\alpha \leq 1-1 / \sqrt{2} \approx 0.293$, a COST is better balanced than $\operatorname{WB}(\alpha)$ trees with α in the usable range. Unfortunately, we are unable to develop $\mathrm{O}(\log n)$ insert/delete algorithms for a Cost.

In the next section, we develop insert and delete algorithms for β-balanced binary search trees $(\beta$-BBST $)$ for $0<\beta \leq \sqrt{2}-1$. Note that every $(\sqrt{2}-1)$-BBST is in $\mathrm{WB}(\alpha)$ for $\alpha=1-1 / \sqrt{2}$ which is the largest permissible α. Since our insert and delete algorithms perform rotations along the search path whenever these result in improved search cost, BBSTs are expected to have better search performance than $\mathrm{WB}(\alpha)$ trees (for $\alpha=\beta /(1+\beta)$).

Each node of a β-BBST has the fields LeftChild, Size, Data, and RightChild. Since every β - $\operatorname{BBST}, \beta>0$, is in $\mathrm{WB}(\alpha)$, for $\alpha>0, \beta$-BBSTs have height that is logarithmic in n, the number of nodes (provided $\beta>0$).

4 Search, Insert, and Delete in a β-BBST

To reduce notational clutter, in the rest of the paper, we abbreviate $s(a)$ by a (i.e., the node name denotes subtree size).

4.1 Search

This is done exactly as in any binary search tree. Its complexity is $O(h)$ where h is the height of the tree. Notice that since each node has a size field, it is easy to perform a search

Figure 4: LL rotation for insertion
based on index (i.e., find the 10^{\prime} th smallest key). Similarly, our insert and delete algorithms can be adapted to indexed insert and delete.

4.2 Insertion

To insert a new element x into a β-BBST, we first search for x in the β-BBST. This search is unsuccessful (as x is not in the tree) and terminates by falling off the tree. A new node y containing x is inserted at the point where the search falls off the tree. Let p^{\prime} be the parent (if any) of the newly inserted node. We now retrace the path from p^{\prime} to the root performing rebalancing rotations.

There are four kinds of rotations LL, LR, RL, and RR. LL and RR rotations are symmetric and so also are LR and RL rotations. The typical configuration before an LL rotation is performed is given in Figure $4(\mathrm{a}) . p^{\prime}$ denotes the root of a subtree in which the insertion was made. Let p be the (size of the) subtree before the insertion. Then, since the tree was a β-BBST prior to the insertion, $\beta-(p, d)$. Also, for the LL rotation to be performed, we require that $(q \geq c)$ and $(q>d)$. Note that $q>d$ implies $q \geq 1$. We shall see that $\beta-(q, c)$ follows from the fact that the insertion is made into a β-BBST and from properties of the rotation. Following an LL rotation, p^{\prime} is updated to be the node $p^{\prime \prime}$.

Lemma 5 [LL insertion lemma] If [$\beta-(p, d) \wedge \beta-(q, c) \wedge(q \geq c) \wedge(q>d)$] for $0 \leq \beta \leq 1 / 2$

Figure 5: Substep (i) of insertion LR rotation
before the rotation, then $\beta-\left(q, g p^{\prime}\right)$ and $\beta-(c, d)$ after the rotation.

Proof Assume the before condition.
(a) $\beta(q-1) \leq c($ as $\beta-(q, c))<g p^{\prime}$. Also, $\beta\left(g p^{\prime}-1\right)=\beta(c+d) \leq 2 \beta q$ (as $\beta \geq 0, q \geq c$ and $q>d) \leq q($ as $\beta \leq 1 / 2)$. So, $\beta-\left(q, g p^{\prime}\right)$.
(b) $d<q \Rightarrow d-1<q-1 \Rightarrow \beta(d-1) \leq \beta(q-1) \leq c($ as $\beta-(q, c))$. Also, $\beta(c-1) \leq$ $\beta(q+c-1)=\beta\left(p^{\prime}-2\right)=\beta(p-1) \leq d($ as $\beta-(p, d))$. So, $\beta-(c, d)$.

In an LR rotation, the before configuration is as in Figure 4(a). However, this time $q<c$. Figure 4(a) is redrawn in Figure 5(a). In this, the node labeled c in Figure 4(a) has been labeled q and that labeled q in Figure 4(a) has been labeled a. With respect to the labelings of Figure 5(a), rotation LR is applied when

$$
[(q>a) \wedge(q>d)]
$$

The other conditions that apply when an LR rotation is performed are

$$
[\beta-(p, d) \wedge \beta-(a, q) \wedge \beta-(b, c)] .
$$

Here p denotes the (size of the) left subtree of $g p$ prior to the insertion. An LR rotation is
accomplished in two substeps (or two subrotations). The first of these is shown in Figure 5(b). Following an LR rotation, p^{\prime} is updated to be node q^{\prime}.

Lemma 6 [LR substep (i) insertion lemma] If $[\beta-(p, d) \wedge \beta-(a, q) \wedge \beta-(b, c) \wedge(q>a) \wedge(q>d)]$ for $0 \leq \beta \leq 1 / 2$ before the subrotation, then $\left[\beta-\left(p^{\prime \prime}, g p^{\prime}\right) \wedge\left\{\left(\beta-(a, b) \wedge \frac{\beta}{1+\beta}-(c, d)\right) \vee\left(\frac{\beta}{1+\beta}-\right.\right.\right.$ $(a, b) \wedge \beta-(c, d))\}]$ after the subrotation.

Proof Assume the before condition. First, we show that $\beta-\left(p^{\prime \prime}, g p^{\prime}\right)$ after the rotation. Note that $\beta\left(p^{\prime \prime}-1\right)=\beta(a+b)=\beta(a+b+c+1)-\beta(c+1)=\beta\left(p^{\prime}-1\right)-\beta(c+1)=$ $\beta(p-1)-\beta c \leq d-\beta c \leq d<g p^{\prime}$. Also, $\beta\left(g p^{\prime}-1\right)=\beta(c+d) \leq b+\beta+\beta d($ as $\beta-(b, c))$ $\leq b+\beta q($ as $q>d) \leq b+a+\beta($ as $\beta-(a, q))<p^{\prime \prime}\left(\right.$ as $\beta \leq 1 / 2$ and $\left.p^{\prime \prime}=a+b+1\right)$. So, $\beta-\left(p^{\prime \prime}, g p^{\prime}\right)$.

Next, we prove two properties that will be used to complete the proof.
P1: $\beta(b-1) \leq a$.
To see this, note that $\beta(b-1) \leq \beta(q-1) \leq a($ as $\beta-(a, q))$.
P2: $\beta(c-1) \leq d$.
For this, observe that $p^{\prime}-1=a+q \geq \beta(q-1)+q($ as $\beta-(a, q))=(\beta+1)(q-1)+1$. So, $q-1 \leq \frac{p^{\prime}-2}{\beta+1}=\frac{p-1}{\beta+1}$. Similarly, $q-1=b+c \geq \beta(c-1)+c($ as $\beta-(b, c))=(\beta+1)(c-1)+1$. So, $\beta(c-1) \leq \frac{\beta}{\beta+1}(q-2) \leq \frac{\beta}{\beta+1}(q-1) \leq \frac{\beta(p-1)}{(\beta+1)^{2}} \leq \frac{d}{(\beta+1)^{2}}($ as $\beta-(p, d)) \leq d$.

To complete the proof of the lemma, we need to show

$$
\left\{\left(\beta-(a, b) \wedge \frac{\beta}{1+\beta}-(c, d)\right) \vee\left(\frac{\beta}{1+\beta}-(a, b) \wedge \beta-(c, d)\right)\right\} .
$$

We do this by considering the two cases $b \geq c$ and $b<c$.
Case $b \geq c$: Since $a<q=b+c+1, \beta(a-1) \leq \beta(b+c) \leq 2 \beta b \leq b$. This and P1 imply $\beta-(a, b)$. Also, $d<q=b+c+1$. So, $\frac{\beta}{\beta+1}(d-1) \leq \frac{\beta}{\beta+1}(b+c-1)=\frac{\beta}{\beta+1} c+\frac{\beta}{\beta+1}(b-1) \leq \frac{\beta}{\beta+1} c+\frac{c}{\beta+1}$ $($ as $\beta-(b, c))=c$. This, together with P2 implies $\frac{\beta}{1+\beta}-(c, d)$. So, $\beta-(a, b) \wedge \frac{\beta}{1+\beta}-(c, d)$.

Case $b<c:$ Since $a<q=b+c+1, a-1<b+c$. So, $a-1 \leq b+c-1$ or $\frac{\beta(a-1)}{1+\beta} \leq \frac{\beta b}{1+\beta}+\frac{\beta(c-1)}{1+\beta} \leq \frac{\beta b}{1+\beta}+\frac{b}{1+\beta}($ as $\beta-(b, c))=b$. This and P1 imply $\frac{\beta}{1+\beta}-(a, b)$. Also, $d-1 \leq q-2=b+c-1$. So, $\beta(d-1) \leq \beta(b+c-1) \leq \beta(2 c-1) \leq c$. This, together with

Figure 6: Case LL for LR(ii) rotation

P2 implies $\beta-(c, d)$. So, $\frac{\beta}{1+\beta}-(a, b) \wedge \beta-(c, d)$.

Since an LR(i) rotation can cause the tree to lose its β-balance property, it is necessary to follow this with another rotation that restores the β-balance property. It suffices to consider the two cases of Figures 6 and 7 for this follow up rotation. The remaining cases are symmetric to these. In Figures 6 and $7, p$ and d denote the nodes that do not satisfy $\beta-(p, d)$. Note, however, that these nodes do satisfy $\frac{\beta}{1+\beta}-(p, d)$.

Since the follow up rotation to LR(i) is done only when

$$
\frac{\beta}{1+\beta}-(p, d) \wedge(\neg \beta-(p, d)),
$$

either $\beta(p-1)>d$ or $\beta(d-1)>p$. When $\beta(p-1)>d$, the second substep rotation is one of the two given in Figures 6 and 7 . When $\beta(d-1)>p$, rotations symmetric to these are performed. In the following, we assume $\beta(p-1)>d$. Further, we may assume $d>0$, as $d=0$ and $\frac{\beta}{1+\beta}-(p, d)$ imply $p \leq 1$. Hence, $\beta-(p, d)$. Also, $d>0$ and $\beta(p-1)>d$ imply $p>1$.

The LR(ii) LL rotation is done when the condition

$$
\begin{gathered}
A=(q>d) \wedge(c<(1+\beta) q+(1-\beta)) \wedge B \text { where } \\
B=\frac{\beta}{1+\beta}-(p, d) \wedge(\neg \beta-(p, d)) \wedge \beta-(q, c) \wedge(\beta(p-1)>d>0) .
\end{gathered}
$$

Lemma 7 [Case LR(ii) LL rotation] If A holds before the rotation of Figure 6, then β $\left(q, g p^{\prime}\right)$ and $\beta-(c, d)$ after the rotation provided $0<\beta \leq \sqrt{2}-1$.

Proof (a) $\beta-\left(q, g p^{\prime}\right)$:
$\beta(q-1) \leq c($ as $\beta-(q, c))<g p^{\prime}$. Also, $\beta\left(g p^{\prime}-1\right)=\beta(c+d)<\beta((1+\beta) q+(1-\beta)+d) \leq$ $\beta(1+\beta) q+\beta(1-\beta)+\beta(q-1)($ as $q>d)=\beta(2+\beta) q-\beta^{2}<q($ as $\beta(2+\beta) \leq 1$ for $0<\beta \leq \sqrt{2}-1)$. So, $\beta-\left(q, g p^{\prime}\right)$.
(b) $\beta-(c, d)$:
$\beta(d-1)<\beta(q-1) \leq c(\operatorname{as} \beta-(q, c))$. And, $\beta(c-1)=\frac{\beta^{2}}{1+\beta}(c-1)+\frac{\beta}{1+\beta}(c-1) \leq$ $\frac{\beta}{1+\beta} q+\frac{\beta}{1+\beta}(c-1)=\frac{\beta}{1+\beta}(q+c-1)=\frac{\beta}{1+\beta}(p-2)<\frac{\beta}{1+\beta}(p-1) \leq d\left(\operatorname{as} \frac{\beta}{1+\beta}-(p, d)\right)$. So, $\beta-(c, d)$.

Lemma 8 If $(c<(1+\beta) q+(1-\beta)) \wedge(\beta(p-1)>d)$ in Figure 6 , then $d \leq q$ provided $0<\beta \leq \sqrt{2}-1$.

Proof Since $d<\beta(p-1)=\beta(q+c)<\beta(q+(1+\beta) q+1-\beta)=\beta(\beta+2) q+\beta(1-\beta)<q+1$ (as $\beta(\beta+2) \leq 1$ and $\beta(1-\beta)<1$ for $0<\beta \leq \sqrt{2}-1$). So, $d \leq q$.

So, the only time an LR (ii) LL rotation is not done is when $C=\left(C_{1} \vee C_{2}\right) \wedge B$ holds where

$$
\begin{gathered}
C_{1}=(q=d) \wedge(c<(1+\beta) q+1-\beta) \\
C_{2}=c \geq(1+\beta) q+(1-\beta) .
\end{gathered}
$$

At this time, the LR rotation of Figure 7 is done. In terms of the notation of Figure 7, the condition C becomes $D=\left(D_{1} \vee D_{2}\right) \wedge E$ where

$$
\begin{gathered}
D_{1}=(a=d) \wedge(q<(1+\beta) a+1-\beta) \\
D_{2}=q \geq(1+\beta) a+1-\beta \\
E=\frac{\beta}{1+\beta}-(p, d) \wedge-\beta-(p, d) \wedge \beta-(a, q) \wedge \beta-(b, c) \wedge(\beta(p-1)>d>0)
\end{gathered}
$$

Figure 7: Case LR for LR(ii) rotation

Lemma 9 When an LR(ii) LR rotation is performed and $\beta \leq \sqrt{2}-1, q>d$ and so search cost is reduced.

Proof If D_{1}, then since $d<\beta(p-1)=\beta(a+q)=\beta(d+q), q>d / \beta-d>d$ as $\beta \leq \sqrt{2}-1$. If D_{2}, then $d<\beta(p-1)=\beta(a+q) \leq \beta\left(\frac{q-1+\beta}{1+\beta}+q\right)=\frac{\beta(2+\beta)}{1+\beta} q-\frac{\beta(1-\beta)}{1+\beta}<\frac{\beta(2+\beta)}{1+\beta} q \leq q$ (as $\beta \leq \sqrt{2}-1)$.

Lemma 10 When $(d=a) \wedge \beta-(b, c) \wedge(\beta(p-1)>d) \wedge(\beta \leq \sqrt{2}-1)$ (see Figure 7), $\beta(a-1) \leq b$ and $\beta(d-1) \leq c$.

Proof Since $\beta(p-1)>d$ and $d=a, \beta(p-1)>a$ or $\beta(a+q)>a$ or $a(1-\beta)<\beta q$ or $a<\frac{\beta}{1-\beta} q$. So, $\beta(a-1)<\frac{\beta^{2}}{1-\beta} q-\beta=\frac{\beta^{2}}{1-\beta}(b+c+1)-\beta$.
If $c \leq \frac{b}{\beta}+\beta$, then

$$
\begin{aligned}
\beta(a-1) & <\frac{\beta^{2}}{1-\beta}\left(b+\frac{b}{\beta}+\beta+1\right)-\beta \\
& =\frac{\beta(\beta+1) b}{1-\beta}+\frac{\beta^{2}(\beta+1)}{1-\beta}-\beta \\
& =\frac{\beta(\beta+1) b}{1-\beta}+\frac{\beta\left(\beta^{2}+\beta-1+\beta\right)}{1-\beta}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\beta(\beta+1) b}{1-\beta}+\frac{\beta\left(\beta^{2}+2 \beta-1\right)}{1-\beta} \\
& \leq b\left(\text { as } \beta(\beta+1) \leq 1-\beta \text { for } \beta \leq \sqrt{2}-1 \text { and } \beta^{2}+2 \beta-1 \leq 0 \text { for } \beta \leq \sqrt{2}-1\right)
\end{aligned}
$$

Since $\beta(c-1) \leq b, c \leq \frac{b}{\beta}+1$. So,

$$
\beta(a-1)<\frac{\beta^{2}}{1-\beta}(b+c+1) \leq \frac{\beta^{2}}{1-\beta}\left(b+\frac{b}{\beta}+2\right) \leq \frac{\beta(\beta+1) b}{1-\beta}+\frac{3 \beta^{2}-\beta}{1-\beta} .
$$

So,

$$
a-1<\frac{\beta+1}{1-\beta} b+\frac{3 \beta-1}{1-\beta} .
$$

However, since $\beta^{2}+2 \beta-1 \leq 0$ for $\beta \leq \sqrt{2}-1,(1+\beta) /(1-\beta) \leq \frac{1}{\beta}$ and $(3 \beta-1) /(1-\beta) \leq \beta$. So, $a-1<b / \beta+\beta$. If $a \geq c+1$, then $c \leq a-1<b / \beta+\beta$. We have already shown that for $c \leq b / \beta+\beta, \beta(a-1) \leq b$. So, assume $a<c+1$. Now, $a \leq c$ and $\beta(a-1) \leq \beta(c-1) \leq b$ (as $\beta-(b, c))$. So, $\beta(a-1) \leq b$ in all cases. $\beta(a-1) \leq c$ may be shown in a similar way. Since $a=d$, we get $\beta(d-1) \leq c$.

Lemma 11 [Case $L R$ (ii) LR rotation] If D holds before the rotation of Figure 7 , then β ($\left.p^{\prime}, g p^{\prime}\right), \beta-(a, b)$, and $\beta-(c, d)$ following the rotation provided $0<\beta \leq \sqrt{2}-1$.

Proof (a) $\beta-\left(p^{\prime}, g p^{\prime}\right)$:
$\beta\left(g p^{\prime}-1\right)=\beta(c+d) \leq b+\beta+\beta d($ as $\beta-(b, c)) \leq b+\beta+\beta q($ from Lemmas 9 and $10, q \geq d)$ $\leq b+\beta+a+\beta=a+b+2 \beta<a+b+1=p^{\prime}$. Also, since $\frac{\beta}{1+\beta}-(p, d)$ and $q \geq d, \beta(p-1) \leq(\beta+1) d$ or $\beta(a+q) \leq(\beta+1) d$ or $a+q \leq\left(1+\frac{1}{\beta}\right) d$ or $a \leq\left(1+\frac{1}{\beta}\right) d-q \leq\left(1+\frac{1}{\beta}\right) d-d=d / \beta$. So, $\beta\left(p^{\prime}-1\right)=\beta(a+b)<d+\beta b \leq d+c+\beta($ as $\beta-(b, c))<d+c+1=g p^{\prime}$.
(b) $\beta-(a, b)$:

Since $b \leq q$ and $\beta-(a, q), \beta(b-1) \leq \beta(q-1) \leq a$.
When $D_{1}, \beta(a-1) \leq b$ was proved in Lemma 10. So, $\beta-(a, b)$.
When $D_{2}, q \geq a(1+\beta)+1-\beta$. So,

$$
a \leq \frac{q}{1+\beta}-\frac{1-\beta}{1+\beta}=\frac{b+c+1}{1+\beta}-\frac{1-\beta}{1+\beta} .
$$

So,

$$
\beta(a-1) \leq \frac{\beta b+\beta c+\beta}{1+\beta}-\frac{1-\beta}{1+\beta} \beta-\beta \leq \frac{\beta b+b+2 \beta}{1+\beta}-\frac{1-\beta}{1+\beta} \beta-\beta=b .
$$

So, $\beta-(a, b)$.
(c) $\beta-(c, d)$:

Note that $\beta(c-1)<\beta(q-1)<\frac{\beta}{1+\beta}(q-1)<\frac{\beta}{1+\beta}(p-1) \leq d$.
When $D_{1}, \beta(d-1) \leq c$ was proved in Lemma 10. So, $\beta-(c, d)$.
When D_{2}, if $d<b+1$, then $d \leq b$ and $\beta(d-1) \leq \beta(b-1) \leq c$. So, assume $d \geq b+1$. Now, $b \leq d-1<\beta(p-1)-1$. So,

$$
\begin{aligned}
b & <\beta(a+b+c+1)-1 \\
& \leq \beta\left(\frac{q-1+\beta}{1+\beta}+b+c+1\right)-1 \\
& =\frac{\beta}{1+\beta}(b+c+\beta+(1+\beta)(b+c+1))-1 \\
& \leq \frac{\beta}{1+\beta}\left(\frac{c}{\beta}+1+c+\beta+(1+\beta)\left(\frac{c}{\beta}+1+c+1\right)\right)-1 \\
& =\frac{\beta}{1+\beta}\left(\frac{\beta+1}{\beta} c+(1+\beta)+(1+\beta)\left(\frac{1+\beta}{\beta} c+2\right)\right)-1 \\
& =c+\beta+(1+\beta) c+2 \beta-1 \\
& =(2+\beta) c+3 \beta-1<(2+\beta) c+\beta(\operatorname{as} \beta \leq \sqrt{2}-1) \\
& \leq \frac{c}{\beta}+\beta(\text { as } \beta \leq \sqrt{2}-1) .
\end{aligned}
$$

Also, from $d<\beta(p-1)$ and the above derivation, we get

$$
\begin{aligned}
d & <\frac{\beta}{1+\beta}(b+c+\beta+(1+\beta)(b+c+1)) \\
& \leq \frac{\beta}{1+\beta}\left(\frac{c}{\beta}+\beta+c+\beta+(1+\beta)\left(\frac{c}{\beta}+\beta+c+1\right)\right) \\
& =\frac{\beta}{1+\beta}\left(\frac{\beta+1}{\beta} c\right)+\frac{2 \beta^{2}}{1+\beta}+\beta\left(\frac{1+\beta}{\beta} c\right)+\beta(\beta+1) \\
& =(2+\beta) c+\frac{2 \beta^{2}}{1+\beta}+\beta(\beta+1) \\
& =(2+\beta) c+\frac{2 \beta^{2}+\beta^{2}+\beta^{3}+\beta+\beta^{2}}{1+\beta} \\
& =(2+\beta) c+\frac{\beta^{3}+4 \beta^{2}+\beta}{1+\beta}
\end{aligned}
$$

$$
\leq(2+\beta) c+1\left(\text { as } \beta^{3}+4 \beta^{2}+\beta<1+\beta \text { for } \beta \leq \sqrt{2}-1\right) .
$$

So, $\beta(d-1) \leq \beta(2+\beta) c \leq c($ as $\beta \leq \sqrt{2}-1)$. So, $\beta-(c, d)$.

Theorem 2 If T is β-balanced, $0 \leq \beta \leq \sqrt{2}-1$, prior to insertion, it is so following the insertion.

Proof First note that since all binary search trees are balanced for $\beta=0$, the rotations (while unnecessary) preserve 0 -balance. So, assume $\beta>0$. Consider the tree T^{\prime} just after the new element has been inserted but before the backward restructuring pass begins.

If the newly inserted node, z, has no parent in T^{\prime}, then T was empty and T^{\prime} is β-balanced. If z has a parent but no grandparent, then T has at most one nonempty subtree X. Since T is β-balanced, $\beta(|X|-1) \leq 0$. So, $|X| \leq 1$. Following the insertion, T^{\prime} has one subtree with ≤ 1 nodes and one with exactly one. So, T^{\prime} is β-balanced. We may therefore assume that z has a grandparent in T^{\prime}.

From the downward insertion path, it follows that all nodes u in T^{\prime} that have children l and r for which $\neg \beta-(l, r)$ must lie on the path from the root to z. During the backward restructuring pass, each node on this path (other than z and its parent) play the role of $g p$ in Figures 4 and 5. The β-property cannot be violated at z as z has no children. It cannot be violated at the parent, s, of z as s satisfied the β-property prior to insertion. As a result its other subtree has ≤ 1 element. So, following the insertion, s satisfies the β-property. As a result, each node in T^{\prime} that might possibly violate the β-property becomes the $g p$ node during the restructuring pass. Consider one such $g p$ node. It has children in T^{\prime} denoted by p^{\prime} and d. Its children in T are p and d. Figures 4 and 5 show the case when d is the right subtree of $g p$ in both T and T^{\prime}. The cases RR and RL arise when d is the left subtree.

During the restructuring pass, $g p$ begins at the grandparent of z and moves up to the root of T^{\prime}. If z is at level r in T^{\prime}, (the root being at level 1), then $g p$ takes on $r-2$ values during the restructuring pass. We shall show that at each of these $r-2$ positions either
(a) no rotation is performed and all descendants of $g p$ satisfy the β-property or
(b) a rotation is performed and following this, all descendants of node $p^{\prime \prime}$ (Figure 4) or of node q^{\prime} (Figure 5) satisfy the β-property.

As a result, following the rotation (if any) performed when $g p$ becomes the root of T^{\prime}, the restructured tree is β-balanced. The proof is by induction on r. When $r=3$ (recall, we assume z has a grandparent), $g p$ begins at the root of T^{\prime} and its descendants satisfy the β-property.

Without loss of generality, assume that the insertion took place in the left subtree of $g p$. With respect to Figure 4, we have three cases: (i) $q \geq c$ and $q>d$, (ii) $q<c$ and $c>d$, and (iii) $q \leq d$ and $c \leq d$. In case (i), all conditions for an LL rotation hold and such a rotation is performed. In case (ii), an LR rotation is performed. Following either rotation, T^{\prime} is β-balanced. In case (iii), $\beta\left(p^{\prime}-1\right)=\beta(q+c) \leq 2 \beta d<d$ (as $\beta \leq \sqrt{2}-1$). Also, $\beta(d-1) \leq p<p+1=p^{\prime}$. So, $\beta(d-1)<p^{\prime}$. Hence, $\beta-\left(p^{\prime}, d\right)$ and T^{\prime} is β-balanced.

For the induction hypothesis, assume (a) and (b) whenever $r \leq k$. In the induction step, we show (a) and (b) for trees T with $r=k+1$. The subtree in which the insertion is done has $r=k$. So, (a) and (b) hold for all $g p$ locations in the subtree. We need to show (a) and (b) only when $g p$ is at the root of T^{\prime}. This follows from Lemmas 5, 6, 7, and 11 .

The theorem now follows.

Lemma 12 The time needed to do an insertion in an node $\beta-B B S T$ is $O(\log n)$ provided $0<\beta \leq \sqrt{2}-1$.

Proof Follows from the fact that insertion takes $O(h)$ time where h is the tree height and $h=O(\log n)$ when $\beta>0($ Lemmas 1 and 3$)$.

4.3 Deletion

To delete element x from a β-BBST, we first use the unbalanced binary search tree deletion algorithm of [HORO94] to delete x and then perform a series of rebalancing rotations. The steps are:

Step 1 [Locate x] Search the β-BBST for the node y that contains x. If there is no such node, terminate.

Step 2 [Delete x] If y is a leaf, set d^{\prime} to nil, $g p$ to the parent of y, and delete node y. If y has exactly one child, set d^{\prime} to be this child; change the pointer from the parent (if any) of y to point to the child of y; delete node y; set $g p$ to be the parent of d^{\prime}. If y has two children, find the node z in the left subtree of y that has largest value; move this value into node y; set $y=z$; go to the start of Step 2. \{ note that the new y has either 0 or 1 child \}

Step 3 [Rebalance] Retrace the path from $d^{\prime \prime}$ to the root performing rebalancing rotations.

There are four rebalancing rotations LL, LR, RR, and RL. Since LL and RR as well as LR and RL are symmetric rotations, we describe LL and LR only. The discussion is very similar to the case of insertion. The differences in proofs are due to the fact that a deletion reduces the size of encountered subtrees by 1 while an insertion increases it by 1 . In an LL rotation, the configuration just before and after the rotation is shown in Figure 8. This rotation is performed when $q \geq c$ and $q>d^{\prime}$. Following the rotation, d^{\prime} is updated to the node p^{\prime}.

Let d denote the size of the right subtree of $g p$ before the deletion. So, $d=d^{\prime}+1$. Since prior to the deletion the β-BBST was β-balanced, it follows that $\beta-(p, d)$ and $\beta-(q, c)$.

Lemma 13 [LL deletion lemma] If [$\beta-(p, d) \wedge \beta-(q, c) \wedge(q \geq c) \wedge(q>d) \wedge(1 / 3 \leq \beta \leq 1 / 2)$] before the rotation, then $\left[\beta-\left(q, g p^{\prime}\right) \wedge \beta-\left(c, d^{\prime}\right)\right]$ after the rotation.

(a) before

(b) after

Figure 8: LL rotation for deletion

Proof (a) $\beta-\left(q, g p^{\prime}\right)$:
$\beta(q-1) \leq c($ as $\beta-(q, c))<g p^{\prime}$. Also, $\beta\left(g p^{\prime}-1\right)=\beta\left(c+d^{\prime}\right)<2 \beta q\left(\right.$ as $c \leq q$ and $\left.d^{\prime}<q\right)$ $\leq q($ as $\beta \leq 1 / 2)$. So, $\beta-\left(q, g p^{\prime}\right)$.
(b) $\beta-\left(c, d^{\prime}\right)$:
$d^{\prime}<q \Rightarrow d^{\prime}-1<q-1 \Rightarrow \beta\left(d^{\prime}-1\right)<\beta(q-1) \leq c$. Also, when $c \leq 1, \beta(c-1) \leq 0 \leq d^{\prime}($ as $d^{\prime} \geq 0$). When $c>1, q \geq c \Rightarrow q \geq 2$ and $p=q+c+1 \geq c+3$. So, $\beta(c-1) \leq \beta(p-1)-3 \beta \leq$ $d-3 \beta($ as $\beta-(p, d)) \leq d-1($ as $\beta \geq 1 / 3)=d^{\prime}$. Hence, $\beta-\left(c, d^{\prime}\right)$.

In an LR rotation, the before configuration is as in Figure 8(a). However, this time $q<c$. Figure 8(a) is redrawn in Figure 9(a). In this, the node labeled c in Figure 8(a) has been relabeled q and that labeled q in Figure 8(a) has been relabeled a. With respect to the labelings of Figure 9(a), rotation LR is applied when

$$
\left[(q>a) \wedge\left(q>d^{\prime}\right)\right]
$$

The other conditions that apply when an LR rotation is performed are

$$
[\beta-(p, d) \wedge \beta-(a, q) \wedge \beta-(b, c)] .
$$

Here d denotes the (size of) right subtree of $g p$ prior to the deletion. As in the case of insertion, an LR rotation is accomplished in two substeps (or two subrotations). The first

Figure 9: LR rotation for deletion
of these is shown in Figure 9. Following an LR rotation, d^{\prime} is updated to node q^{\prime}.

Lemma 14 [LR substep (i) deletion lemma] If [$\beta-(p, d) \wedge \beta-(a, q) \wedge \beta-(b, c) \wedge(q>a) \wedge\left(q>d^{\prime}\right)$] before the subrotation $L R(i)$, then $\left[\beta-\left(p^{\prime}, g p^{\prime}\right) \wedge\left\{\left(\beta-(a, b) \wedge \frac{\beta}{1+\beta}-\left(c, d^{\prime}\right)\right) \vee\left(\frac{\beta}{1+\beta}-(a, b) \wedge \beta-\left(c, d^{\prime}\right)\right)\right\}\right]$ after the subrotation provided $1 / 3 \leq \beta \leq 1 / 2$.

Proof Assume the before condition.
(a) If $b=c=0$, then $q=b+c+1=1$. Furthermore, $(q>a)$ and $\left(q>d^{\prime}\right)$ imply $a=d^{\prime}=0$.

So, $g p^{\prime}=p^{\prime}=1$. Hence, $\left[\frac{1}{2}-\left(p^{\prime}, g p^{\prime}\right) \wedge \frac{1}{2}-(a, b) \wedge \frac{1}{2}-\left(c, d^{\prime}\right)\right]$
(b) If $b=1$ and $c=0$, then $q=2, a \leq 1$, and $d^{\prime} \leq 1$. So, $1 \leq p^{\prime} \leq 3$ and $1 \leq g p^{\prime} \leq 2$. Hence, $\left[\frac{1}{2}-\left(p^{\prime}, g p^{\prime}\right) \wedge \frac{1}{2}-(a, b) \wedge \frac{1}{2}-\left(c, d^{\prime}\right)\right]$
(c) If $b=0$ and $c=1$, then $q=2, a \leq 1$, and $d^{\prime} \leq 1$. So, $1 \leq p^{\prime} \leq 2$ and $1 \leq g p^{\prime} \leq 3$. Hence, $\left[\frac{1}{2}-\left(p^{\prime}, g p^{\prime}\right) \wedge \frac{1}{2}-(a, b) \wedge \frac{1}{2}-\left(c, d^{\prime}\right)\right]$

As a result of $(\mathrm{a})-(\mathrm{c})$, to complete the proof, we may assume that $b \geq 1$ and $c \geq 1$. So, $q \geq 3, a \geq 1($ as $\beta-(a, q) \Rightarrow \beta(q-1) \leq a$ or $a \geq 2 \beta>0), p=a+q+1 \geq 5, d \geq 2$ (as $\beta-(p, d) \Rightarrow \beta(p-1) \leq d$ and $\beta \geq 1 / 3)$, and $d^{\prime}=d-1 \geq 1$.

First, we show that $\beta-\left(p^{\prime}, g p^{\prime}\right)$. For this, note that $a+b+c+1=p-1$. From $\beta-(p, d)$, it follows that $\beta(a+b+c+1)=\beta(p-1) \leq d$. So, $\beta(a+b) \leq d-\beta c-\beta$. From Figure $9(\mathrm{~b})$, we
see that $\beta\left(p^{\prime}-1\right)=\beta(a+b)$. Hence, $\beta\left(p^{\prime}-1\right) \leq d-\beta c-\beta=d^{\prime}-\beta c+1-\beta \leq d^{\prime}+1-2 \beta<g p^{\prime}$. Also,

$$
\begin{aligned}
\beta\left(g p^{\prime}-1\right)=\beta\left(c+d^{\prime}\right) & \leq b+\beta+\beta d^{\prime}(\text { as } \beta-(b, c)) \\
& <b+\beta q+\beta\left(\text { as } q>d^{\prime}\right) \\
& \leq b+a+2 \beta(\text { as } \beta-(a, q)) \\
& <p^{\prime} .
\end{aligned}
$$

So, $\beta-\left(p^{\prime}, g p^{\prime}\right)$.
Next, we prove two properties that will be used to complete the proof.
P1: $\beta(b-1) \leq a$.
To see this, note that $\beta(b-1)<\beta(q-1) \leq a($ as $\beta-(a, q))$.
P2: $\beta(c-1) \leq d^{\prime}$.
For this, observe that $\beta(c-1) \leq \beta(q-2)($ as $c \leq q-1) \leq \beta(p-4)($ as $q=p-a-1$ and $a \geq 1)=\beta(p-1)-3 \beta \leq d-1($ as $\beta-(p, d)$ and $\beta \geq 1 / 3)=d^{\prime}$.

To complete the proof of the lemma, we need to show

$$
\left\{\left(\beta-(a, b) \wedge \frac{\beta}{1+\beta}-\left(c, d^{\prime}\right)\right) \vee\left(\frac{\beta}{1+\beta}-(a, b) \wedge \beta-\left(c, d^{\prime}\right)\right)\right\} .
$$

For this, consider the two cases $b \geq c$ and $b<c$ (as in Lemma 6).
Case $b \geq c$: Since $a<q=b+c+1, \beta(a-1)<\beta(b+c) \leq 2 \beta b \leq b$. This, together with P1 implies $\beta-(a, b)$. Also, $d^{\prime}<q=b+c+1$. So, $\frac{\beta}{\beta+1}\left(d^{\prime}-1\right) \leq \frac{\beta}{\beta+1}(b+c-1)=\frac{\beta}{\beta+1} c+\frac{\beta}{\beta+1}(b-1) \leq$ $\frac{\beta}{\beta+1} c+\frac{c}{\beta+1}=c$. This, together with P2 implies $\frac{\beta}{1+\beta}-\left(c, d^{\prime}\right)$. So, $\beta-(a, b) \wedge \frac{\beta}{1+\beta}-\left(c, d^{\prime}\right)$.
Case $b<c$: Since $a<q=b+c+1, a-1<b+c$. So, $a-1 \leq b+c-1$ or $\frac{\beta(a-1)}{1+\beta} \leq$ $\frac{\beta b}{1+\beta}+\frac{\beta(c-1)}{1+\beta} \leq \frac{\beta b}{1+\beta}+\frac{b}{1+\beta}=b$. This and P1 imply $\frac{\beta}{1+\beta}-(a, b)$. Also, $d^{\prime}-1 \leq q-2=b+c-1$. So, $\beta\left(d^{\prime}-1\right) \leq \beta(b+c-1)<\beta(2 c-1)<c$. This and P2 imply $\beta-\left(c, d^{\prime}\right)$. Hence, $\frac{\beta}{1+\beta}-$ $(a, b) \wedge \beta-\left(c, d^{\prime}\right)$.

The substep(ii) rotations are the same as for insertion.

Theorem 3 If T is β-balanced, then following a deletion the resulting tree T^{\prime} is also β balanced provided $1 / 3 \leq \beta \leq \sqrt{2}-1$.

Proof Similar to that of Theorem 2.

When $0<\beta<1 / 3$, we need to augment the LL rotation by a transformation for the case $d^{\prime}=0$. When $d^{\prime}=0, \beta(p-1) \leq d=d^{\prime}+1=1$. So, $p \leq 1 / \beta+1$ and $g p=p+d^{\prime}+1 \leq 1 / \beta+2$. To β-balance at $g p$, the at most $1 / \beta+2$ nodes in $g p$ are rearranged into any β-BBST in constant time (as $1 / \beta+2$ is a constant). When $d^{\prime}>0$, the proof of Lemma 13 part (b) can be changed to show $\beta(c-1) \leq d^{\prime}$ for $0<\beta \leq \sqrt{2}-1$. The new proof is: since $c \leq q, c \leq(p-1) / 2$ and $\beta(c-1) \leq \beta(p-1) / 2-\beta \leq d / 2-\beta=d-d / 2-\beta \leq d-1-\beta<d^{\prime}$. The LR rotation needs to be augmented by a transformation for the case $d^{\prime}=d-1<\frac{1}{\beta(2+\beta)}-1$. At this time, $\beta(p-1) \leq d<\frac{1}{\beta(2+\beta)}$. So, $g p=p+d<\frac{1}{\beta^{2}(2+\beta)}+1+\frac{1}{\beta(2+\beta)}$. To β-balance at $g p$, we rearrange the fewer than $\frac{1}{\beta^{2}(2+\beta)}+1+\frac{1}{\beta(2+\beta)}$ nodes in the subtree, in constant time, into any β-balanced tree. When $d^{\prime} \geq \frac{1}{\beta(2+\beta)}-1$, the proof for $\beta(c-1) \leq d^{\prime}$ in Lemma 14 needs to be changed to show that the LR substep(i) lemma holds. The new proof is:

$$
\begin{aligned}
d & \geq \beta(p-1)=\beta(a+b+c+1) \geq \beta(\beta(q-1)+b+c+1) \\
& =\beta(\beta(b+c)+b+c+1) \\
& \geq \beta((1+\beta) \beta(c-1)+(1+\beta) c+1) \\
& =\beta\left((1+\beta)^{2}(c-1)+2+\beta\right) .
\end{aligned}
$$

So, $\beta(c-1) \leq \frac{d-2 \beta-\beta^{2}}{(1+\beta)^{2}} \leq d-1\left(\right.$ as $\left.d \geq \frac{1}{\beta(2+\beta)}\right)=d^{\prime}$.
Also, note that when $\beta=0$, all trees are β-balanced so the rotations (while not needed) preserve balance.

Theorem 4 With the special handling of the case $d^{\prime}=0$, the tree T^{\prime} resulting from a deletion in a β-BBST is also β-balanced for $0 \leq \beta \leq \sqrt{2}-1$.

Lemma 15 The time needed to delete an element from an node β-BBST is $O(\log n)$ provided $0<\beta \leq \sqrt{2}-1$.

4.4 Enhancements

Since our objective is to create search trees with minimum search cost, the rebalancing rotations may be performed at each positioning of $g p$ during the backward restructuring pass so long as the conditions for the rotation apply rather than only at $g p$ positions where the tree is unbalanced.

Consider Figure 4(a). If $p^{\prime}<d$, then the conditions of Lemmas 5 and 6 cannot apply as $q<p^{\prime}<d$. However, it is possible that $e>p^{\prime}$ where e is the size of either the left or right subtree of d. In this case, an RR or RL rotation would reduce the total search cost. The proofs of Lemmas 5 and 6 are easily extended to show that these rotations would preserve balance even though no insertion was done in the subtree d. The same observation applies to deletion. Hence the backward restructuring pass for the insert and delete operations can determine the need for a rotation at each $g p$ location as below (l and r are, respectively, the left and right children of $g p$).
if $s(l)>s(r)$ then check conditions for an LL and LR rotation
else check conditions for an RR and RL rotation.
The enhanced restructuring procedure used for insertion and deletion is given in Figure 10. In the $R R$ and $R L$ cases, we have used the relation ' \geq ' rather than ' $>$ ' as this results in better observed run time.

Since it can be shown that the rotations preserve balance even when there has been no insert or delete, we may check the rotation conditions during a search operation and perform rotations when these improve total search cost.

Finally, we note that it is possible to use other definitions of β-balance. For example, we could require $\beta(s(a)-2)<s(b)$ and $\beta(s(b)-2)<s(a)$ for $\beta-(a, b)$. One can show that the development of this paper applies to these modifications also. Furthermore, when this new definition is used, the number of comparisons in the second substep of the LR and RL rotations is reduced by one.

```
procedure Restructuring;
begin
while ( \(g p\) ) do
    begin
    if \(s(\) gp.left \()>s(\) gp.right \()\) then \(\{\) check conditions for an LL and LR rotation \}
        begin
        \(p=\) gp.left \(;\)
        if \((s(\) p.left \()>s(p . r i g h t))\) then
            begin if \((s(p . l e f t)>s(\) gp.right \())\) then do LL rotation; end
        else
            begin
            if \((s(\) p.right \()>s(g p . r i g h t))\) then \(\{\mathrm{LR}\}\)
                begin
            do LR rotation ;
            \{ now notations \(a, b, c\), and \(d\) follow from figure \(1(\mathrm{~b})\) \}
            if \((\beta(s(a)-1)>s(b))\) then
                    if \(((s(\) a.right \()<(1+\beta) s(\) a.left \()+1-\beta)\) and
                        \((s(b)<s(a . l e f t)))\) then
                        do LL rotation
                    else do LR rotation
            else if \((\beta(s(d)-1)>s(c))\) then
                if \(((s(\) d.left \()<(1+\beta) s(\) d.right \()+1-\beta)\) and
                                    \((s(c)<s(d . r i g h t)))\) then
                                    do RR rotation
                    else do RL rotation ;
            end
        end
        end
    else \{ check conditions for an RR and RL rotation \}
        begin
        \(p=g p . r i g h t ;\)
        if \((s(p . l e f t)>s(p . r i g h t))\) then
        begin
            if \((s(p . l e f t) \geq s(g p . l e f t))\) then \(\{\operatorname{RL}\}\)
            do symmetric to the above LR case ;
        end
    else
        begin if \((s(\) p.right \() \geq s(\) gp.left \())\) then do RR rotation; end;
    end ;
    \(g p=g p . p a r e n t ;\)
    end ;
end ;
```

Figure 10: Restructuring procedure

4.5 Top Down Algorithms

As in the case of red/black and $\mathrm{WB}(\alpha)$ trees, it is possible to perform, in $\mathrm{O}(\log n)$ time, inserts and deletes using a single top to bottom pass. The algorithms are similar to those already presented.

5 Simple β-BBSTs

The development of Section 4 was motivated by our desire to construct trees with minimal search cost. If instead, we desire only logarithmic performance per operation, we may simplify the restructuring pass so that rotations are performed only at nodes where the β-balance property is violated. In this case, we may dispense with the LL/RR rotations and the first substep of an LR/RL rotation. Only LR/RL substep (ii) rotations are needed. To see this, observe that Lemmas 7 and 11 show that the second substep rotations rebalance at $g p$ (see Figures 6 and 7) provided $\frac{\beta}{1+\beta}-(p, d)$ (The remaining conditions are ensured by the bottom-up nature of restructuring and the fact the tree was β-balanced prior to the insert or delete).

If the operation that resulted in loss of balance at $g p$ was an insert, then $\beta(p-2) \leq d$ (as $p>d$, the insert took place in subtree p and $g p$ was β-balanced prior to the insert) and $\beta(p-1)>d(g p$ is not β-balanced following the insert). For the substep (ii) rotation to restore balance, we need $\beta(p-1) \leq(1+\beta) d$. This is assured if $d+\beta \leq(\beta+1) d$ (as $\beta(p-2) \leq d)$. So, we need $d \geq 1$. If $d<1$, then $d=0$. Now $\beta(p-2) \leq d$ and $\beta(p-1)>d$ imply $p=2$. One may verify that when $p=2$, the $\operatorname{LR}(i i)$ rotations restore balance.

If the loss of β-balance at $g p$ is the result of a deletion (say from its right subtree), then $\beta(p-1) \leq d+1$ (as $g p$ was β-balanced prior to the delete). For the substep (ii) rotation to accomplish the rebalancing, we need $\beta(p-1) \leq(\beta+1) d$. This is guaranteed if $d+1 \leq(\beta+1) d$ or $d \geq 1 / \beta$. When $d<1 / \beta$ and $\beta \geq 1 / 3, d \leq 2$. Since $\beta(p-1) \leq d+1$ and $\beta \geq 1 / 3$, when $d=2, p \leq 10$; when $d=1, p \leq 7$; and when $d=0, p \leq 4$. We may verify that for all these cases, the LR(ii) rotations restore balance. Hence, the only problematic case is when $\beta<1 / 3$ and $d<1 / \beta$.

```
procedure Restructuring2;
begin
while ( \(g p\) ) do
    begin
    if \((\beta(s(g p . l e f t)-1)>s(g p . r i g h t))\) then \(\{\) do an LL or LR rotation \(\}\)
        begin
        \(p=g p . l e f t ;\)
        if \(((s(\) p.right \()<(1+\beta) s(\) p.left \()+1-\beta)\) and
                \((s(\) gp.right \()<s(\) p.left \()))\) then
                do LL rotation
        else do LR rotation ;
        end
    else
        do symmetric to the above L case ;
    \(g p=g p . p a r e n t\);
    end ;
end ;
```

Figure 11: Simple restructuring procedure for insertion

When $\beta<1 / 3$, an LL rotation fails to restore balance only when $d=0$ (see discussion following Theorem 3). So we need to rearrange the at most $1 / \beta+2$ nodes in $g p$ into any β-balanced tree when $d=0$. An LR rotation fails only when $d<\frac{1}{\beta(2+\beta)}-1$. To see this, note that in the terminology of Lemma $14, d$ is d^{\prime}. The proof of P 2 is extended to the case $\beta \leq 1 / 3$ when $d^{\prime} \geq \frac{1}{\beta(2+\beta)}-1$. Also, since $d^{\prime}<1 / \beta$, for the case $b \geq c$, we get $\beta\left(d^{\prime}-1\right)<1-\beta<c$ (as $c \geq 1)$. For the case $b<c$, we need to show $\beta(a-1) \leq b$. Since an LR rotation is done only when condition $D 1 \vee D 2$ holds, from Lemmas 10 and 11 , it follows that $\beta(a-1) \leq b$. So, an LR rotation rebalances when $\beta<1 / 3$ provided $d \geq \frac{1}{\beta(2+\beta)}-1$. For smaller d, the at most $\frac{1}{\beta^{2}(2+\beta)}+\frac{1}{\beta(2+\beta)}+1$ nodes in the subtree $g p$ may be directly rearranged into a β-balanced tree.

The restructuring algorithm for simple β-BBSTs is given in Figures 11 and 12. The algorithm of Figure 11 is used following an insert and that of Figure 12 after a delete.

Simple β-BBSTs are expected to have higher search cost than the β-BBSTs of Section 4. However, they are a good alternative to traditional $\mathrm{WB}(\alpha)$ trees as they are expected to be "better balanced". To see this, note that from the proof of Lemma 3, the balance, $B(p)$, at

```
procedure Restructuring3;
begin
while ( \(g p\) ) do
    begin
    if \((\beta(s(g p . l e f t)-1)>s(g p . r i g h t))\) then
        if \((\beta<1 / 3)\) and \((s(g p . r i g h t)<1 / \beta(2+\beta)-1)\) then
            rearrange the subtree rooted at \(g p\) into any \(\beta\)-balanced tree
        else \(\{\) do an LL or LR rotation \(\}\)
            begin
            \(p=\) gp.left \(;\)
            if \(((s(p . r i g h t)<(1+\beta) s(p . l e f t)+1-\beta)\) and
                \((s(\) gp.right \()<s(p . l e f t)))\) then
                do LL rotation
            else do LR rotation ;
            end
        end
    else
        do symmetric to the above L case ;
    \(g p=g p . p a r e n t\);
    end ;
end ;
```

Figure 12: Simple restructuring procedure for deletion
any node p in a β-balanced tree satisfies

$$
\begin{aligned}
\frac{1}{B(p)} & =1+\frac{s(r)+1}{s(l)+1} \\
& \geq 1+\frac{1}{1 / \beta+\frac{2 \beta-1}{\beta(s(r)+1)}} \\
& =\frac{1+\frac{1}{\beta}+\frac{2 \beta-1}{\beta(s(r)+1)}}{\frac{1}{\beta}+\frac{2 \beta-1}{\beta(s(r)+1)}} .
\end{aligned}
$$

So,

$$
B(p) \leq 1-\frac{1}{1+\frac{1}{\beta}+\frac{2 \beta-1}{\beta(s(r)+1)}}
$$

Also, since $s(r)-1 \leq s(l) / \beta, s(r)+1 \leq s(l) / \beta+2$. Hence, $1+\frac{s(r)+1}{s(l)+1} \leq 1+\frac{s(l)}{\beta(s(l)+1)}+\frac{2}{s(l)+1}$. So,

$$
\begin{aligned}
B(p) & \geq \frac{1}{1+\frac{1}{\beta}-\frac{1}{\beta(s(l)+1)}+\frac{2}{s(l)+1}} \\
& =\frac{1}{1+\frac{1}{\beta}+\frac{2 \beta-1}{\beta(s(l)+1)}} .
\end{aligned}
$$

Consequently,

$$
\frac{1}{1+\frac{1}{\beta}+\frac{2 \beta-1}{\beta(s(l)+1)}} \leq B(p) \leq 1-\frac{1}{1+\frac{1}{\beta}+\frac{2 \beta-1}{\beta(s(r)+1)}} .
$$

When $\beta=\sqrt{2}-1$,

$$
\frac{1}{2+\sqrt{2}+\frac{1-\sqrt{2}}{s(l)+1}} \leq B(p) \leq 1-\frac{1}{2+\sqrt{2}+\frac{1-\sqrt{2}}{s(r)+1}} .
$$

If $s(p) \leq 10,0.296 \leq B(p) \leq 1-0.296$. So, every β-balanced subtree with 10 or fewer nodes is in $\mathrm{WB}(\alpha)$ for $\alpha \approx 0.296$. Similarly, every subtree with 100 or fewer nodes is in $\mathrm{WB}(\alpha)$ for $\alpha \approx 0.293$. In fact, for every fixed k, subtrees of size k or less are in $\operatorname{WB}(\alpha)$ for α slightly higher than $1-\frac{1}{\sqrt{2}} \approx 0.2929$ which is the largest value of α for which $\mathrm{WB}(\alpha)$ trees can be maintained.

6 BBSTs without Deletion

In some applications of a dictionary, we need to support only the insert and search operations. In these applications, we can construct binary search trees with total cost

$$
C(T) \leq n \log _{\phi}(\sqrt{5}(n+1))
$$

by using the simpler restructuring algorithm of Figure 13.

Theorem 5 When the only operations are search and insert and restructuring is done as in Figure 13, $C(T) \leq n \log _{\phi}(\sqrt{5}(n+1))$.

Proof Suppose T currently has $m-1$ elements and a new element is inserted. Let u be the level at which the new element is inserted. Suppose that the restructuring pass performs rotations at $q<u$ of the nodes on the path from the root to the newly inserted node. Then $C(T)$ increases by at most $v=u-q$ as a result of the insertion. The number of nodes on the path from the root to the newly inserted node at which no rotation is performed is also v. Let these nodes be numbered 1 through v bottom to top. Let S_{i} denote the number of elements in the subtree with root i prior to the restructuring pass. We see that $S_{1} \geq 1$ and

```
procedure Restructuring4;
begin
while ( \(g p\) ) do
    begin
    if \(s(\) gp.left \()>s(\) gp.right \()\) then \(\{\) check conditions for an LL and LR rotation \}
        begin
        \(p=g p . l e f t ;\)
        if \((s(\) p.left \()>s(\) p.right \())\) and \((s(\) p.left \()>s(\) gp.right \())\) then
            do LL rotation
        else if \((s(\) p.left \() \leq s(\) p.right \())\) and \((s(\) p.right \()>s(\) gp.right \())\) then
            do LR rotation ;
        end
    else \{ check conditions for an RR and RL rotation \}
        do symmetric to the above L case ;
    \(g p=g p . p a r e n t\);
    end ;
end ;
```

Figure 13: Simple restructuring procedure without a β value
$S_{2} \geq 2$. For node $i, 2<i \leq v$, one of its subtrees contains node $i-1$. Without loss of generality, let this be the left subtree of i. Let the root of the right subtree of i be d. So,

$$
S_{i} \geq S_{i-1}+s(d)+1
$$

If $i-1$ is not the left child of i, then since no rotation is done at $i, s(d) \geq S_{i-1}$. If $i-1$ is the left child of i, then consider node $i-2$. This is in one of the subtrees of i. Since no rotation is performed at $i-1, s(d) \geq S_{i-2}$. Since $S_{i-1}>S_{i-2}$, we get

$$
S_{i} \geq S_{i-1}+S_{i-2}+1
$$

Hence, $S_{v} \geq N_{v}$ where N_{v} is the minimum number of elements in a COST of height v. So, $v \leq \log _{\phi}(\sqrt{5}(m+1))$. So, when an element is inserted into a tree that has $m-1$ elements, its cost $C(T)$ increases by at $\operatorname{most} \log _{\phi}(\sqrt{5}(m+1))$. Starting with an empty tree and inserting n elements results in a tree whose cost is at most $n \log _{\phi}(\sqrt{5}(n+1))$.

Corollary 2 The expected cost of a search or insert in a BBST constructed as above is $O(\log n)$.

Proof Since $C(T) \leq n \log _{\phi}(\sqrt{5}(n+1))$, the expected search cost is $C(T) / n \leq \log _{\phi}(\sqrt{5}(n+$ 1)). The cost of an insert is the same order as that of a search as each insert follows the corresponding search path twice (top down and bottom up).

7 Experimental Results

For comparison purposes, we wrote C programs for BBSTs, SBBSTs (simple BBSTs), BBSTDs (BBSTs in which procedure Restructuring4 (Figure 13) is used to restructure following inserts as well as deletes), unbalanced binary search trees (BST), AVL-trees, top-down red-black trees (RB-T), bottom-up red-black trees (RB-B) [TARJ83], weight balanced trees (WB), deterministic skip lists (DSL), treaps (TRP), and skip lists (SKIP). For the BBST and SBBST structures, we used $\beta=207 / 500$ while for the WB structure, we used $\alpha=207 / 707$. While these are not the highest permissible values of β and α, this choice permitted us to use integer arithmetic rather than the substantially more expensive real arithmetic. For instance, $\beta-(a, b)$ for $\beta=207 / 500$ can be checked using the comparisons $207(s(a)-1)>500 s(b)$ and $207(s(b)-1)>500 s(a)$. The randomized structures TRP and SKIP used the same random number generator with the same seed. SKIP was programmed with probability value $p=1 / 4$ as in [PUGH90].

To minimize the impact of system call overheads on run time measurements, we programmed all structures using simulated pointers (i.e., an array of nodes with integer pointers [SAHN93]. Skip lists use variable size nodes. This requires more complex storage management than required by the remaining structures which use nodes of the same size. For our experiments, we implemented skip lists using fixed size nodes, each node being of the maximum size. As a result, our run times for skip lists are smaller than if a space efficient implementation had been used. In all our tree structure implementations, null pointers were replaced by a pointer to a tail node whose data field could be set to the search/insert/delete key and thus avoid checking for falling off the tree. Similar tail pointers are part of the de-
fined structure of skip and deterministic skip lists. Each tree also had a head node. WB (α) trees were implemented with a bottom-up restructuring pass. Our codes for SKIP and DSL are based on the codes of [PUGH90] and [PAPA93], respectively. Our AVL and RB-T codes are based on those of [PAPA93] and [SEDG94]. The treap structure was implemented using joins and splits rather than rotations. This results in better performance. Furthermore, AVL, RB-B, WB, and BBST were implemented with parent pointers in addition to left and right child pointers. For BBSTs, the enhancements described in Section 4.4 for insert and delete (see Figure 10) were employed. No rotations were performed during a search when using any of the structures.

For our experiments, we tried two versions of the code. These varied in the order in which the 'equality' and 'less than' or 'greater than' check between x and e (where x is the key being searched/inserted/deleted and e is the key in the current node) is done. In version 1, we conducted an initial experiment to determine if the total comparison count is less using the order L :
if $x<e$ then move to left child else if $x \neq e$ then move to right child else found
or the order R :
if $x>e$ then move to right child
else if $x \neq e$ then move to left child else found.

Our experiment indicated that doing the 'left child' check first (i.e. order L) worked better for AVL, BBST, BBSTD, and DSL structures while R worked better for the RB-T, RB-B, WB, SBBST, and TRP structures. No significant difference between L and R was observed for BSTs. For skip lists, we do not have the flexibility to change the comparison order. The version 1 codes performed the comparisons in the order determined to be better. For BSTs, the order R was used.

In the version 2 codes the comparisons in each node took the standard form
if $x=e$ then found else if $x<e$ then move to left child else move to right child.

The version 2 restructuring code for BBSTs differed from that of Figure 10 in that the ' $>$ ' test in the second, third, and forth if statements was changed to ' \geq '. No change was made in the corresponding if statements for $R R$ and RL rotations. While this increased the number of comparisons, it reduced the run time.

We experimented with $n=10,000,50,000,100,000$, and 200,000 . For each n, the following experiments were conducted:
(a) start with an empty structure and perform n inserts;
(b) search for each item in the resulting structure once; items are searched for in the order they were inserted
(c) perform an alternating sequence of n inserts and n deletes; in this, the n elements inserted in (a) are deleted in the order they were inserted and n new elements are inserted (d) search for each of the remaining n elements in the order they were inserted (e) delete the n elements in the order they were inserted.

For each n, the above five part experiment was repeated ten times using different random permutations of distinct elements. For each permutation, we measured the total number of element comparisons performed and then averaged these over the ten permutations.

First, we report on the relative performance of SBBSTs, BBSTDs, and BBSTs. For this comparison, we used only version 1 of the code. Table 1 gives the average number of key comparisons performed for each of the five parts of the experiment. The three versions of our proposed data structure are very competitive on this measure. BBSTDs and BBSTs generally performed fewer comparisons than did SBBSTs. All three structures had a comparison count within 2% of one another. However, when we used ordered data rather than random data (Table 2), SBBSTs performed noticeably inferior to BBSTDs and BBSTs; the later two

n	operation	SBBST	BBSTD	BBST
10,000	insert	212495	212223	212111
	search	194661	191599	191578
	ins/del	416125	416967	416862
	search	194957	191666	191676
	delete	168033	166441	166487
50,000	insert	1241080	1236682	1236114
	search	1152137	1135131	1134969
	ins/del	2437918	2438083	2437639
	search	1153821	1134277	1134062
	delete	1018675	1007766	1007688
100,000	insert	2635913	2624829	2623792
	search	2458079	2423988	2423613
	ins/del	5183619	5180383	5179653
	search	2461221	2420282	2419990
	delete	2190798	2168049	2168110
200,000	insert	5580139	5555190	5553256
	search	5223989	5148220	5147698
	ins/del	10981441	10969578	10968053
	search	5229172	5144808	5144148
	delete	4692447	4641349	4641389

Table 1: The number of key comparisons on random inputs (version 1 code)
remained very competitive.
Tables 3 and 4 give the average heights of the trees using random data and using ordered data, respectively. The first number gives the height following part (a) of the experiment and the second following part (c). The numbers are identical for BBSTDs and BBSTs and slightly higher (lower) for SBBSTs using random (ordered) data.

The average number of rotations performed by each of the three structures is given in Tables 5 and 6. A single rotation (i.e., LL or $R R$) is denoted ' S ' and a double rotation (i.e., LR or RL) denoted 'D'. In the case of BBSTs, double rotations have been divided into three categories: $\mathrm{D}=\mathrm{LR}$ and RL rotations that do not perform a second substep rotation; $\mathrm{DS}=\mathrm{LR}$ and RL rotations with a second substep rotation of type LL and RR; DD $=\mathrm{LR}$ and RL rotations with a second substep rotation of type LR and RL. BBSTDs and BBSTs

n	operation	SBBST	BBSTD	BBST
10,000	insert	170182	150554	150554
	search	188722	185530	185530
	ins/del	425305	315177	314998
	search	191681	184155	184155
	delete	215214	135311	135131
50,000	insert	991526	872967	872967
	search	1117174	1101481	1101481
	ins/del	2472808	1806346	1805439
	search	1116390	1098065	1098065
	delete	1277756	792717	791815
100,000	insert	2103808	1850548	1850548
	search	2384327	2354757	2354757
	ins/del	5249194	3823415	3821594
	search	2382759	2346118	2346128
	delete	2738294	1686397	1684584
200,000	insert	4449143	3903083	3903083
	search	5068632	4946753	4946753
	ins/del	11105525	8051695	8048058
	search	5065496	5001967	5001967
	delete	5842168	3580856	3577223

Table 2: The number of key comparisons on ordered inputs (version 1 code)

n	SBBST	BBSTD	BBST
10,000	17,17	16,16	16,16
50,000	20,20	19,19	19,19
100,000	21,21	20,20	20,20
200,000	22,23	21,21	21,21

Table 3: Height of the trees on random inputs (version 1 code)

n	SBBST	BBSTD	BBST
10,000	16,15	17,17	17,17
50,000	20,20	20,20	20,20
100,000	21,21	21,21	21,21
200,000	22,22	23,22	23,22

Table 4: Height of the trees on ordered inputs (version 1 code)

n	operation	SBBST		BBSTD		BBST			
		S	D	S	D	S	D	DS	DD
10,000	insert	2341	2220	5045	4314	5025	3938	151	93
	ins/del	4269	3216	10158	6311	10104	5849	232	103
	delete	1607	1110	5235	2104	5201	2018	51	28
50,000	insert	11719	11120	25216	21596	25059	19732	754	455
	ins/del	21330	16125	51238	31499	50979	29198	1161	531
	delete	8058	5648	26214	10462	26068	10033	248	131
100,000	insert	23450	22262	50283	43230	50047	39461	1527	920
	ins/del	42780	32203	102218	62967	101836	58491	2275	1046
	delete	16095	11306	52227	21022	51943	20147	496	260
200,000	insert	46934	44525	100664	86605	100205	79013	3054	1840
	ins/del	85283	64417	204459	125960	203568	116940	4593	2059
	delete	32233	22551	104344	41884	103826	40157	990	523

Table 5: The number of rotations on random inputs (version 1 code)
performed a comparable number of rotations on both data sets. However, on random data SBBSTs performed about half as many rotations as did BBSTDs and BBSTs. On ordered data, SBBSTs performed 15 to 20% fewer rotations on part (a), 34% fewer on part (c), and 51% fewer on part (e).

The run-time performance of the structures is significantly influenced by compiler and architectural features as well as the complexity of a key comparison. The results we report are from a SUN SPARC-5 using the UNIX C compiler cc with optimization option. Because of instruction pipelining features, cache replacement policies, etc., the measured run times are not always consistent with the compiler and architecture independent metrics reported in Tables 1 through 6 and later in Tables 11 through 16. For example, since the search codes for all tree based methods are essentially identical, we would expect methods with a smaller comparison count to have a smaller run time for parts (b) and (d) of the experiment. This was not always the case.

Tables 7 and 8 give the run times of the three BBST structures using integer keys and Tables 9 and 10 do this for the case of real (i.e., floating point) keys. The sum of the run

n	operation	SBBST		BBSTD		BBST			
		S	D	S	D	S	D	DS	DD
10,000	insert	9984	0	9985	2387	9985	2387	0	0
	ins/del	14997	0	16567	6130	16644	5797	25	154
	delete	4989	0	6570	3726	6647	3392	26	154
50,000	insert	49980	0	49983	11956	49983	11956	0	0
	ins/del	74996	0	82862	30659	83247	28982	137	770
	delete	24987	0	32859	18686	33242	17018	136	766
100,000	insert	99979	0	99983	23917	99983	23917	0	0
	ins/del	149996	0	165738	61327	166504	57969	280	1540
	delete	49986	0	65733	37392	66505	34040	278	1536
200,000	insert	199978	0	199982	47839	199982	47839	0	0
	ins/del	299996	0	331473	122653	333012	115938	559	3078
	delete	99985	0	131478	74795	133016	68086	557	3076

Table 6: The number of rotations on ordered inputs (version 1 code)
time for parts (a) - (e) of the experiment is graphed in Figure 14. For random data, SBBSTs significantly and consistently outperformed BBSTDs and BBSTs. On ordered data, however, BBSTDs were slightly faster than BBSTs and both were significantly faster than SBBSTs.

Since BBSTs generated trees with the least search cost, we expect BBSTs to outperform SBBSTs and BBSTDs in applications where the comparison cost is very high relative to that of other operations and searches are done with a much higher frequency than inserts and deletes. However, with the mix of operations used in our tests, SBBSTs are the clear choice for random inputs and BBSTDs for ordered inputs.

In comparing with the other structures, our tables repeat the data for BBSTs. The reader may make the comparison with SBBSTs and BBSTDs.

The average number of comparisons for each of the five parts of the experiment are given in Table 11 for the version 1 implementation. On the comparison measure, AVL, RB-B, WB, and BBSTs are the front runners and are quite competitive with one another. On parts (a) (insert n elements) and (c) (insert n and delete n elements), AVL trees performed best while on the two search tests $((\mathrm{b})$ and $(\mathrm{d}))$ and the deletion test (e), BBSTs performed best.

n	operation	SBBST	BBSTD	BBST
10,000	insert	0.27	0.30	0.34
	search	0.06	0.06	0.07
	ins/del	0.57	0.62	0.70
	search	0.06	0.06	0.06
	delete	0.22	0.25	0.26
50,000	insert	1.48	1.61	1.75
	search	0.35	0.36	0.37
	ins/del	2.90	3.47	3.84
	search	0.36	0.38	0.39
	delete	1.13	1.47	1.62
100,000	insert	3.00	3.57	3.80
	search	0.78	0.83	0.84
	ins/del	6.28	7.78	8.41
	search	0.83	0.87	0.88
	delete	2.54	3.31	3.58
200,000	insert	6.56	7.74	8.37
	search	1.80	1.89	1.89
	ins/del	13.89	17.32	18.57
	search	1.86	1.98	1.98
	delete	5.64	7.41	8.02

Time Unit: sec

Table 7: Run time on random inputs using integer keys (version 1 code)

n	operation	SBBST	BBSTD	BBST
10,000	insert	0.32	0.20	0.27
	search	0.05	0.03	0.05
	ins/del	0.58	0.43	0.57
	search	0.07	0.03	0.03
	delete	0.20	0.17	0.23
50,000	insert	1.38	1.20	1.10
	search	0.25	0.20	0.20
	ins/del	2.63	2.18	2.40
	search	0.25	0.20	0.20
	delete	0.95	0.92	1.05
100,000	insert	3.43	2.23	2.53
	search	0.72	0.45	0.42
	ins/del	5.97	4.70	5.13
	search	0.55	0.47	0.42
	delete	2.10	1.98	2.15
200,000	insert	6.65	4.95	5.25
	search	1.20	0.92	0.90
	ins/del	13.13	10.23	10.88
	search	1.17	0.90	0.90
	delete	4.63	4.25	4.58

Time Unit : sec

Table 8: Run time on ordered inputs using integer keys (version 1 code)

n	operation	SBBST	BBSTD	BBST
10,000	insert	0.23	0.34	0.36
	search	0.07	0.10	0.10
	ins/del	0.44	0.75	0.79
	search	0.08	0.10	0.10
	delete	0.17	0.29	0.30
50,000	insert	1.43	1.76	1.93
	search	0.47	0.53	0.52
	ins/del	2.76	3.89	4.22
	search	0.50	0.54	0.55
	delete	1.13	1.62	1.76
100,000	insert	2.96	3.94	4.36
	search	1.08	1.17	1.16
	ins/del	6.11	8.58	9.30
	search	1.12	1.20	1.22
	delete	2.50	3.66	3.95
200,000	insert	6.85	8.92	9.33
	search	2.41	2.58	2.57
	ins/del	13.86	19.49	20.46
	search	2.49	2.69	2.66
	delete	5.61	8.25	8.80

Time Unit: sec

Table 9: Run time on random real inputs (version 1 code)

n	operation	SBBST	BBSTD	BBST
10,000	insert	0.27	0.23	0.20
	search	0.08	0.07	0.07
	ins/del	0.53	0.50	0.43
	search	0.08	0.07	0.05
	delete	0.18	0.23	0.20
50,000	insert	1.43	1.25	1.12
	search	0.40	0.30	0.30
	ins/del	2.80	2.17	2.37
	search	0.40	0.30	0.30
	delete	1.07	0.90	0.97
100,000	insert	3.28	2.58	2.77
	search	0.90	0.62	0.63
	ins/del	6.15	4.70	5.13
	search	0.87	0.62	0.63
	delete	2.35	1.93	2.10
200,000	insert	7.37	4.55	4.92
	search	1.85	1.32	1.32
	ins/del	13.35	10.03	10.93
	search	1.87	1.33	1.33
	delete	5.08	4.17	4.43

Time Unit: sec

Table 10: Run time on ordered real inputs (version 1 code)
Table 11：The number of key comparisons on random inputs（version 1 code）

8976ち［9	L¢C00L9	LL6LI8ET	688［797	8920897	ゅセ¢¢997	¢07008¢	9287997	七を¢9609	әұәәрр	
6†90899	0ct9L69	¢¢LtL89	8もLttre	c96076¢	¢¢L86\％9	ILLze8e	L8L98TS	8LL0889	чэлеә	
Lfllleg	6cgetag	90LL06っち	¢C08960L	9679960工	088L860L	7860п6¢	96ヶ¢ 6980 ［	890L06ET	［əp／su！	000 ${ }^{\circ} 00{ }^{\circ}$
¢762699	てセ6L6L9	96L2889	869Ltte	8999tze	98L66的	68 ［607¢	08LI6TS	7819289	чэлеаs	
9698L 9	$68 \dagger$ ¢89	66 L88tム	998\％gea	eellage	\＃LIbgeg	929910L	0ヵ98gce	\％¢L9402	ұıәsu！	
\＆LLI867	getllit	6L6［999	0LI891\％	8L698L\％	976LLLZ	6296697	L8¢18L\％	te66887	әұәәр	
¢も¢Gz\％¢	¢880tec	LTL6768		87299もて	TEgLCtz	860709\％	880¢七七て	8GT8078	чолеәs	
¢976689	しもち9Lも	0079さを LI	¢C96LIS	96904T，	8LItcta	798t999	0862eta	899L8c9	［əp／su！	$000^{6} 00$［
Lz988L8	¢ちTLもて¢	L6もちも¢¢	\＆ $9887 \downarrow$ ¢	c9889もち	99†9もちを	LELIStz	6¢99もtを	08L6768	чэлеәs	
LL86L67	9707¢9¢	L0terse	66L8697	LLもLE9\％	ゅLE97，9\％	乙¢¢C0¢¢	688697	08L67e8	ұјәsu！	
8988LEL	988L9tL	997LL0¢	889L00L	8869L0L	カெLEL0L	97ってったてL	cecelot	LI69LEL	әұәГәр	
TELIOCL			690te［L	849t9LI	т9L6cil	6998LIL	8089もLL	tocooct	чэлеәs	
7299667	9t099te	9LLTgec	$68928 t \%$	L87LEも¢	ちもあもった	¢も0890¢	と¢LLItz	898L908	［əp／su！	000＇09
LTELECL	\％¢teost	¢607LSL	6967eIL	0266才IL	ゅ¢ 29 ¢LI	9970cti	8LZLtIT	8960Let	чэлеәs	
920L9EL	L80LILI	0990ャ9［	もLI98\％I	879886［	896986］	L0L0ged	LL6ter］	8960991	ұıәsu！	
CtLIEz	¢ちLても\％	\％ち\％97¢	287991	Legi9］	getz9	8L700\％	7TEL9I	gegetz	әұәГәр	
ちてL9¢\％	6Lしち¢を	8L999\％	9L9［6］	でちも65	969ct	66826 L	LtLE65	007\％¢\％	чэлеәs	
0¢t6 6	LELL09	七69876	6989［t	989ヵIt	066䏠	т8t9te	07\％LIt	¢989［9	［əp／su！	000 ${ }^{\circ}$［
6L0cgz	69989\％	68089\％	8L9L65	¢¢Lt6L	L67ャ6	90976［	8G6e65	9LItaz	чэıеәs	
く9んもて\％	998967	$\angle \pm 7927$	LLLZLZ	9L6LLZ	988LLZ	888797	L0ヵLLZ	gltb9	ұ．əəsu！	
dIMS	d4L	TSC	LSEG	¢M	g－gy	L－gy	I ΛV	LSE	ио！7e．ıədo	u

¢LZ966T	もち0も60¢	8キ6Lちんて，	867LL98	960988¢	88ca609	7LもGL08	90668 L\％	әұәәр	
Lze89t9	LtE900L	LI0L6L9	296 L00¢	96も¢90¢	8Lもあ0［9	L9ちもLて¢	606960¢	чэлеә	
¢¢76906	820tC06	［L69 2027	8908708	9769［LIL	7980788 L	98¢Lt96	90LELLOT	［əp／su！	000 ${ }^{〔} 00 z^{\prime}$
ャ0¢8ち七9	L6LtLIL	$88 \not 99$ ¢89	8ç976t	689890¢	［681809	¢\＆6L90¢	¢68180¢	чэлеәs	
L078079	cac87te	6 d ¢	880¢068	986997t	\＆LLもも¢9	8Ltgeloi	DTLSLZL	ұ．ıəsu！	
¢87，96	76980†7	96［LL69	¢89， 89 ［	026celz	66LLも87	786LELE	モ¢6687［	әұәәр	
6802468	80¢L878	tage9te	87，97¢	69L788\％	ち¢\％\％0†て	¢ちてん8ちを	L26L687	чэлеәs	
L6ヶ90切	99788tt	Lttr88L6L	76¢LZ88	Lも¢taga	88L0โ99	9098676	098［lig	［əp／su！	000 00 ［
9 9L0L6z	687ヶ998	9才78LZ8	L9Ltagz	Lzet88\％	［96068\％	6268886	¢96068\％	чэлеәs	
8199666	\＆んもちてんL	80tLbeg	8t90981	L076LLZ	6886208	ォ9¢L9Lも	898LEte	ұ．ıэsu！	
867987	6L9L8LL	7629826	¢18L6L	697926I	8L68781	6LZ6TLL	8LtL09	әұәГәр	
0L86切	806899	618L8t5	C90860［	0689［LI	96I96IL	¢¢989LI	L00才てLI	чэлеәs	
9Lt\＆L6T	89976LZ	¢LZ6L09	68t¢08I	L8ものLもて	00LGcoe	8tLLEEt	でゅ\％L七て	［əp／su！	000＇0¢
LLZL9tt	6800†¢	\％¢L60¢L	L8tL0［L	tLILILI	96706IL	L00LILI	26才06IL	чэлеәя	
06L6\％．tI	068988	299980	296728	072966	96\％98DI	8998¢676	0868［9］	ұıәsu！	
66878	080¢6］	ゅち 889 ¢	Letge	0¢67 L	9 ［78 L\％	98L9LZ	880 ± 0 I	әұәәр	
88C09\％	L80697	も696切	cgit8 L	L89165	06006 ［	76768	88596	чэлеәs	
99Cta	668068	929886		¢も896ヵ	0L8809	0708L2	680L®ヶ	［əp／su！	000＇0［
90299\％	280LLL	¢ $8 \uparrow 797$	08c98	6， 2881	90L06［	97788	266I65	чолеәs	
67LLTZ	68698L	66 Lget	†ccoct	LIOLLI	¢88Lも\％	877928	¢¢6LL\％	ұ．əəsu！	
dIMS	d4L	TSC	LSG日	gM	g－gy	L－g4	T ΛV	ио！ұе．ə．do	u

Time is sum of time for parts (a)-(e) of the experiment

Figure 14: Run time on real inputs (version 1 code)

Table 12 gives the number of comparisons performed when ordered data (i.e., the elements in part (a) are $1,2, \ldots, n$ and are inserted in this order) and those in part (c) are $n+1, \ldots, 2 n$ (in this order) is used instead of random permutations of distinct elements. This experiment attempts to model realistic situations in which the inserted elements are in "nearly sorted order". BSTs were not included in this test as they perform very poorly with ordered data taking $\mathrm{O}\left(n^{2}\right)$ time to insert n times. The computer time needed to perform this test on BSTs was determined to be excessive. This test exhibited greater variance in performance. Among the deterministic structures, BBSTs outperformed the others in parts (a) - (d) while AVL trees were ahead in part (e). For part (a), BBSTs performed approximately 45% fewer comparisons than did AVL trees and approximately 12% fewer than WB trees. The randomized structure TRP was the best of the eight structures reported in Table 12 for part (a). It performed approximately 10% fewer comparisons than did BBST trees. However, the BBST remained best overall on parts (b), (c), and (d).

The heights of the trees (number of levels in the case of DSL and SKIP) for the exper-

n	BST	AVL	RB-T	RB-B	WB	BBST	DSL	TRP	SKIP
10,000	31,31	16,16	17,18	16,17	17,17	16,16	12,11	32,31	8,8
50,000	38,38	19,19	20,21	19,20	20,20	19,19	13,12	38,37	9,9
100,000	41,41	20,20	21,22	20,21	21,22	20,20	14,13	41,40	9,9
200,000	44,43	21,21	22,24	21,22	23,23	21,21	15,14	43,44	9,9

Table 13: Height of the trees on random inputs (version 1 code)

n	AVL	RB-T	RB-B	WB	BBST	DSL	TRP	SKIP
10,000	14,14	20,20	24,24	16,15	17,17	14,13	33,34	8,8
50,000	16,16	23,23	29,28	20,20	20,20	16,16	41,41	9,9
100,000	17,17	25,25	31,30	21,21	21,21	17,17	46,41	9,9
200,000	18,18	27,27	33,32	22,22	23,22	18,18	47,46	9,9

Table 14: Height of the trees on ordered inputs (version 1 code)
iments with random and ordered data are given in Tables 13 and 14 respectively. The first number in each table entry is the tree height after part (a) of the experiment and the second, the height after part (c). In all cases, the number of levels using skip lists is fewest. However, among the tree structures, AVL and BBST trees have least height on random data and AVL has least with ordered data.

Tables 15 and 16 , respectively, give the number of rotations performed by each of the deterministic tree schemes for experiment parts (a), (c), and (e). Note that none of the schemes performs rotations during a search.

On ordered data, BBSTs perform about 25% more rotations than do the remaining structures. These remaining structures perform about the same number of rotations. On random data, AVL trees, bottom-up red-black trees and WB trees perform a comparable number of rotations. Top-down red-black trees and BBST trees perform a significantly larger number of rotations. In fact, BBSTs perform about twice as many rotations as AVL trees.

The average run times for the random data tests are given in Table 17 and in Table 18 for the ordered data test. Both of these use integer keys. The times using real keys are

86¢	066	L9L0t	978801	00808	786L8	62868	¢80LE	9才0†¢	906Lもを	Lしゃて，	Lも0¢¢	әұә	
$6 \mathrm{C} 0 \mathrm{c}^{2}$	¢69t	0才69［L	89980z	LI669	26678	0807¢	76808	Lt660z	28Lt68	てLLも9	8Ļ98	［əp／su！	000 ${ }^{6} 00$ z
0ヵ8	¢¢08	\＆L06L	90700 I	08t站	89ものt	¢6L88	L6L88	L6768	06768	8L99t	L8997	ұ．„әsu！	
097	967	LtL0\％	¢76IG	07ヶ0	†て09［	802IL	08981	¢¢697	9686 LI	¢97L L	9979［	阵	
9才0	9L\％\％	L6789	98810	86867	L99\％t	6 L69\％	8L90才	988805	69296［	［98\％8	¢ちも¢п	［əp／su！	000 ${ }^{6} 00$［
076	L691	L9768	LT009	08L0Z	86L6\％	もLt6］	0才E65	L296I	86965	†¢88\％	9LE\＆	ұıәли！	
LEL	876	8¢00L	89097	ち659	¢962	セ789	9616	LeteL	908も¢	0899	1878	әұәәр	
L8G	［9LI	86 L 67	6260¢	926tL	997L\％	6267 ［	99806	08LCy	96818	もL79	98918	［əp／su！	$000^{\circ} 0 ¢$
cet	†GL	3¢L6L	6909\％	7980	gectl	6896	0LL6	9L86	7,886	ゅ¢9LI	¢9915	ұ．əәsu！	
87	TG	8L0\％	L079	7601	969L	99［L	9t8	8297	89.6	06IL	979	әұәәр	
80 L	788	6 ± 89	t0L0［	8467	997%	L69\％	8¢0才	\＆L78	8LLtt	も¢\％¢	\＆も¢t	［əp／su！	$000^{6} 0$ I
86	Let	8868	$9800^{\text {c }}$	9907	¢L6\％	8\＆6	9ャ6［	9965	¢96I	738\％	$88 ¢ 8$	ұıәsu！	
（IC	SCI	（I	S	［	S	（I	S	（I	S	（I	S	uо！ұе．ıədo	u
LSE\＆				\＆．		\＆－gy		L－g4		T ΛV			

9L0¢	L9G	98089	9L0¢¢	0	98666	0	†8666	I	92666	0	98666	әұәГәр	
8L0¢	699	8869LI	6L0ece	0	966667	0	± 66667	0	000008	0	${ }^{\text {T } 66667}$	［əp／su！	000 $00{ }^{\circ}$
0	0	688Lt	686665	0	8L6665	0	L96665	0	\＆L6665	0	786661	ұ．әеsu！	
98¢ I	8L\％	0才0†¢	¢0c99	0	98667	0	98667	I	LL66才	0	28667	әұәәр	
0 ± 9 L	087	696LS	t0c99］	0	9666ヵர	0		0	0000¢ 5	0		［əp／su！	000 00 ［
0	0	LL686	¢8666	0	62666	0	69666	0	9L666	0	¢8666	ұıәsu！	
994	98L	8L0LI	てヶ¢¢¢	0	L867\％	0	986ちを	I	8L6ちも	0	8867\％	әұәрә	
042	LEL	78687	L†て¢8	0		0	モ667	0	000GL	0	766ちム	［əp／su！	$000{ }^{\circ}{ }^{\text {c }}$
0	0	996LI	88667	0	0866ヵ	0	L L665	0	LL667	0	7866ヵ	ұ．əәsu！	
†¢	97	7688	L799	0	686ヵ	0	686ヵ	I	¢867	0	066ヵ	әұәГәр	
¢9I	96	L649	ゅ¢99［	0	L66敉	0	$966 \pm$ L	0		0	9667［	［əp／su！	$000^{6} 0$［
0	0	$\angle 886$	9866	0	± 866	0	9266	0	0866	0	9866	ұぇәsu！	
（IC	SCI	（I	S	（	S	（I	S	（	S	（I	S	ио！7eıədo	a
LSEG				¢M		\＆－GU		L－g4		T ΛV			

n	operation	BST	AVL	RB-T	RB-B	WB	BBST	DSL	TRP	SKIP
10,000	insert	0.08	0.12	0.15	0.12	0.20	0.34	0.19	0.18	0.24
	search	0.05	0.05	0.05	0.06	0.05	0.07	0.09	0.09	0.18
	ins/del	0.14	0.21	0.36	0.22	0.39	0.70	0.49	0.33	0.45
	search	0.05	0.05	0.05	0.05	0.05	0.06	0.09	0.09	0.18
	delete	0.05	0.08	0.12	0.09	0.16	0.26	0.20	0.08	0.16
50,000	insert	0.65	0.79	0.98	0.73	1.18	1.75	1.10	1.01	1.36
	search	0.40	0.36	0.36	0.36	0.35	0.37	0.58	0.56	1.25
	ins/del	1.04	1.48	2.50	1.26	2.22	3.84	2.77	1.86	2.73
	search	0.40	0.41	0.44	0.36	0.36	0.39	0.57	0.56	1.16
	delete	0.39	0.54	1.01	0.51	0.94	1.62	1.16	0.51	1.10
100,000	insert	1.34	1.57	2.10	1.54	2.54	3.80	2.46	2.23	2.84
	search	0.88	0.80	0.80	0.83	0.78	0.84	1.36	1.30	2.63
	ins/del	2.36	3.21	5.52	2.74	4.86	8.41	6.35	4.10	6.13
	search	0.93	0.94	1.00	0.84	0.83	0.88	1.33	1.29	2.61
	delete	0.88	1.24	2.26	1.14	2.11	3.58	2.64	1.23	2.41
200,000	insert	2.79	3.37	4.41	3.18	5.21	8.37	5.56	4.70	6.25
	search	2.00	1.80	1.81	1.81	1.78	1.89	3.03	2.91	5.85
	ins/del	5.24	6.99	12.51	5.99	10.54	18.57	14.29	8.95	13.29
	search	2.08	2.12	2.25	1.91	1.87	1.98	3.04	2.93	5.81
	delete	2.01	2.69	5.06	2.51	4.55	8.02	5.84	2.76	5.35

Time Unit: sec

Table 17: Run time on random inputs using integer keys (version 1 code)
given in Tables 19 and 20. The sum of the run time for parts (b) and (d) of the experiment is graphed in Figure 15 for random data and in Figure 16 for ordered data. The graph of Figure 17 shows only one line MIX for AVL, RB-T, RB-B, WB, and BBST while that of Figure 18 shows MIX for AVL, RB-T, RB-B, and WB as the times for these are very close. With integer keys and random data, unbalanced binary search trees (BSTs) outperformed each of the remaining structures. The next best performance was exhibited by bottom-up red-black trees. They did marginally better than AVL trees. The remaining structures have a noticeably inferior structure. For ordered integer keys, BSTs take more time than we were willing to expend. Of the remaining structures, treaps generally performed best on parts (a), (c), and (e) while BBSTs did best on parts (b) and (d).

n	operation	AVL	RB-T	RB-B	WB	BBST	DSL	TRP	SKIP
10,000	insert	0.12	0.17	0.12	0.18	0.27	0.23	0.08	0.20
	search	0.05	0.03	0.03	0.07	0.05	0.07	0.05	0.12
	ins/del	0.18	0.32	0.20	0.35	0.57	0.42	0.17	0.20
	search	0.05	0.05	0.05	0.05	0.03	0.07	0.05	0.13
	delete	0.05	0.10	0.07	0.13	0.23	0.15	0.05	0.07
50,000	insert	0.75	1.02	0.92	1.25	1.10	0.98	0.47	0.92
	search	0.32	0.27	0.27	0.28	0.20	0.33	0.32	0.62
	ins/del	1.28	2.17	1.25	2.20	2.40	2.03	0.80	1.07
	search	0.28	0.28	0.27	0.28	0.20	0.30	0.37	0.62
	delete	0.30	0.75	0.37	0.85	1.05	0.65	0.30	0.27
100,000	insert	1.50	2.52	1.70	2.58	2.53	2.58	0.90	1.72
	search	0.70	0.60	0.57	0.70	0.42	0.70	0.63	1.23
	ins/del	2.60	4.68	2.53	4.78	5.13	4.42	1.52	2.43
	search	0.63	0.60	0.55	0.62	0.42	0.70	0.58	1.35
	delete	0.62	1.65	0.78	1.87	2.15	1.42	0.45	0.55
200,000	insert	3.12	4.82	3.38	5.67	5.25	4.72	1.80	3.52
	search	1.38	1.30	1.22	1.33	0.90	1.60	1.25	2.70
	ins/del	5.15	10.40	5.35	10.40	10.88	9.48	3.10	5.13
	search	1.33	1.33	1.18	1.32	0.90	1.50	1.28	2.72
	delete	1.35	3.63	1.68	4.12	4.58	2.98	0.93	1.12

Time Unit : sec

Table 18: Run time on ordered inputs using integer keys (version 1 code)

n	operation	BST	AVL	RB-T	RB-B	WB	BBST	DSL	TRP	SKIP
10,000	insert	0.14	0.15	0.21	0.17	0.23	0.36	0.22	0.23	0.30
	search	0.09	0.07	0.09	0.10	0.08	0.10	0.13	0.13	0.21
	ins/del	0.24	0.27	0.51	0.32	0.38	0.79	0.62	0.41	0.53
	search	0.09	0.08	0.09	0.10	0.08	0.10	0.12	0.12	0.21
	delete	0.09	0.09	0.17	0.14	0.14	0.30	0.28	0.11	0.19
50,000	insert	0.94	0.97	1.22	0.86	1.29	1.93	1.48	1.19	1.67
	search	0.64	0.52	0.50	0.51	0.51	0.52	0.87	0.71	1.44
	ins/del	1.68	1.77	2.74	1.53	2.29	4.22	3.93	2.17	3.15
	search	0.66	0.55	0.56	0.54	0.56	0.55	0.86	0.71	1.33
	delete	0.63	0.67	1.10	0.72	0.92	1.76	1.80	0.69	1.22
100,000	insert	2.06	1.85	2.34	1.90	2.66	4.36	3.05	2.67	3.61
	search	1.43	1.13	1.09	1.13	1.14	1.16	1.84	1.66	3.00
	ins/del	3.63	3.93	6.18	3.33	4.96	9.30	8.45	4.84	7.10
	search	1.45	1.26	1.27	1.17	1.26	1.22	1.83	1.65	3.01
	delete	1.39	1.50	2.51	1.55	2.03	3.95	3.91	1.61	2.75
200,000	insert	4.34	3.95	5.20	3.88	5.56	9.33	6.77	5.81	7.90
	search	3.19	2.49	2.42	2.50	2.45	2.57	4.14	3.67	6.62
	ins/del	8.01	8.25	13.78	7.29	10.65	20.46	18.88	10.48	15.83
	search	3.21	2.83	2.86	2.62	2.74	2.66	4.08	3.73	6.74
	delete	3.11	3.27	5.55	3.41	4.43	8.80	8.56	3.54	6.04

Time Unit: sec

Table 19: Run time on random real inputs (version 1 code)

With real keys and random data, BSTs did not outperform the remaining structures. Now, the five balanced binary tree structure became quite competitive with respect to the search operations (i.e., parts (b) and (d)). RB-B generally outperformed the other structures on parts (a), (c), and (e). Using ordered real keys, the treap was the clear winner on parts (a), (c), and (e) while BBSTs handily outperformed the remaining structures on parts (b) and (d).

Some of the experimental results using version 2 of the code are shown in Tables 21-24. On the comparison measure, with random data (Table 21), skip lists performed best on part (a). Of the deterministic methods, BBSTs slightly outperformed the others on part (a). On parts (b) - (e), AVL, RB-T, RB-B, WB, and BBSTs were quite competitive and

Figure 15: Run time on random real inputs (version 1 code)

Figure 16: Run time on ordered real inputs (version 1 code)

n	operation	AVL	RB-T	RB-B	WB	BBST	DSL	TRP	SKIP
10,000	insert	0.13	0.22	0.15	0.25	0.20	0.25	0.12	0.30
	search	0.07	0.08	0.07	0.07	0.07	0.10	0.07	0.15
	ins/del	0.23	0.42	0.27	0.40	0.43	0.47	0.18	0.28
	search	0.07	0.05	0.08	0.08	0.05	0.08	0.08	0.12
	delete	0.07	0.17	0.08	0.15	0.20	0.20	0.05	0.07
50,000	insert	1.15	1.58	1.12	1.85	1.12	1.30	0.67	1.35
	search	0.42	0.42	0.43	0.40	0.30	0.53	0.38	0.82
	ins/del	1.28	2.75	1.57	2.57	2.37	3.02	0.92	1.40
	search	0.40	0.42	0.42	0.48	0.30	0.53	0.40	0.75
	delete	0.38	0.95	0.55	0.93	0.97	1.15	0.33	0.35
100,000	insert	1.77	3.23	2.12	3.35	2.77	3.13	1.17	2.42
	search	0.90	0.87	0.90	0.88	0.63	1.12	0.92	1.70
	ins/del	3.00	6.00	3.42	5.38	5.13	6.32	1.92	3.22
	search	0.97	0.92	0.88	0.98	0.63	1.12	0.82	1.70
	delete	0.87	2.08	1.17	2.05	2.10	2.40	0.70	0.67
200,000	insert	3.92	6.42	4.27	7.25	4.92	6.03	2.58	4.93
	search	1.92	1.87	1.92	1.88	1.32	2.40	1.85	3.87
	ins/del	5.78	13.80	7.33	11.88	10.93	13.72	3.75	6.67
	search	1.90	1.93	1.92	2.13	1.33	2.38	1.75	3.97
	delete	1.67	4.55	2.48	4.45	4.43	5.10	1.40	1.35

Time Unit: sec

Table 20: Run time on ordered real inputs (version 1 code)
outperformed BSTs and the randomized schemes. BBSTs performed best on parts (b) and (d), RB-Ts did best on part (e) and RB-B and AVL did best on part (c). In comparing the results of Table 21 to those of Table 11 (using version 1 code), we see that the change to version 2 generally increased the comparison cost of the deterministic tree structures by about 25%. For the DSL, the change in code had mixed results. Notice that for RB-T and DSLs, the comparison count for parts (a), (c), and (e) are the same as for the version 1 code. This is because for inserts and deletes, it is necessary to do the equal check first when using these structures. For SKIPs the count is the same for all five parts as the version 1 and 2 codes are the same.

With ordered data (Table 22), treaps required the fewest comparisons for part (a). Skip lists did best on parts (c) and (e), and AVL trees generally outperformed the other structures on parts (b) and (d). Once again, the comparison counts were generally higher using the version 2 code than using the version 1 code.

Run time data using real keys is given in Tables 23 and 24 . The sum of the run time for parts (b) and (d) of the experiment is graphed in Figure 17 for random data and in Figure 18 for ordered data. The graph of Figure 17 shows only one line MIX for AVL, RB-T, RB-B, WB, and BBST while that of Figure 18 shows MIX for AVL, RB-T, RB-B, and WB as the times for these are very close. With random data, RB-B generally performed best on part (a), on parts (b) and (d), the front runner varied among AVL, RB-T, and WB, and on parts (c) and (e) RB-Bs generally did best. On ordered data, TRPs did best on parts (a), (c), and (e) while BBSTs did best on parts (b) and (d).

8 Conclusion

We have developed a new weight balanced data structure called β-BBST. This was developed for the representation of a dictionary. In developing the insert/delete algorithms, we sought to minimize the search cost of the resulting tree. Our experimental results show that BBSTs generally have the best search cost of the structures considered. Furthermore, this translates

8976†59	LE69Ct8	LL6IL8EI	7868689	7ccez69	¢866889	807008¢	70¢7889	†て¢008	әұәәр	
6¢90899	¢C06888	9899668	т¢¢を¢c9	tec0c99	8¢88L99	999LtL9	8929899	と¢tza	чэлеә	
LtLlleg	†069886［	901L0Zゅを	928L98EL	L9才7988［	76768LEI	7860768	¢7906LEL	8Lt78LLI	［əp／su！	000 $00{ }^{\circ}$
¢76L699	9988928	¢9TELE6	モLもも¢99	8 Lzec99	¢¢966¢9	モெ0¢099	$626 \succcurlyeq 8$ 99	L9¢¢を88	чэлеә	
9698429	モெもtを86	66 LE8t 2	C976969	8070 ± 02	LIE\％L0L	929910L	L6L6669	L9¢¢た06	ұıəsu！	
\＆LLI867	LIL800才	てLてL9¢9	698 ¢もLて	90099LZ	9780才Lを	乙297697	L9788\＆27	6LIE698	әұәәр	
\＆tegzze	$869767 \downarrow$	89 026 ¢	90¢7L0¢	78L0［LE	c97¢0LE	79892LE	9786808	6L970［t	чэлеә	
¢9766¢9	194も8t6	00zctedt	90987c9	6720799	¢¢¢98ャ9	ze8t9c9	6¢ 20679	9789¢¢8	［əp／su！	000 600 ［
LZ988t¢	9んLI9「も	L6， 288 ¢t	［997L0E	960LLIE	［L0960¢	¢もL860¢	L¢0060¢	6909tIt	чэлеәs	
LL86L67	モ96L89才	L0terce	6965888	0Ltties	66L608E	zeçace	791L678	6909キてォ	ұıәsu！	
8988LEL	98L9L8L	997LL08	9860LZL	7299LZI	L88897．	97ってもってL	L89L97］	87LtL9	әұәәр	
T8LIOg	6166065	976696［	96LagtI	9697¢もL	89LIgti	89L9LtI	L888tt	8908L6L	чэлеәя	
て， 29667	07ce6ett	cllige	¢もtL90¢	660990¢	モ¢90才0¢	9t08908	060¢も0¢	L¢7\％6688	［əp／su！	000＇09
Ltaleg	c9zL®6L	8L98．0 0	L6698tI	0767¢币	6299才も下	028Ltti	6288もt	6868¢66I	чолеәя	
9L0L9EL	99078 Lz	0990†9［	99968¢ L	07ctect	96L6ted	L0L0ced	88697¢	6868886I	ұıəsu！	
CtLIEz	6 ［9008	\％ヶ797¢	0 LZ 20%	7， 7920 C	L\％ 2907	8LZ00\％	89990\％	700LLZ	әұәГәр	
も¢L9¢\％	6．9078	¢L9age	97，0†て	L987ヵて	L6Letz	08LLも\％	9¢¢しゃて	67L8t¢	чэлеәs	
08t6 5	679992	七69866	ち¢L8T9	78L9ts	0768［9	t8tats	LLetig	L060¢9	［əp／su！	000 0 ［
620cgz	LIt688	¢078t¢	96L0†て	ち¢87ヶを	7976ヶヶ	897\％ヶ\％	LG9Ltz	¢GL7\％8	чглеәя	
L9Lも\％\％	8699LE	L†\％9L\％	968097	LLLE97	96L797	888797	86L797	¢GL7e¢	ұ．əәsu！	
dIMS	d¢L	TSC	LSEG	¢M	g－gy	L－g4	TMV	LSE	uo！̣e．ıədo	u

9 9LG966I	モ¢0ヶ68t	8も6 LTLて，	8866799	960989¢	889¢689	もLものL08	6［86987	әтәәр	
LZe8979	8898L68	9902 L 26	097te99	$979 \angle 6 \ddagger 9$	0689299	モ8L6L99	8【99279	чолеәя	
¢¢7\％906	976067［L	［L69202\％	709LL9tI	0才0706ち	8820†86［	988Lt965	990L7675	［əp／su！	$000^{〔} 00 z^{\circ}$
70887t9	†¢670L6	9Ct9886	89โ9799	0 ［88879	†078899	86L9879	0clastio	чолеә	
L0780†9	9299929	69tetLIL	99［900 2	028teL8	97ヶ6876］	8Ltgelot	DLL9L0L	ұ．əәsu！	
¢87．96	769808\％	96［LL69	8069908	0269897	66LLtLZ	78628LE	8066276	әұәрРр	
6802468	ャ6689切	009899t	6L0tLIE	ちも8870¢	02t8808	乙L9680¢	9L68808	чолеәs	
L6t90tt	99076t¢	Lもち88L6L	z¢60¢69	9292702	92807e6	$9098 \% 66$	08ceri9	［əp／su！	000 $00{ }^{\text { }}$
9TL0L6z	8LL8ECt	6268197	860LZLE	929170¢	82T6ILE	т80¢ஏ0¢	768L808	чэлеәя	
8L99366	¢688687	80tLbga	960L0¢¢	70†ち¢88	8LLTTLS	†9¢29Lt	898LE8E	ұ．ıеsu！	
86†98t	てL9LELL	76298827	toclbit	797976I	8L68L6T	6LZ6LLL	9¢6790工	әұәәр	
	セ6L9965	798LELZ	も6ちてのゅ」	てセもたで！	89てもttr	もて8ももた	切L6Ltt	чэлеәs	
9Lt8L65	L487， 276	9โて6L09	09ttgre	899 L08¢	007098t	87LILEt	692L887	［əp／su！	000＇09
LLZL9tI	ちLも0665	94L6ctz	986cgtt	89807¢L	88969tI	09¢LてもL	6968LもL	чэлеәя	
07L67． 5	0LLCALEL	L99989\％	๖¢69tat	0サもL6L	09もちく97	8998¢87\％	086899L	ұıәsu！	
66878	080¢8	ゅヶ789¢	870687	0¢6707	9 L 7800	98． 924%	9L08LI	әұәәр	
88909z	6867t¢	08L6te	98Lでって	078887	0¢¢97\％	te888\％	0 L60†\％	чолеәs	
999ち¢	66778 т	929886	0LL8Gg	808799	079272	0才08L2	87086t	［əp／su！	000 ${ }^{\circ}$［
90299z	090788	ももちてL8	0 LEもち	867287	90くLも	てもt68\％	797L86	чэлеә	
66TLけ\％	8969L\％	66 Lget	80LL97	$\dagger 80708$	99LZセt	876928	¢86297	ұ．̇əsu！	
dIMS	d4L	TSC	LSg＇	¢M	g－gd	L－gd	T＾V		u

n	operation	BST	AVL	RB-T	RB-B	WB	BBST	DSL	TRP	SKIP
10,000	insert	0.15	0.14	0.20	0.18	0.25	0.36	0.23	0.25	0.31
	search	0.10	0.08	0.10	0.11	0.09	0.11	0.13	0.16	0.21
	ins/del	0.27	0.27	0.52	0.34	0.47	0.80	0.64	0.50	0.54
	search	0.10	0.08	0.10	0.11	0.09	0.11	0.13	0.14	0.21
	delete	0.10	0.10	0.20	0.14	0.18	0.32	0.29	0.14	0.19
50,000	insert	1.02	0.98	1.15	0.89	1.46	1.88	1.44	1.34	1.65
	search	0.69	0.55	0.57	0.55	0.57	0.55	0.89	0.83	1.42
	ins/del	1.79	1.80	2.99	1.59	2.93	3.97	3.82	2.44	3.16
	search	0.71	0.60	0.63	0.55	0.57	0.56	0.87	0.79	1.32
	delete	0.67	0.67	1.22	0.66	1.19	1.63	1.80	0.75	1.21
100,000	insert	2.15	2.00	2.58	1.90	3.18	4.01	3.11	2.95	3.69
	search	1.52	1.21	1.24	1.18	1.23	1.23	1.97	1.84	3.04
	ins/del	3.88	3.92	6.74	3.46	6.28	8.73	8.50	5.39	7.18
	search	1.55	1.32	1.45	1.25	1.29	1.27	1.95	1.82	2.98
	delete	1.51	1.49	2.75	1.45	2.57	3.64	3.93	1.73	2.77
200,000	insert	5.04	4.45	5.79	4.28	6.92	9.20	7.05	6.81	8.01
	search	3.43	2.63	2.70	2.64	2.73	2.69	4.43	4.00	6.60
	ins/del	8.92	8.87	15.36	7.88	13.85	19.53	19.55	12.17	16.11
	search	3.43	2.98	3.13	2.73	2.83	2.77	4.37	4.02	6.70
	delete	3.33	3.32	6.08	3.20	5.65	8.24	8.91	3.88	6.04

Time Unit: sec

Table 23: Run time on random real inputs (version 2 code)

Figure 17: Run time on random real inputs (version 2 code)

Figure 18: Run time on ordered real inputs (version 2 code)

n	operation	AVL	RB-T	RB-B	WB	BBST	DSL	TRP	SKIP
10,000	insert	0.17	0.23	0.28	0.27	0.30	0.23	0.15	0.30
	search	0.08	0.08	0.12	0.08	0.08	0.12	0.12	0.13
	ins/del	0.23	0.43	0.40	0.47	0.60	0.48	0.17	0.27
	search	0.08	0.08	0.07	0.08	0.08	0.08	0.10	0.13
	delete	0.08	0.15	0.12	0.17	0.20	0.20	0.08	0.05
50,000	insert	0.83	1.45	1.43	1.57	1.37	1.35	0.82	1.18
	search	0.45	0.48	0.48	0.47	0.38	0.60	0.50	0.83
	ins/del	1.35	2.65	1.95	2.75	2.47	3.05	1.05	1.42
	search	0.45	0.47	0.45	0.47	0.37	0.63	0.58	0.77
	delete	0.45	1.05	0.50	1.00	1.03	1.17	0.43	0.33
100,000	insert	1.78	2.75	2.73	3.43	2.63	3.23	1.33	2.18
	search	0.97	0.98	1.00	1.03	0.77	1.30	1.15	1.55
	ins/del	2.85	6.22	3.98	6.00	5.33	6.37	2.02	3.33
	search	0.97	1.10	0.98	1.02	0.77	1.32	1.03	1.70
	delete	0.97	2.18	1.05	2.15	2.22	2.43	0.63	0.67
200,000	insert	3.78	6.08	5.43	7.18	5.37	6.07	2.87	5.23
	search	2.08	2.13	2.13	2.17	1.63	3.10	2.27	3.47
	ins/del	6.13	13.93	8.48	13.42	11.33	13.60	4.10	7.02
	search	2.12	2.15	2.13	2.17	1.63	2.80	2.18	4.27
	delete	2.03	4.75	2.27	4.77	4.72	5.18	1.35	1.35

Time Unit: sec

Table 24: Run time on ordered real inputs (version 2 code)
into reduced search time when the key comparison cost is relatively high (e.g., for real keys). The insert and delete algorithms for β-BBSTs are not as efficient as those for other dictionary structures (such as AVL trees). As a result, we recommend β-BBSTs for environments where searches are done with much greater frequency than inserts and/or deletes. Based on our experiments, we conclude that AVL trees remain the best dictionary structure for general applications.

We have also proposed two simplified versions of the BBST called SBBST and BBSTD. The SBBST seeks only to provide logarithmic run time per operation and unlike the general BBST, does not reduce search cost at every opportunity. The SBBST provides slightly better balance than provided by $\mathrm{WB}(\alpha)$ trees. The BBSTD does not attempt to maintain β-balance. However it performs rotations to reduce search cost whenever possible. Both versions are very competitive with BBSTs. The SBBST exhibited much better run time performance than BBSTs on random data and the BBSTD slightly outperformed the BBST on ordered data. However, BBSTs generated trees with the lowest search cost (though not by much).

References

[ARAG89] C. R. Aragon and R. G. Seidel, Randomized Search Trees, Proc. 30th Ann. IEEE Symposium on Foundations of Computer Science, pp. 540-545, October 1989.
[BLUM80] N. Blum and K. Mehlhorn, On the Average Number of Rebalancing Operations in Weight-balanced Trees, Theoretical Computer Science, vol 11, pp.303-320, 1980.
[GUIB78] L. J. Guibas and R. Sedgewick, A Dichromatic Framework for Balanced Trees, Proc. 19th FOCS, pp. 8-21, 1978.
[HORO94] E. Horowitz and S. Sahni, Fundatamentals of Data Structures in Pascal, 4th Edition, New York: W. H. Freeman and Company, 1994.
[MUNR92] J. I. Munro, T. Papadakis and R. Sedgewick, Deterministic Skip Lists, 3rd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 367-375, January 1992.
[NIEV73] J. Nievergelt and E. M. Reingold, Binary Search Trees of Bounded Balance, SIAM J. Computing, Vol. 2, No. 2, pp. 33-43, March 1973.
[PAPA93] T. Papadakis, Skip Lists and Probabilistic Analysis of Algorithms, PhD Dissertation, Univ. of Waterloo, 1993.
[PUGH90] W. Pugh, Skip Lists: a Probabilistic Alternative to Balanced Trees, Communications of the ACM, vol. 33, no. 6, pp.668-676, 1990.
[SAHN93] S. Sahni, Software Development in Pascal, Florida: NSPAN Printing and Publishing Co., 1993.
[SEDG94] R. Sedgewick, Algorithms in C++, Mass.: Addison-Wesley Pub. Co., 1994.
[TARJ83] R. E. Tarjan, Updating a Balanced Search Tree in $O(1)$ Rotations, Information Processing Letters, Vol. 16, pp. 253-257, June 1983.

[^0]: ${ }^{1}$ This research was supported, in part, by the Army Research Office under grant DAA H04-95-1-0111, and by the National Science Foundation under grant MIP91-03379.

