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Abstract

We develop a new class of weight balanced binary search trees called ��balanced
binary search trees ���BBSTs�� ��BBSTs are designed to have reduced internal path
length� As a result� they are expected to exhibit good search time characteristics�
Individual search� insert� and delete operations in an n node ��BBST take O�logn�
time for � � � �

p
��	� Experimental results comparing the performance of ��BBSTs�

WB��� trees� AVL�trees� red
black trees� treaps� deterministic skip lists and skip lists
are presented� Two simpli�ed versions of ��BBSTs are also developed�

Keywords and Phrases� data structures� weight balanced binary search trees

� Introduction

A dictionary is a set of elements on which the operations of search� insert� and delete are

performed� Many data structures have been proposed for the e�cient representation of a

dictionary 	HORO�
�� These include direct addressing schemes such as hash tables and

comparison schemes such as binary search trees� AVL�trees� red�black trees 	GUIB��� trees

of bounded balance 	NIEV��� treaps 	ARAG���� deterministic skip lists 	MUNR���� and skip

lists 	PUGH���� Of these schemes� AVL�trees� red�black trees� and trees of bounded balance

�WB���� are balanced binary search trees� When representing a dictionary with n elements�

using one of these schemes� the corresponding binary search tree has height O�log n� and

individual search� insert� and delete operations take O�log n� time� When �unbalanced�
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binary search trees� treaps� or skip lists are used� each operation has an expected complexity

of O�log n� but the worst case complexity is O�n�� When hash tables are used� the expected

complexity is O��� per operation� However� the worst case complexity is O�n�� So� in

applications where a worst case complexity guarantee is critical� one of the balanced binary

search tree schemes is to be performed�

In this paper� we develop a new balanced binary search tree called ��BBST ���balanced

binary search tree�� Like WB��� trees� this achieves balancing by controlling the relative

number of nodes in each subtree� However� unlike WB��� trees� during insert and delete

operations� rotations are performed along the search path whenever they reduce the internal

path length of the tree �rather than only when a subtree is out of balance�� As a result� the

constructed trees are expected to have a smaller internal path length than the corresponding

WB��� tree� Since the average search time is closely related to the internal path length� the

time need to search in a ��BBST is expected to be less than that in a WB��� tree�

In Section �� we de�ne the total search cost of a binary search tree and show that the

rebalancing rotations performed in AVL and red�black trees might increase this metric� We

also show that while similar rotations in WB��� trees do not increase this metric� insert and

delete operations in WB��� trees do not avail of all opportunities to reduce the metric� In

Section �� we de�ne ��BBSTs and show their relationship to WB��� trees� Search� insert�

and delete algorithms for ��BBSTs are developed in Section 
� A simpli�ed version of ��

BBSTs is developed in Section �� Search� insert and delete operations for this version also

take O�log n� time each� An even simpler version of ��BBSTs is developed in Section ��

For this version� we show that the average cost of an insert and search operation is O�log n�

provided no deletes are performed�

An experimental evaluation of ��BBSTs and competing schemes for dictionaries �AVL�

red�black� skip lists� etc�� was done and the results of this are presented in Section � This

section also compares the relative performance of ��BBSTs and the two simpli�ed versions

of Sections � and ��
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� Balanced Trees and Rotations

Following an insert or delete operation in a balanced binary search tree �e�g�� AVL� red�black�

WB���� etc��� it may be necessary to perform rotations to restore balance� The rotations

are classi�ed as LL� RR� LR� and RL 	HORO�
�� LL and RR rotations as well as LR and

RL rotations are symmetric� While the conditions under which the rotations are performed

vary with the class of balanced tree considered� the node movement patterns are the same�

Figure � shows the transformation performed by an LL and an LR rotation� In this �gure�

nodes whose subtrees have changed as a result of the rotation are designated by a prime�

So� p� is the original node p however its subtrees are di�erent�

Let h�x� be the height of the subtree with root x� Let s�x� be the number of nodes in this

subtree� When searching for an element x� x is compared with one element at each of l�x�

levels� where l�x� is the level at which x is present �the root is at level ��� So� one measure

of the �goodness� of the binary search tree� T � for search operations �assuming each element

is searched for with equal probability� is its total search cost de�ned as�

C�T � �
X

x�T
l�x��

Notice that C�T � � I�T � � n where I�T � is the internal path length of T and n is the

number of elements�nodes in T � The cost of unsuccessful searches is equal to the external

path length E�T �� Since E�T � � I�T � � �n� minimizing C�T � also minimizes E�T ��

Total search cost is important as this is the dominant operation in a dictionary �note

that insert can be modeled as an unsuccessful search followed by the insertion of a node

at the point where the search terminated and deletion can be modeled by a successful

search followed by a physical deletion� both operations are then followed by a rebalanc�

ing�restructuring step��

Observe that in an actual implementation of the search operation in programming lan�

guages such as C��� C� and Pascal� the search for an x at level l�x� will involve upto two

comparisons at levels �� �� � � � � l�x�� If the code �rst checks x � ei where ei is the element
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Figure �� LL and RL rotations

at level i to be compared and then x � ei to decide whether to move to the left or right

subtree� then the number of element comparisons is exactly �l�x�� �� In this case� the total
number of element comparisons is

NC�T � � �
X

x�T
l�x�� n � �C�T �� n

and minimizing C�T � also minimizes NC�T �� If the code �rst checks x � ei and then x � ei

�or � ei�� the number of element comparisons done to �nd x is l�x��r�x��� where r�x� is the

number of right branches on the path from the root to x� The total number of comparisons






is bounded by �C�T �� For simplicity� we use C�T � to motivate our data structure�

In an AVL tree� when an LL rotation is performed� h�q� � h�c� � � � h�d� � � �see

Figure ��a��� At this time� the balance factor at gp is h�p��h�d� � �� The rotation restores

height balance which is necessary to guarantee O�log n� search� insert� delete operations in

an n node AVL tree� The rotation may� however� increase the total search cost� To see

this� notice that an LL rotation a�ects the level numbers of only those nodes that are in the

subtree with root gp prior to the rotation� We see that l�q�� � l�q���� l�p�� � l�p���� l�gp�� �
l�gp� � �� the total search cost of the subtree with root a is decreased by s�a� as a result of

the rotation� etc� Hence� the increase in C�T � due to the rotation is�

l�p��� l�p� � l�q��� l�q� � l�gp��� l�gp�� s�a�� s�b� � s�d�

� ��� � � �� s�q� � � � s�d� � s�d�� s�q��

A similar analysis shows that an LR rotation increases C�T � by s�d�� s�q��

If the LL rotation was triggered by an insertion� s�q� is at least one more than the

minimum number of nodes in an AVL tree of height t � h�q�� �� So� s�q� � �t���
p
� where

� � ���
p
����� The maximum value for s�d� is �t� �� So� an LL rotation has the potential

of increasing total search cost by as much as

�t � � � �t���
p
� � �t � � � ����t������
�

This is negative for t � � and positive for t � �� When t � ��� for example� an LL

rotation may increase total search cost by as much as �� As t gets larger� the potential

increase in search cost gets much greater� This analysis is easily extended to the remaining

rotations and also to red�black trees�

De�nition �WB��� 	NIEV��� The balance� B�p�� of a node p in a binary tree is the ratio

�s�l� � ����s�p� � �� where l is the left child of p� For � � 	�� ����� a binary tree T is in
WB��� i� � � B�p� � ��� for every node p in T� By de�nition� the empty tree is in WB���

for all ��
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Lemma � ��	 The maximum height� hmax�n�� of an n node tree in WB��	 is � log �

���

�n�

�� 
NIEV���

��	 Inserts and deletes can be performed in an n node tree in WB��	 in O�log n	 time for

���� � � � ��p��� 
BLUM���

��	 Each search operation in an n node tree in WB��	 takes O�log n	 time 
NIEV����

In the case of weight balanced trees WB���� an LL rotation is performed when B�gp� �
�� � and B�p� � ���� � �� �see Figure ��a�� 	NIEV��� So�

� � � � s�p� � �

s�gp� � �
�

s�p� � �

s�p� � s�d� � �

or

s�d� � s�p�
�

� � �
�
�� � �
� � �

and

�

�� �
� B�p� �

s�q� � �

s�p� � �

or

s�q� � s�p�
�

� � �
�
�� � �
� � �

�

So� LL rotations �and also RR� do not increase the search cost� For LR rotations

	NIEV��� B�gp� � � � � and B�p� � ���� � ��� So� s�d� � s�p� �
��� �

����
��� and with

respect to Figure ��b��

�

�� �
� B�p� �

s�p�� s�q�

s�p� � �

or

s�q� � s�p�
� � ��
�� �

� �

�� �
�

For � � ���� s�q� � s�d� and LR �RL� rotations do not increase search cost� Thus� in the

case of WB��� trees� the rebalancing rotations do not increase search cost� This statement

remains true if the conditions for LL and LR rotation are changed to those in 	BLUM����

While rotations do not increase the search cost of WB��� trees� these trees miss per�

forming some rotations that would reduce search cost� For example� it is possible to have
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� � B�gp� � � � �� B�p� � �

���� and s�q� � s�d�� Since B�gp� isn�t high enough� an LL

rotation isn�t performed� Yet� performing such a rotation would reduce search cost�

� ��BBSTs

De�nition A cost optimized search tree �COST� is a binary search tree whose search cost

cannot be reduced by performing a single LL� RR� LR� or RL rotation�

Theorem � If T is a COST with n nodes� its height is at most log��
p
��n� ��� � ��

Proof Let Nh be the minimum number of nodes in a COST of height h� Clearly� N� � �

and N� � �� Consider a COST Q of height h � � having the minimum number of nodes Nh�

Q has one subtree R whose height is h� � and another� S� whose height is � h� �� R must
be a minimal COST of height h � � and so has Nh�� nodes� R� in return� must have one

subtree� U � of height h � � and another� V � of height � h � �� Both U and V are COSTs

as R is a COST� Since R is a minimal COST� U is a minimal COST of height h � � and
so has Nh�� nodes� Since Q is a COST� jSj � maxfjU j� jV jg� We may assume that Nh is

a nondecreasing function of h� So� jSj � Nh��� Since Q is a minimal COST of height h�

jSj � Nh��� So�

Nh � Nh�� �Nh�� � �� h � �

N� � �� N� � ��

This recurrence is the same as that for the minimum number of nodes in an AVL tree

of height h� So� Nh � Fh�� � � where Fi is the i�th Fibbonacci number� Consequently�

Nh � �h���
p
� � � and h � log��

p
��n� ��� � �� �

Corollary � The maximum height of a COST with n nodes is the same as that of an AVL

tree with this many nodes�





De�nition Let a and b be the root of two binary trees� a and b are ��balanced� � � � � ��
with respect to one another� denoted ���a� b�� i�

�a� ��s�a�� �� � s�b�

�b� ��s�b�� �� � s�a�

A binary tree T is ��balanced i� the children of every node in T are ��balanced�

A full binary tree is ��balanced and a binary tree whose height equals its size �i�e�� number

of nodes� is ��balanced�

Lemma � If the binary tree T is ��balanced� then it is 	�balanced for � � 	 � ��

Proof Follows from the de�nition of balance� �

Lemma � If the binary tree T is ��balanced� � � � � ���� then it is in WB��	 for � �

���� � ���

Proof Consider any node p in T � Let l and r be node p�s left and right children�

B�p� �
s�l� � �

s�l� � s�r� � �
�

�

� � s�r���
s�l���

�

Since T is ��balanced� s�l�� � � s�r��� or s�l� � � � s�r��� � �� So�

s�l� � �

s�r� � �
� ��� � �� � �

��s�r� � ��
� ���

or

s�r� � �

s�l� � �
� ��

So� B�p� � ���� � ��� Further� s�r�� � � s�l���� So�

s�r� � �

s�l� � �
� ����

�



Figure �� A tree in WB���
� that is not �
�
�balanced

And� B�p� � ���� � ���� � ���� � ��� Hence ���� � �� � B�p� � ���� � �� for every p in

T � So� T is in WB��� for � � ���� � ��� �

Remark While every ��balanced tree� � � � � ���� is in WB��� for � � ���� � ���

there are trees in WB��� that are not ��balanced� Figure � shows an example of a tree in

WB���
� that is not �
� �balanced�

Lemma � If T is a COST then T is �
��balanced�

Proof If T is a COST� then every subtree of T is a COST� Consider any subtree with

root p� left child l� and right child r� If neither l nor r exist� then s�l� � s�r� � � and p

is �
�
�balanced� If s�l� � � and s�r� � �� then r has a nonempty subtree with root t and

s�t� � s�l�� So p is not a COST� Hence� s�r� � � and p is �
��balanced� The same is true

when s�r� � �� So� assume s�l� � � and s�r� � ��

If s�l� � �� then s�r� � � as otherwise� one of the subtrees of r has m � � nodes and
m � s�l� implies p is not a COST� Since s�r� � �� �

��s�r�� �� � s�l� and �
��s�l�� �� � s�r��

So� p is �
��balanced� The same proof applies when s�r� � �� When s�l� � � and s�r� � ��

let a and b be the roots of the left and right subtrees of l� Since p is a COST� s�a� � s�r�

and s�b� � s�r�� So� s�l� � s�a� � s�b� � � � �s�r� � � and �
��s�l� � �� � s�r�� Similarly�

�
�
�s�r�� �� � s�l�� So� �

�
��l� r�� Since this proof applies to every nodes in T � the children of

every p are �
��balanced and T is

�
� �balanced� �

�



Figure �� �
�
�balanced tree that is not a COST

Remark There are �
�
�balanced trees that are not COSTs �see Figure ���

While a COST is in WB����� and WB��� trees can be maintained e�ciently only for

���� � � � � � ��p� � ������ a COST is better balanced than WB��� trees with � in the
usable range� Unfortunately� we are unable to develop O�log n� insert�delete algorithms for

a COST�

In the next section� we develop insert and delete algorithms for ��balanced binary search

trees ���BBST� for � � � � p
� � �� Note that every �p� � ���BBST is in WB��� for

� � � � ��p� which is the largest permissible �� Since our insert and delete algorithms
perform rotations along the search path whenever these result in improved search cost�

BBSTs are expected to have better search performance than WB��� trees �for � � ���������

Each node of a ��BBST has the �elds LeftChild� Size� Data� and RightChild� Since every

��BBST� � � �� is in WB���� for � � �� ��BBSTs have height that is logarithmic in n� the

number of nodes �provided � � ���

� Search� Insert� and Delete in a ��BBST

To reduce notational clutter� in the rest of the paper� we abbreviate s�a� by a �i�e�� the node

name denotes subtree size��

��� Search

This is done exactly as in any binary search tree� Its complexity is O�h� where h is the

height of the tree� Notice that since each node has a size �eld� it is easy to perform a search

��
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Figure 
� LL rotation for insertion

based on index �i�e�� �nd the ���th smallest key�� Similarly� our insert and delete algorithms

can be adapted to indexed insert and delete�

��� Insertion

To insert a new element x into a ��BBST� we �rst search for x in the ��BBST� This search

is unsuccessful �as x is not in the tree� and terminates by falling o� the tree� A new node y

containing x is inserted at the point where the search falls o� the tree� Let p� be the parent

�if any� of the newly inserted node� We now retrace the path from p� to the root performing

rebalancing rotations�

There are four kinds of rotations LL� LR� RL� and RR� LL and RR rotations are symmetric

and so also are LR and RL rotations� The typical con�guration before an LL rotation is

performed is given in Figure 
�a�� p� denotes the root of a subtree in which the insertion

was made� Let p be the �size of the� subtree before the insertion� Then� since the tree was

a ��BBST prior to the insertion� ���p� d�� Also� for the LL rotation to be performed� we

require that �q � c� and �q � d�� Note that q � d implies q � �� We shall see that ���q� c�
follows from the fact that the insertion is made into a ��BBST and from properties of the

rotation� Following an LL rotation� p� is updated to be the node p���

Lemma � 
LL insertion lemma� If 
���p� d� � ���q� c� � �q � c� � �q � d�� for � � � � ���

��
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Figure �� Substep �i� of insertion LR rotation

before the rotation� then ���q� gp�� and ���c� d� after the rotation�

Proof Assume the before condition�

�a� ��q � �� � c �as ���q� c�� � gp�� Also� ��gp� � �� � ��c� d� � ��q �as � � �� q � c and

q � d� � q �as � � ����� So� ���q� gp���
�b� d � q � d � � � q � � � ��d � �� � ��q � �� � c �as ���q� c��� Also� ��c � �� �
��q � c� �� � ��p� � �� � ��p� �� � d �as ���p� d��� So� ���c� d�� �

In an LR rotation� the before con�guration is as in Figure 
�a�� However� this time q � c�

Figure 
�a� is redrawn in Figure ��a�� In this� the node labeled c in Figure 
�a� has been

labeled q and that labeled q in Figure 
�a� has been labeled a� With respect to the labelings

of Figure ��a�� rotation LR is applied when

	�q � a� � �q � d���

The other conditions that apply when an LR rotation is performed are

	���p� d� � ���a� q� � ���b� c���

Here p denotes the �size of the� left subtree of gp prior to the insertion� An LR rotation is

��



accomplished in two substeps �or two subrotations�� The �rst of these is shown in Figure ��b��

Following an LR rotation� p� is updated to be node q��

Lemma 	 
LR substep�i	 insertion lemma� If 
���p� d�����a� q�����b� c���q � a���q � d��

for � � � � ��� before the subrotation� then 
���p��� gp�� � f����a� b� � �

���
��c� d�� 	 � �

���
�

�a� b� � ���c� d��g� after the subrotation�

Proof Assume the before condition� First� we show that ���p��� gp�� after the rotation�

Note that ��p�� � �� � ��a � b� � ��a � b � c � �� � ��c � �� � ��p� � �� � ��c � �� �

��p � �� � �c � d � �c � d � gp�� Also� ��gp� � �� � ��c � d� � b � � � �d �as ���b� c��

� b � �q �as q � d� � b � a � � �as ���a� q�� � p�� �as � � ��� and p�� � a � b � ��� So�

���p��� gp���

Next� we prove two properties that will be used to complete the proof�

P�� ��b� �� � a�

To see this� note that ��b� �� � ��q � �� � a �as ���a� q���

P�� ��c� �� � d�

For this� observe that p� � � � a� q � ��q � �� � q �as ���a� q�� � �� � ���q � �� � �� So�
q� � � p���

��� �
p��
���� Similarly� q� � � b� c � ��c� �� � c �as ���b� c�� � �� ����c� �� � ��

So� ��c� �� � �

����q � �� � �

����q � �� � ��p���
������ � d

������ �as ���p� d�� � d�

To complete the proof of the lemma� we need to show

f����a� b� � �

� � �
��c� d�� 	 � �

� � �
��a� b� � ���c� d��g�

We do this by considering the two cases b � c and b � c�

Case b � c� Since a � q � b�c��� ��a��� � ��b�c� � ��b � b� This and P� imply ���a� b��

Also� d � q � b� c� �� So� �

����d� �� � �

����b� c� �� � �

���c �
�

����b� �� � �

���c�
c

���

�as ���b� c�� � c� This� together with P� implies �

���
��c� d�� So� ���a� b� � �

���
��c� d��

Case b � c� Since a � q � b � c � �� a � � � b � c� So� a � � � b � c � � or
��a���
���

� �b

���
� ��c���

���
� �b

���
� b

���
�as ���b� c�� � b� This and P� imply �

���
��a� b�� Also�

d� � � q � � � b� c� �� So� ��d� �� � ��b� c� �� � ���c� �� � c� This� together with

��
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Figure �� Case LL for LR�ii� rotation

P� implies ���c� d�� So� �

���
��a� b� � ���c� d�� �

Since an LR�i� rotation can cause the tree to lose its ��balance property� it is necessary

to follow this with another rotation that restores the ��balance property� It su�ces to

consider the two cases of Figures � and  for this follow up rotation� The remaining cases

are symmetric to these� In Figures � and � p and d denote the nodes that do not satisfy

���p� d�� Note� however� that these nodes do satisfy �

���
��p� d��

Since the follow up rotation to LR�i� is done only when

�

� � �
��p� d� � �
���p� d���

either ��p� �� � d or ��d� �� � p� When ��p� �� � d� the second substep rotation is one

of the two given in Figures � and � When ��d� �� � p� rotations symmetric to these are

performed� In the following� we assume ��p � �� � d� Further� we may assume d � �� as

d � � and �

���
��p� d� imply p � �� Hence� ���p� d�� Also� d � � and ��p��� � d imply p � ��

The LR�ii� LL rotation is done when the condition

A � �q � d� � �c � �� � ��q � ��� ��� �B where

B �
�

� � �
��p� d� � �
���p� d�� � ���q� c� � ���p� �� � d � ���

�




Lemma 
 
Case LR�ii	 LL rotation� If A holds before the rotation of Figure �� then ��

�q� gp�� and ���c� d� after the rotation provided � � � � p�� ��

Proof �a� ���q� gp���

��q � �� � c �as ���q� c�� � gp�� Also� ��gp� � �� � ��c� d� � ���� � ��q � �� � �� � d� �
��� � ��q � ��� � �� � ��q � �� �as q � d� � ��� � ��q � �� � q �as ��� � �� � � for
� � � � p� � ��� So� ���q� gp���
�b� ���c� d��

��d � �� � ��q � �� � c �as ���q� c��� And� ��c � �� � ��

���
�c � �� � �

���
�c � �� �

�

���
q � �

���
�c � �� � �

���
�q � c � �� � �

���
�p � �� � �

���
�p � �� � d �as �

���
��p� d��� So�

���c� d�� �

Lemma � If �c � �� � ��q � �� � ��� � ���p � �� � d� in Figure �� then d � q provided

� � � � p� � ��

Proof Since d � ��p��� � ��q�c� � ��q������q����� � ������q�������� q��

�as ��� � �� � � and ���� �� � � for � � � � p�� ��� So� d � q� �

So� the only time an LR�ii� LL rotation is not done is when C � �C� 	 C�� � B holds

where

C� � �q � d� � �c � �� � ��q � �� ��

C� � c � �� � ��q� �� � ���

At this time� the LR rotation of Figure  is done� In terms of the notation of Figure � the

condition C becomes D � �D� 	D�� � E where

D� � �a � d� � �q � �� � ��a� �� ��

D� � q � �� � ��a� � � �

E �
�

� � �
��p� d� � 
���p� d� � ���a� q� � ���b� c� � ���p� �� � d � ���

��
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Figure � Case LR for LR�ii� rotation

Lemma � When an LR�ii	 LR rotation is performed and � � p�� �� q � d and so search

cost is reduced�

Proof If D�� then since d � ��p��� � ��a�q� � ��d�q�� q � d���d � d as � � p����
If D�� then d � ��p � �� � ��a� q� � �� q����

���
� q� � ������

���
q � ������

���
� ������

���
q � q �as

� � p� � ��� �

Lemma � When �d � a� � ���b� c� � ���p � �� � d� � �� � p
� � �� �see Figure �	�

��a� �� � b and ��d� �� � c�

Proof Since ��p � �� � d and d � a� ��p� �� � a or ��a� q� � a or a�� � �� � �q or

a � �

��� q� So� ��a� �� � ��

��� q � � � ��

��� �b� c� ��� ��

If c � b

�
� �� then

��a� �� �
��

�� �
�b�

b

�
� � � ��� �

�
��� � ��b

�� �
�
���� � ��

� � �
� �

�
��� � ��b

�� �
�
����� � � � � ��

�� �

��



�
��� � ��b

�� �
�
����� �� � ��

�� �

� b �as ��� � �� � � � � for � �
p
�� � and �� � �� � � � � for � �

p
�� ���

Since ��c� �� � b� c � b

�
� �� So�

��a� �� � ��

� � �
�b� c � �� � ��

� � �
�b�

b

�
� �� � ��� � ��b

�� �
�
��� � �

� � �
�

So�

a� � � � � �

� � �
b�

�� � �
�� �

�

However� since ������� � � for � � p���� ������������ �
�
and ������������ � ��

So� a� � � b����� If a � c��� then c � a� � � b����� We have already shown that for

c � b����� ��a��� � b� So� assume a � c��� Now� a � c and ��a��� � ��c��� � b �as

���b� c��� So� ��a� �� � b in all cases� ��a� �� � c may be shown in a similar way� Since

a � d� we get ��d� �� � c� �

Lemma �� 
Case LR�ii	 LR rotation� If D holds before the rotation of Figure �� then ��

�p�� gp��� ���a� b�� and ���c� d� following the rotation provided � � � � p� � ��

Proof �a� ���p�� gp���

��gp�� �� � ��c� d� � b����d �as ���b� c�� � b����q �from Lemmas � and ��� q � d�

� b���a�� � a�b��� � a�b�� � p�� Also� since �

���
��p� d� and q � d� ��p��� � �����d

or ��a� q� � �� � ��d or a� q � �� � �
�
�d or a � �� � �

�
�d � q � �� � �

�
�d � d � d��� So�

��p� � �� � ��a� b� � d � �b � d � c� � �as ���b� c�� � d � c� � � gp��

�b� ���a� b��

Since b � q and ���a� q�� ��b� �� � ��q � �� � a�

When D�� ��a� �� � b was proved in Lemma ��� So� ���a� b��

When D�� q � a�� � �� � � � �� So�

a � q

� � �
� � � �

� � �
�

b� c� �

� � �
� � � �

� � �
�

�



So�

��a� �� � �b� �c� �

� � �
� �� �

� � �
� � � � �b� b� ��

� � �
� �� �

� � �
� � � � b�

So� ���a� b��

�c� ���c� d��

Note that ��c� �� � ��q� �� � �

���
�q � �� � �

���
�p� �� � d�

When D�� ��d� �� � c was proved in Lemma ��� So� ���c� d��

When D�� if d � b��� then d � b and ��d� �� � ��b� �� � c� So� assume d � b��� Now�

b � d � � � ��p� ��� �� So�

b � ��a� b� c� �� � �

� ��
q� � � �

� � �
� b� c� ��� �

�
�

� � �
�b� c� � � �� � ���b� c� ���� �

� �

� � �
�
c

�
� � � c� � � �� � ���

c

�
� � � c� ���� �

�
�

� � �
�
� � �

�
c� �� � �� � �� � ���

� � �

�
c� ��� � �

� c� � � �� � ��c� �� � �

� �� � ��c� �� � � � �� � ��c� � �as � �
p
� � ��

� c

�
� � �as � �

p
�� ���

Also� from d � ��p� �� and the above derivation� we get

d �
�

� � �
�b� c� � � �� � ���b� c� ���

� �

� � �
�
c

�
� � � c� � � �� � ���

c

�
� � � c� ���

�
�

� � �
�
� � �

�
c� �

���

� � �
� ��

� � �

�
c� � ��� � ��

� �� � ��c�
���

� � �
� ��� � ��

� �� � ��c�
��� � �� � �� � � � ��

� � �

� �� � ��c�
�� � 
�� � �

� � �

��



� �� � ��c� � �as �� � 
�� � � � � � � for � �
p
� � ���

So� ��d� �� � ��� � ��c � c �as � � p� � ��� So� ���c� d�� �

Theorem � If T is ��balanced� � � � � p
� � �� prior to insertion� it is so following the

insertion�

Proof First note that since all binary search trees are balanced for � � �� the rotations

�while unnecessary� preserve ��balance� So� assume � � �� Consider the tree T � just after

the new element has been inserted but before the backward restructuring pass begins�

If the newly inserted node� z� has no parent in T �� then T was empty and T � is ��balanced�

If z has a parent but no grandparent� then T has at most one nonempty subtree X� Since

T is ��balanced� ��jXj � �� � �� So� jXj � �� Following the insertion� T � has one subtree

with � � nodes and one with exactly one� So� T � is ��balanced� We may therefore assume

that z has a grandparent in T ��

From the downward insertion path� it follows that all nodes u in T � that have children

l and r for which 
���l� r� must lie on the path from the root to z� During the backward
restructuring pass� each node on this path �other than z and its parent� play the role of gp

in Figures 
 and �� The ��property cannot be violated at z as z has no children� It cannot

be violated at the parent� s� of z as s satis�ed the ��property prior to insertion� As a result

its other subtree has � � element� So� following the insertion� s satis�es the ��property� As
a result� each node in T � that might possibly violate the ��property becomes the gp node

during the restructuring pass� Consider one such gp node� It has children in T � denoted by

p� and d� Its children in T are p and d� Figures 
 and � show the case when d is the right

subtree of gp in both T and T �� The cases RR and RL arise when d is the left subtree�

During the restructuring pass� gp begins at the grandparent of z and moves up to the

root of T �� If z is at level r in T �� �the root being at level ��� then gp takes on r � � values
during the restructuring pass� We shall show that at each of these r � � positions either

��



�a� no rotation is performed and all descendants of gp satisfy the ��property or

�b� a rotation is performed and following this� all descendants of node p�� �Figure 
� or of

node q� �Figure �� satisfy the ��property�

As a result� following the rotation �if any� performed when gp becomes the root of T �� the

restructured tree is ��balanced� The proof is by induction on r� When r � � �recall� we

assume z has a grandparent�� gp begins at the root of T � and its descendants satisfy the

��property�

Without loss of generality� assume that the insertion took place in the left subtree of gp�

With respect to Figure 
� we have three cases� �i� q � c and q � d� �ii� q � c and c � d�

and �iii� q � d and c � d� In case �i�� all conditions for an LL rotation hold and such a

rotation is performed� In case �ii�� an LR rotation is performed� Following either rotation�

T � is ��balanced� In case �iii�� ��p� � �� � ��q � c� � ��d � d �as � � p
� � ��� Also�

��d� �� � p � p � � � p�� So� ��d� �� � p�� Hence� ���p�� d� and T � is ��balanced�

For the induction hypothesis� assume �a� and �b� whenever r � k� In the induction step�

we show �a� and �b� for trees T with r � k � �� The subtree in which the insertion is done

has r � k� So� �a� and �b� hold for all gp locations in the subtree� We need to show �a� and

�b� only when gp is at the root of T �� This follows from Lemmas �� �� � and ���

The theorem now follows� �

Lemma �� The time needed to do an insertion in an n node ��BBST is O�log n	 provided

� � � � p� � ��

Proof Follows from the fact that insertion takes O�h� time where h is the tree height and

h � O�log n� when � � � �Lemmas � and ��� �

��



��� Deletion

To delete element x from a ��BBST� we �rst use the unbalanced binary search tree deletion

algorithm of 	HORO�
� to delete x and then perform a series of rebalancing rotations� The

steps are�

Step � 	Locate x� Search the ��BBST for the node y that contains x� If there is no such

node� terminate�

Step � 	Delete x� If y is a leaf� set d� to nil� gp to the parent of y� and delete node y� If

y has exactly one child� set d� to be this child� change the pointer from the parent �if

any� of y to point to the child of y� delete node y� set gp to be the parent of d�� If y

has two children� �nd the node z in the left subtree of y that has largest value� move

this value into node y� set y � z� go to the start of Step �� f note that the new y has

either � or � child g

Step � 	Rebalance� Retrace the path from d� to the root performing rebalancing rotations�

There are four rebalancing rotations LL� LR� RR� and RL� Since LL and RR as well as

LR and RL are symmetric rotations� we describe LL and LR only� The discussion is very

similar to the case of insertion� The di�erences in proofs are due to the fact that a deletion

reduces the size of encountered subtrees by � while an insertion increases it by �� In an

LL rotation� the con�guration just before and after the rotation is shown in Figure �� This

rotation is performed when q � c and q � d�� Following the rotation� d� is updated to the

node p��

Let d denote the size of the right subtree of gp before the deletion� So� d � d� � �� Since

prior to the deletion the ��BBST was ��balanced� it follows that ���p� d� and ���q� c��

Lemma �� 
LL deletion lemma� If 
���p� d�����q� c�� �q � c�� �q � d�� ���� � � � �����
before the rotation� then 
���q� gp�� � ���c� d��� after the rotation�

��
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Figure �� LL rotation for deletion

Proof �a� ���q� gp���

��q � �� � c �as ���q� c�� � gp�� Also� ��gp� � �� � ��c � d�� � ��q �as c � q and d� � q�

� q �as � � ����� So� ���q� gp���
�b� ���c� d���

d� � q� d�� � � q� �� ��d�� �� � ��q� �� � c� Also� when c � �� ��c� �� � � � d� �as

d� � ��� When c � �� q � c� q � � and p � q�c�� � c��� So� ��c��� � ��p������ �
d� �� �as ���p� d�� � d� � �as � � ���� � d�� Hence� ���c� d��� �

In an LR rotation� the before con�guration is as in Figure ��a�� However� this time q � c�

Figure ��a� is redrawn in Figure ��a�� In this� the node labeled c in Figure ��a� has been

relabeled q and that labeled q in Figure ��a� has been relabeled a� With respect to the

labelings of Figure ��a�� rotation LR is applied when

	�q � a� � �q � d����

The other conditions that apply when an LR rotation is performed are

	���p� d� � ���a� q� � ���b� c���

Here d denotes the �size of� right subtree of gp prior to the deletion� As in the case of

insertion� an LR rotation is accomplished in two substeps �or two subrotations�� The �rst

��
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Figure �� LR rotation for deletion

of these is shown in Figure �� Following an LR rotation� d� is updated to node q��

Lemma �� 
LR substep�i	 deletion lemma� If 
���p� d�����a� q�����b� c���q � a���q � d���

before the subrotation LR�i	� then 
���p�� gp���f����a� b�� �

���
��c� d���	� �

���
��a� b�����c� d���g�

after the subrotation provided ��� � � � ��� �

Proof Assume the before condition�

�a� If b � c � �� then q � b� c�� � �� Furthermore� �q � a� and �q � d�� imply a � d� � ��

So� gp� � p� � �� Hence� 	�
�
��p�� gp�� � �

�
��a� b� � �

�
��c� d���

�b� If b � � and c � �� then q � �� a � �� and d� � �� So� � � p� � � and � � gp� � ��
Hence� 	�

���p
�� gp�� � �

� ��a� b� � �
���c� d

���

�c� If b � � and c � �� then q � �� a � �� and d� � �� So� � � p� � � and � � gp� � �� Hence�
	����p

�� gp�� � �
� ��a� b� � �

� ��c� d
���

As a result of �a� � �c�� to complete the proof� we may assume that b � � and c � �� So�
q � �� a � � �as ���a� q� � ��q � �� � a or a � �� � ��� p � a � q � � � �� d � � �as
���p� d�� ��p� �� � d and � � ����� and d� � d� � � ��
First� we show that ���p�� gp��� For this� note that a� b� c�� � p� �� From ���p� d�� it

follows that ��a� b� c��� � ��p��� � d� So� ��a� b� � d��c��� From Figure ��b�� we

��



see that ��p���� � ��a�b�� Hence� ��p���� � d��c�� � d���c���� � d������ � gp��

Also�

��gp� � �� � ��c� d�� � b� � � �d� �as ���b� c��

� b� �q� � �as q � d��

� b� a� �� �as ���a� q��

� p��

So� ���p�� gp���

Next� we prove two properties that will be used to complete the proof�

P�� ��b� �� � a�

To see this� note that ��b� �� � ��q � �� � a �as ���a� q���

P�� ��c� �� � d��

For this� observe that ��c� �� � ��q � �� �as c � q � �� � ��p � 
� �as q � p � a � � and
a � �� � ��p� ��� �� � d � � �as ���p� d� and � � ���� � d��

To complete the proof of the lemma� we need to show

f����a� b� � �

� � �
��c� d��� 	 � �

� � �
��a� b� � ���c� d���g�

For this� consider the two cases b � c and b � c �as in Lemma ���

Case b � c� Since a � q � b� c� �� ��a� �� � ��b� c� � ��b � b� This� together with P�

implies ���a� b�� Also� d� � q � b�c��� So� �

����d
���� � �

����b�c��� � �

���c�
�

����b��� �
�

���c�
c

��� � c� This� together with P� implies �

���
��c� d��� So� ���a� b� � �

���
��c� d���

Case b � c� Since a � q � b � c � �� a � � � b � c� So� a � � � b � c � � or ��a���
���

�
�b

���
� ��c���

���
� �b

���
� b

���
� b� This and P� imply �

���
��a� b�� Also� d�� � � q� � � b� c� ��

So� ��d� � �� � ��b � c � �� � ���c � �� � c� This and P� imply ���c� d��� Hence� �

���
�

�a� b� � ���c� d��� �

The substep�ii� rotations are the same as for insertion�

�




Theorem � If T is ��balanced� then following a deletion the resulting tree T � is also ��

balanced provided ��� � � � p�� ��

Proof Similar to that of Theorem �� �

When � � � � ���� we need to augment the LL rotation by a transformation for the case

d� � �� When d� � �� ��p��� � d � d��� � �� So� p � ����� and gp � p�d��� � ������
To ��balance at gp� the at most ��� � � nodes in gp are rearranged into any ��BBST in

constant time �as ����� is a constant�� When d� � �� the proof of Lemma �� part �b� can be

changed to show ��c��� � d� for � � � � p���� The new proof is� since c � q� c � �p�����
and ��c� �� � ��p� ���� � � � d��� � � d� d��� � � d� �� � � d�� The LR rotation

needs to be augmented by a transformation for the case d� � d � � � �
������

� �� At this
time� ��p � �� � d � �

������
� So� gp � p � d � �

�������
� � � �

������
� To ��balance at gp� we

rearrange the fewer than �
����������

�
������ nodes in the subtree� in constant time� into any

��balanced tree� When d� � �
������ � �� the proof for ��c� �� � d� in Lemma �
 needs to be

changed to show that the LR substep�i� lemma holds� The new proof is�

d � ��p� �� � ��a� b� c� �� � ����q� �� � b� c� ��

� ����b� c� � b� c� ��

� ���� � ����c� �� � �� � ��c� ��

� ���� � ����c� �� � � � ���

So� ��c� �� � d������
������

� d� � �as d � �
������

� � d��

Also� note that when � � �� all trees are ��balanced so the rotations �while not needed�

preserve balance�

Theorem � With the special handling of the case d� � �� the tree T � resulting from a deletion

in a ��BBST is also ��balanced for � � � � p� � ��

Lemma �� The time needed to delete an element from an n node ��BBST is O�log n	

provided � � � � p�� ��

��



��� Enhancements

Since our objective is to create search trees with minimum search cost� the rebalancing

rotations may be performed at each positioning of gp during the backward restructuring

pass so long as the conditions for the rotation apply rather than only at gp positions where

the tree is unbalanced�

Consider Figure 
�a�� If p� � d� then the conditions of Lemmas � and � cannot apply as

q � p� � d� However� it is possible that e � p� where e is the size of either the left or right

subtree of d� In this case� an RR or RL rotation would reduce the total search cost� The

proofs of Lemmas � and � are easily extended to show that these rotations would preserve

balance even though no insertion was done in the subtree d� The same observation applies

to deletion� Hence the backward restructuring pass for the insert and delete operations can

determine the need for a rotation at each gp location as below �l and r are� respectively� the

left and right children of gp��

if s�l� � s�r� then check conditions for an LL and LR rotation

else check conditions for an RR and RL rotation�

The enhanced restructuring procedure used for insertion and deletion is given in Figure ���

In the RR and RL cases� we have used the relation ��� rather than ��� as this results in
better observed run time�

Since it can be shown that the rotations preserve balance even when there has been no

insert or delete� we may check the rotation conditions during a search operation and perform

rotations when these improve total search cost�

Finally� we note that it is possible to use other de�nitions of ��balance� For example�

we could require ��s�a�� �� � s�b� and ��s�b�� �� � s�a� for ���a� b�� One can show that

the development of this paper applies to these modi�cations also� Furthermore� when this

new de�nition is used� the number of comparisons in the second substep of the LR and RL

rotations is reduced by one�

��



procedure Restructuring �
begin

while �gp� do
begin

if s�gp�left� � s�gp�right� then f check conditions for an LL and LR rotation g
begin

p � gp�left �
if �s�p�left� � s�p�right�� then

begin if �s�p�left� � s�gp�right�� then do LL rotation� end
else

begin

if �s�p�right� � s�gp�right�� then f LR g
begin

do LR rotation �
f now notations a� b� c� and d follow from �gure ��b� g
if ���s�a�� �� � s�b�� then

if ��s�a�right� � �� � ��s�a�left�� � � �� and
�s�b� � s�a�left��� then
do LL rotation

else do LR rotation
else if ���s�d�� �� � s�c�� then

if ��s�d�left� � �� � ��s�d�right� � �� �� and
�s�c� � s�d�right��� then
do RR rotation

else do RL rotation �
end

end

end

else f check conditions for an RR and RL rotation g
begin

p � gp�right �
if �s�p�left� � s�p�right�� then

begin

if �s�p�left� � s�gp�left�� then f RL g
do symmetric to the above LR case �

end

else

begin if �s�p�right� � s�gp�left�� then do RR rotation� end �
end �

gp � gp�parent �
end �

end �

Figure ��� Restructuring procedure

�



��� Top Down Algorithms

As in the case of red�black and WB��� trees� it is possible to perform� in O�log n� time�

inserts and deletes using a single top to bottom pass� The algorithms are similar to those

already presented�

� Simple ��BBSTs

The development of Section 
 was motivated by our desire to construct trees with minimal

search cost� If instead� we desire only logarithmic performance per operation� we may simplify

the restructuring pass so that rotations are performed only at nodes where the ��balance

property is violated� In this case� we may dispense with the LL�RR rotations and the �rst

substep of an LR�RL rotation� Only LR�RL substep �ii� rotations are needed� To see this�

observe that Lemmas  and �� show that the second substep rotations rebalance at gp �see

Figures � and � provided �

���
��p� d� �The remaining conditions are ensured by the bottom�up

nature of restructuring and the fact the tree was ��balanced prior to the insert or delete��

If the operation that resulted in loss of balance at gp was an insert� then ��p � �� � d

�as p � d� the insert took place in subtree p and gp was ��balanced prior to the insert�

and ��p � �� � d �gp is not ��balanced following the insert�� For the substep �ii� rotation

to restore balance� we need ��p � �� � �� � ��d� This is assured if d � � � �� � ��d �as
��p� �� � d�� So� we need d � �� If d � �� then d � �� Now ��p� �� � d and ��p� �� � d

imply p � �� One may verify that when p � �� the LR�ii� rotations restore balance�

If the loss of ��balance at gp is the result of a deletion �say from its right subtree�� then

��p� �� � d� � �as gp was ��balanced prior to the delete�� For the substep �ii� rotation to

accomplish the rebalancing� we need ��p��� � �����d� This is guaranteed if d�� � �����d
or d � ���� When d � ��� and � � ���� d � �� Since ��p � �� � d � � and � � ����
when d � �� p � ��� when d � �� p � � and when d � �� p � 
� We may verify that for all
these cases� the LR�ii� rotations restore balance� Hence� the only problematic case is when

� � ��� and d � ����

��



procedure Restructuring� �
begin

while �gp� do
begin

if ���s�gp�left�� �� � s�gp�right�� then f do an LL or LR rotation g
begin

p � gp�left �
if ��s�p�right� � �� � ��s�p�left� � �� �� and

�s�gp�right� � s�p�left��� then
do LL rotation

else do LR rotation �
end

else

do symmetric to the above L case �
gp � gp�parent �
end �

end �

Figure ��� Simple restructuring procedure for insertion

When � � ���� an LL rotation fails to restore balance only when d � � �see discussion

following Theorem ��� So we need to rearrange the at most ��� � � nodes in gp into any

��balanced tree when d � �� An LR rotation fails only when d � �
������

��� To see this� note
that in the terminology of Lemma �
� d is d�� The proof of P� is extended to the case � � ���
when d� � �

������
��� Also� since d� � ���� for the case b � c� we get ��d���� � ��� � c �as

c � ��� For the case b � c� we need to show ��a� �� � b� Since an LR rotation is done only

when condition D�	D� holds� from Lemmas �� and ��� it follows that ��a� �� � b� So� an

LR rotation rebalances when � � ��� provided d � �
������

� �� For smaller d� the at most
�

������� �
�

������ � � nodes in the subtree gp may be directly rearranged into a ��balanced

tree�

The restructuring algorithm for simple ��BBSTs is given in Figures �� and ��� The

algorithm of Figure �� is used following an insert and that of Figure �� after a delete�

Simple ��BBSTs are expected to have higher search cost than the ��BBSTs of Section 
�

However� they are a good alternative to traditional WB��� trees as they are expected to be

�better balanced�� To see this� note that from the proof of Lemma �� the balance� B�p�� at

��



procedure Restructuring� �
begin

while �gp� do
begin

if ���s�gp�left�� �� � s�gp�right�� then
if �� � ���� and �s�gp�right� � ����� � ��� �� then

rearrange the subtree rooted at gp into any ��balanced tree
else f do an LL or LR rotation g

begin

p � gp�left �
if ��s�p�right� � �� � ��s�p�left� � �� �� and

�s�gp�right� � s�p�left��� then
do LL rotation

else do LR rotation �
end

end

else

do symmetric to the above L case �
gp � gp�parent �
end �

end �

Figure ��� Simple restructuring procedure for deletion

any node p in a ��balanced tree satis�es

�

B�p�
� � �

s�r� � �

s�l� � �

� � �
�

��� � ����
��s�r����

�
� � �

�
� ����

��s�r����

�
�
� ����

��s�r����

�

So�

B�p� � � � �

� � �
�
� ����

��s�r����

�

Also� since s�r�� � � s�l���� s�r� � � � s�l������ Hence� � � s�r���
s�l��� � � � s�l�

��s�l���� �
�

s�l����

So�

B�p� � �

� � �
�
� �

��s�l����
� �

s�l���

�
�

� � �
�
� ����

��s�l����

�

��



Consequently�

�

� � �
�
� ����

��s�l����

� B�p� � �� �

� � �
�
� ����

��s�r����

�

When � �
p
�� ��

�

� �
p
� � ��

p
�

s�l���

� B�p� � �� �

� �
p
� � ��

p
�

s�r���

�

If s�p� � ��� ����� � B�p� � �� ������ So� every ��balanced subtree with �� or fewer nodes
is in WB��� for � � ������ Similarly� every subtree with ��� or fewer nodes is in WB��� for
� � ������ In fact� for every �xed k� subtrees of size k or less are in WB��� for � slightly
higher than � � �p

�
� ������ which is the largest value of � for which WB��� trees can be

maintained�

	 BBSTs without Deletion

In some applications of a dictionary� we need to support only the insert and search operations�

In these applications� we can construct binary search trees with total cost

C�T � � n log��
p
��n� ���

by using the simpler restructuring algorithm of Figure ���

Theorem � When the only operations are search and insert and restructuring is done as in

Figure ��� C�T � � n log��
p
��n� ����

Proof Suppose T currently has m � � elements and a new element is inserted� Let u be
the level at which the new element is inserted� Suppose that the restructuring pass performs

rotations at q � u of the nodes on the path from the root to the newly inserted node� Then

C�T � increases by at most v � u � q as a result of the insertion� The number of nodes on

the path from the root to the newly inserted node at which no rotation is performed is also

v� Let these nodes be numbered � through v bottom to top� Let Si denote the number of

elements in the subtree with root i prior to the restructuring pass� We see that S� � � and

��



procedure Restructuring
 �
begin

while �gp� do
begin

if s�gp�left� � s�gp�right� then f check conditions for an LL and LR rotation g
begin

p � gp�left �
if �s�p�left� � s�p�right�� and �s�p�left� � s�gp�right�� then

do LL rotation
else if �s�p�left� � s�p�right�� and �s�p�right� � s�gp�right�� then

do LR rotation �
end

else f check conditions for an RR and RL rotation g
do symmetric to the above L case �

gp � gp�parent �
end �

end �

Figure ��� Simple restructuring procedure without a � value

S� � �� For node i� � � i � v� one of its subtrees contains node i � �� Without loss of
generality� let this be the left subtree of i� Let the root of the right subtree of i be d� So�

Si � Si�� � s�d� � ��

If i � � is not the left child of i� then since no rotation is done at i� s�d� � Si��� If i � �
is the left child of i� then consider node i � �� This is in one of the subtrees of i� Since no
rotation is performed at i� �� s�d� � Si��� Since Si�� � Si��� we get

Si � Si�� � Si�� � ��

Hence� Sv � Nv where Nv is the minimum number of elements in a COST of height

v� So� v � log��
p
��m � ���� So� when an element is inserted into a tree that has m � �

elements� its cost C�T � increases by at most log��
p
��m� ���� Starting with an empty tree

and inserting n elements results in a tree whose cost is at most n log��
p
��n � ���� �

Corollary � The expected cost of a search or insert in a BBST constructed as above is

O�log n	�

��



Proof Since C�T � � n log��
p
��n����� the expected search cost is C�T ��n � log��

p
��n�

���� The cost of an insert is the same order as that of a search as each insert follows the

corresponding search path twice �top down and bottom up�� �


 Experimental Results

For comparison purposes� we wrote C programs for BBSTs� SBBSTs �simple BBSTs�� BB�

STDs �BBSTs in which procedure Restructuring
 �Figure ��� is used to restructure follow�

ing inserts as well as deletes�� unbalanced binary search trees �BST�� AVL�trees� top�down

red�black trees �RB�T�� bottom�up red�black trees �RB�B� 	TARJ���� weight balanced trees

�WB�� deterministic skip lists �DSL�� treaps �TRP�� and skip lists �SKIP�� For the BBST and

SBBST structures� we used � � ������ while for the WB structure� we used � � �����

While these are not the highest permissible values of � and �� this choice permitted us to use

integer arithmetic rather than the substantially more expensive real arithmetic� For instance�

���a� b� for � � ������ can be checked using the comparisons ���s�a� � �� � ���s�b� and
���s�b�� �� � ���s�a�� The randomized structures TRP and SKIP used the same random
number generator with the same seed� SKIP was programmed with probability value p � ��


as in 	PUGH����

To minimize the impact of system call overheads on run time measurements� we pro�

grammed all structures using simulated pointers �i�e�� an array of nodes with integer pointers

	SAHN���� Skip lists use variable size nodes� This requires more complex storage manage�

ment than required by the remaining structures which use nodes of the same size� For our

experiments� we implemented skip lists using �xed size nodes� each node being of the max�

imum size� As a result� our run times for skip lists are smaller than if a space e�cient

implementation had been used� In all our tree structure implementations� null pointers were

replaced by a pointer to a tail node whose data �eld could be set to the search�insert�delete

key and thus avoid checking for falling o� the tree� Similar tail pointers are part of the de�

��



�ned structure of skip and deterministic skip lists� Each tree also had a head node� WB���

trees were implemented with a bottom�up restructuring pass� Our codes for SKIP and DSL

are based on the codes of 	PUGH��� and 	PAPA���� respectively� Our AVL and RB�T codes

are based on those of 	PAPA��� and 	SEDG�
�� The treap structure was implemented using

joins and splits rather than rotations� This results in better performance� Furthermore�

AVL� RB�B� WB� and BBST were implemented with parent pointers in addition to left and

right child pointers� For BBSTs� the enhancements described in Section 
�
 for insert and

delete �see Figure ��� were employed� No rotations were performed during a search when

using any of the structures�

For our experiments� we tried two versions of the code� These varied in the order in which

the �equality� and �less than� or �greater than� check between x and e �where x is the key

being searched�inserted�deleted and e is the key in the current node� is done� In version ��

we conducted an initial experiment to determine if the total comparison count is less using

the order L�

if x � e then move to left child

else if x �� e then move to right child

else found

or the order R�

if x � e then move to right child

else if x �� e then move to left child

else found�

Our experiment indicated that doing the �left child� check �rst �i�e� order L� worked better

for AVL� BBST� BBSTD� and DSL structures while R worked better for the RB�T� RB�B�

WB� SBBST� and TRP structures� No signi�cant di�erence between L and R was observed

for BSTs� For skip lists� we do not have the �exibility to change the comparison order� The

version � codes performed the comparisons in the order determined to be better� For BSTs�

the order R was used�

�




In the version � codes the comparisons in each node took the standard form

if x � e then found

else if x � e then move to left child

else move to right child�

The version � restructuring code for BBSTs di�ered from that of Figure �� in that the

��� test in the second� third� and forth if statements was changed to ���� No change was
made in the corresponding if statements for RR and RL rotations� While this increased the

number of comparisons� it reduced the run time�

We experimentedwith n � ������� ������� �������� and �������� For each n� the following

experiments were conducted�

�a� start with an empty structure and perform n inserts�

�b� search for each item in the resulting structure once� items are searched for in the order

they were inserted

�c� perform an alternating sequence of n inserts and n deletes� in this� the n elements inserted

in �a� are deleted in the order they were inserted and n new elements are inserted

�d� search for each of the remaining n elements in the order they were inserted

�e� delete the n elements in the order they were inserted�

For each n� the above �ve part experiment was repeated ten times using di�erent random

permutations of distinct elements� For each permutation� we measured the total number of

element comparisons performed and then averaged these over the ten permutations�

First� we report on the relative performance of SBBSTs� BBSTDs� and BBSTs� For this

comparison� we used only version � of the code� Table � gives the average number of key

comparisons performed for each of the �ve parts of the experiment� The three versions of our

proposed data structure are very competitive on this measure� BBSTDs and BBSTs generally

performed fewer comparisons than did SBBSTs� All three structures had a comparison count

within � of one another� However� when we used ordered data rather than random data

�Table ��� SBBSTs performed noticeably inferior to BBSTDs and BBSTs� the later two

��



n operation SBBST BBSTD BBST

insert ���
�� ������ ������
search ��
��� ������ �����

������ ins�del 
����� 
���� 
�����
search ��
�� ������ �����
delete ������ ���

� ���
�
insert ��
���� ������� ������

search ������ ������� ���
���

������ ins�del �
���� �
����� �
����
search ������� ���
� ���
���
delete ������ ����� ������
insert ������� ���
��� ������
search �
���� �
����� �
�����

������� ins�del ������� ������� ������
search �
����� �
����� �
�����
delete ������ �����
� �������
insert ������� ������� �������
search ������� ��
���� ��
���

������� ins�del �����

� ������� ��������
search ������ ��

��� ��

�
�
delete 
���

 
�
��
� 
�
����

Table �� The number of key comparisons on random inputs �version � code�

remained very competitive�

Tables � and 
 give the average heights of the trees using random data and using ordered

data� respectively� The �rst number gives the height following part �a� of the experiment

and the second following part �c�� The numbers are identical for BBSTDs and BBSTs and

slightly higher �lower� for SBBSTs using random �ordered� data�

The average number of rotations performed by each of the three structures is given in

Tables � and �� A single rotation �i�e�� LL or RR� is denoted �S� and a double rotation

�i�e�� LR or RL� denoted �D�� In the case of BBSTs� double rotations have been divided into

three categories� D � LR and RL rotations that do not perform a second substep rotation�

DS � LR and RL rotations with a second substep rotation of type LL and RR� DD � LR

and RL rotations with a second substep rotation of type LR and RL� BBSTDs and BBSTs

��



n operation SBBST BBSTD BBST

insert ����� �����
 �����

search ����� ������ ������

������ ins�del 
����� ���� ��
���
search ������ ��
��� ��
���
delete �����
 ������ ������
insert ������ ���� ����
search ����
 ����
�� ����
��

������ ins�del �
���� �����
� ����
��
search ������� ������� �������
delete ���� ��� �����
insert ������� �����
� �����
�
search ���
�� ���
� ���
�

������� ins�del ��
���
 ����
�� ������

search ������ ��
���� ��
����
delete �����
 ������ ���
��

insert 


��
� ������� �������
search ������� 
�
��� 
�
���

������� ins�del �������� ������� ��
����
search ����
�� ������ ������
delete ��
���� ������� �����

Table �� The number of key comparisons on ordered inputs �version � code�

n SBBST BBSTD BBST

������ ��� ����� �����
������ ����� ����� �����
������� ����� ����� �����
������� ����� ����� �����

Table �� Height of the trees on random inputs �version � code�

n SBBST BBSTD BBST

������ ����� ��� ���
������ ����� ����� �����
������� ����� ����� �����
������� ����� ����� �����

Table 
� Height of the trees on ordered inputs �version � code�

�



SBBST BBSTD BBST
n operation S D S D S D DS DD

insert ��
� ���� ��
� 
��
 ���� ���� ��� ��
������ ins�del 
��� ���� ����� ���� ����
 ��
� ��� ���

delete ��� ���� ���� ���
 ���� ���� �� ��
insert ���� ����� ����� ����� ����� ���� �
 
��

������ ins�del ����� ����� ����� ��
�� ���� ����� ���� ���
delete ���� ��
� ����
 ��
�� ����� ����� �
� ���
insert ��
�� ����� ����� 
���� ���
 ��
�� ��� ���

������� ins�del 
��� ����� ������ ���� ������ ��
�� ��� ��
�
delete ����� ����� ���� ����� ���
� ���
 
�� ���
insert 
���
 

��� �����
 ����� ������ ���� ���
 ��
�

������� ins�del ����� �

� ��

�� ������ ������ ����
� 
��� ����
delete ����� ����� ��
�

 
���
 ������ 
��� ��� ���

Table �� The number of rotations on random inputs �version � code�

performed a comparable number of rotations on both data sets� However� on random data

SBBSTs performed about half as many rotations as did BBSTDs and BBSTs� On ordered

data� SBBSTs performed �� to �� fewer rotations on part �a�� �
 fewer on part �c�� and

�� fewer on part �e��

The run�time performance of the structures is signi�cantly in�uenced by compiler and

architectural features as well as the complexity of a key comparison� The results we report

are from a SUN SPARC�� using the UNIX C compiler cc with optimization option� Because

of instruction pipelining features� cache replacement policies� etc�� the measured run times

are not always consistent with the compiler and architecture independent metrics reported

in Tables � through � and later in Tables �� through ��� For example� since the search codes

for all tree based methods are essentially identical� we would expect methods with a smaller

comparison count to have a smaller run time for parts �b� and �d� of the experiment� This

was not always the case�

Tables  and � give the run times of the three BBST structures using integer keys and

Tables � and �� do this for the case of real �i�e�� �oating point� keys� The sum of the run

��



SBBST BBSTD BBST
n operation S D S D S D DS DD

insert ���
 � ���� ��� ���� ��� � �
������ ins�del �
�� � ���� ���� ���

 �� �� ��


delete 
��� � ��� ��� ��
 ���� �� ��

insert 
���� � 
���� ����� 
���� ����� � �

������ ins�del 
��� � ����� ����� ���
 ����� �� �
delete �
�� � ����� ����� ���
� ���� ��� ��
insert ���� � ����� ���� ����� ���� � �

������� ins�del �
���� � ����� ���� �����
 ���� ��� ��
�
delete 
���� � ���� ���� ����� �
�
� �� ����
insert ����� � ������ 
��� ������ 
��� � �

������� ins�del ������ � ���
� ������ ������ ������ ��� ���
delete ����� � ���
� 
�� ������ ����� �� ���

Table �� The number of rotations on ordered inputs �version � code�

time for parts �a� � �e� of the experiment is graphed in Figure �
� For random data� SBBSTs

signi�cantly and consistently outperformed BBSTDs and BBSTs� On ordered data� however�

BBSTDs were slightly faster than BBSTs and both were signi�cantly faster than SBBSTs�

Since BBSTs generated trees with the least search cost� we expect BBSTs to outperform

SBBSTs and BBSTDs in applications where the comparison cost is very high relative to that

of other operations and searches are done with a much higher frequency than inserts and

deletes� However� with the mix of operations used in our tests� SBBSTs are the clear choice

for random inputs and BBSTDs for ordered inputs�

In comparing with the other structures� our tables repeat the data for BBSTs� The reader

may make the comparison with SBBSTs and BBSTDs�

The average number of comparisons for each of the �ve parts of the experiment are given

in Table �� for the version � implementation� On the comparison measure� AVL� RB�B� WB�

and BBSTs are the front runners and are quite competitive with one another� On parts �a�

�insert n elements� and �c� �insert n and delete n elements�� AVL trees performed best while

on the two search tests ��b� and �d�� and the deletion test �e�� BBSTs performed best�

��



n operation SBBST BBSTD BBST

insert ��� ���� ���

search ���� ���� ���

������ ins�del ��� ���� ���
search ���� ���� ����
delete ���� ���� ����
insert ��
� ���� ���
search ���� ���� ���

������ ins�del ���� ��
 ���

search ���� ���� ����
delete ���� ��
 ����
insert ���� ��� ����
search ��� ���� ���


������� ins�del ���� �� ��
�
search ���� ��� ����
delete ���
 ���� ����
insert ���� �
 ���
search ���� ���� ����

������� ins�del ����� ���� ����
search ���� ���� ����
delete ���
 �
� ����

Time Unit � sec

Table � Run time on random inputs using integer keys �version � code�


�



n operation SBBST BBSTD BBST

insert ���� ���� ���
search ���� ���� ����

������ ins�del ���� ��
� ���
search ��� ���� ����
delete ���� ��� ����
insert ���� ���� ����
search ���� ���� ����

������ ins�del ���� ���� ��
�
search ���� ���� ����
delete ���� ���� ����
insert ��
� ���� ����
search ��� ��
� ��
�

������� ins�del ��� 
�� ����
search ���� ��
 ��
�
delete ���� ���� ����
insert ���� 
��� ����
search ���� ���� ����

������� ins�del ����� ����� �����
search ��� ���� ����
delete 
��� 
��� 
���

Time Unit � sec

Table �� Run time on ordered inputs using integer keys �version � code�


�



n operation SBBST BBSTD BBST

insert ���� ���
 ����
search ��� ���� ����

������ ins�del ��

 ��� ���
search ���� ���� ����
delete ��� ���� ����
insert ��
� ��� ����
search ��
 ���� ����

������ ins�del ��� ���� 
���
search ���� ���
 ����
delete ���� ���� ���
insert ���� ���
 
���
search ���� ��� ����

������� ins�del ���� ���� ����
search ���� ���� ����
delete ���� ���� ����
insert ���� ���� ����
search ��
� ���� ���

������� ins�del ����� ���
� ���
�
search ��
� ���� ����
delete ���� ���� ����

Time Unit � sec

Table �� Run time on random real inputs �version � code�


�



n operation SBBST BBSTD BBST

insert ��� ���� ����
search ���� ��� ���

������ ins�del ���� ���� ��
�
search ���� ��� ����
delete ���� ���� ����
insert ��
� ���� ����
search ��
� ���� ����

������ ins�del ���� ��� ���
search ��
� ���� ����
delete ��� ���� ���
insert ���� ���� ��
search ���� ���� ����

������� ins�del ���� 
�� ����
search ��� ���� ����
delete ���� ���� ����
insert �� 
��� 
���
search ���� ���� ����

������� ins�del ����� ����� �����
search ��� ���� ����
delete ���� 
�� 
�
�

Time Unit � sec

Table ��� Run time on ordered real inputs �version � code�
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�


�


�

��

��

����� 	����� 	����� �����

Time

�sec�

n

Time is sum of time for parts �a���e� of the experiment

SBBST on random inputs �

�

�

�

�

BBSTD on random inputs �

�

�

�

�

BBST on random inputs
SBBST on ordered inputs �

�

�

�

�BBSTD on ordered inputs �

�
�

�

�
BBST on ordered inputs

Figure �
� Run time on real inputs �version � code�

Table �� gives the number of comparisons performed when ordered data �i�e�� the elements

in part �a� are �� �� � � � � n and are inserted in this order� and those in part �c� are n��� � � � � �n

�in this order� is used instead of random permutations of distinct elements� This experiment

attempts to model realistic situations in which the inserted elements are in �nearly sorted

order�� BSTs were not included in this test as they perform very poorly with ordered data

taking O�n�� time to insert n times� The computer time needed to perform this test on

BSTs was determined to be excessive� This test exhibited greater variance in performance�

Among the deterministic structures� BBSTs outperformed the others in parts �a� � �d� while

AVL trees were ahead in part �e�� For part �a�� BBSTs performed approximately 
� 

fewer comparisons than did AVL trees and approximately �� fewer than WB trees� The

randomized structure TRP was the best of the eight structures reported in Table �� for part

�a�� It performed approximately �� fewer comparisons than did BBST trees� However� the

BBST remained best overall on parts �b�� �c�� and �d��

The heights of the trees �number of levels in the case of DSL and SKIP� for the exper�


�



n BST AVL RB�T RB�B WB BBST DSL TRP SKIP

������ ����� ����� ���� ���� ��� ����� ����� ����� ���
������ ����� ����� ����� ����� ����� ����� ����� ���� ���
������� 
��
� ����� ����� ����� ����� ����� �
��� 
��
� ���
������� 

�
� ����� ����
 ����� ����� ����� ����
 
��

 ���

Table ��� Height of the trees on random inputs �version � code�

n AVL RB�T RB�B WB BBST DSL TRP SKIP

������ �
��
 ����� �
��
 ����� ��� �
��� ����
 ���
������ ����� ����� ����� ����� ����� ����� 
��
� ���
������� ��� ����� ����� ����� ����� ��� 
��
� ���
������� ����� ��� ����� ����� ����� ����� 
�
� ���

Table �
� Height of the trees on ordered inputs �version � code�

iments with random and ordered data are given in Tables �� and �
 respectively� The �rst

number in each table entry is the tree height after part �a� of the experiment and the second�

the height after part �c�� In all cases� the number of levels using skip lists is fewest� However�

among the tree structures� AVL and BBST trees have least height on random data and AVL

has least with ordered data�

Tables �� and ��� respectively� give the number of rotations performed by each of the

deterministic tree schemes for experiment parts �a�� �c�� and �e�� Note that none of the

schemes performs rotations during a search�

On ordered data� BBSTs perform about �� more rotations than do the remaining

structures� These remaining structures perform about the same number of rotations� On

random data� AVL trees� bottom�up red�black trees and WB trees perform a comparable

number of rotations� Top�down red�black trees and BBST trees perform a signi�cantly larger

number of rotations� In fact� BBSTs perform about twice as many rotations as AVL trees�

The average run times for the random data tests are given in Table � and in Table ��

for the ordered data test� Both of these use integer keys� The times using real keys are
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n operation BST AVL RB�T RB�B WB BBST DSL TRP SKIP

insert ���� ���� ���� ���� ���� ���
 ���� ���� ���

search ���� ���� ���� ���� ���� ��� ���� ���� ����

������ ins�del ���
 ���� ���� ���� ���� ��� ��
� ���� ��
�
search ���� ���� ���� ���� ���� ���� ���� ���� ����
delete ���� ���� ���� ���� ���� ���� ���� ���� ����
insert ���� ��� ���� ��� ���� ��� ���� ���� ����
search ��
� ���� ���� ���� ���� ��� ���� ���� ����

������ ins�del ���
 ��
� ���� ���� ���� ���
 �� ���� ���
search ��
� ��
� ��

 ���� ���� ���� ��� ���� ����
delete ���� ���
 ���� ���� ���
 ���� ���� ���� ����
insert ���
 ��� ���� ���
 ���
 ���� ��
� ���� ���

search ���� ���� ���� ���� ��� ���
 ���� ���� ����

������� ins�del ���� ���� ���� ��
 
��� ��
� ���� 
��� ����
search ���� ���
 ���� ���
 ���� ���� ���� ���� ����
delete ���� ���
 ���� ���
 ���� ���� ���
 ���� ��
�
insert ��� ��� 
�
� ���� ���� ��� ���� 
�� ����
search ���� ���� ���� ���� ��� ���� ���� ���� ����

������� ins�del ���
 ���� ����� ���� ����
 ���� �
��� ���� �����
search ���� ���� ���� ���� ��� ���� ���
 ���� ����
delete ���� ���� ���� ���� 
��� ���� ���
 ��� ����

Time Unit � sec

Table �� Run time on random inputs using integer keys �version � code�

given in Tables �� and ��� The sum of the run time for parts �b� and �d� of the experiment

is graphed in Figure �� for random data and in Figure �� for ordered data� The graph of

Figure � shows only one line MIX for AVL� RB�T� RB�B� WB� and BBST while that of

Figure �� shows MIX for AVL� RB�T� RB�B� and WB as the times for these are very close�

With integer keys and random data� unbalanced binary search trees �BSTs� outperformed

each of the remaining structures� The next best performance was exhibited by bottom�up

red�black trees� They did marginally better than AVL trees� The remaining structures have

a noticeably inferior structure� For ordered integer keys� BSTs take more time than we were

willing to expend� Of the remaining structures� treaps generally performed best on parts

�a�� �c�� and �e� while BBSTs did best on parts �b� and �d��

��



n operation AVL RB�T RB�B WB BBST DSL TRP SKIP

insert ���� ��� ���� ���� ��� ���� ���� ����
search ���� ���� ���� ��� ���� ��� ���� ����

������ ins�del ���� ���� ���� ���� ��� ��
� ��� ����
search ���� ���� ���� ���� ���� ��� ���� ����
delete ���� ���� ��� ���� ���� ���� ���� ���
insert ��� ���� ���� ���� ���� ���� ��
 ����
search ���� ��� ��� ���� ���� ���� ���� ����

������ ins�del ���� ��� ���� ���� ��
� ���� ���� ���
search ���� ���� ��� ���� ���� ���� ��� ����
delete ���� ��� ��� ���� ���� ���� ���� ���
insert ���� ���� ��� ���� ���� ���� ���� ���
search ��� ���� ��� ��� ��
� ��� ���� ����

������� ins�del ���� 
��� ���� 
�� ���� 
�
� ���� ��
�
search ���� ���� ���� ���� ��
� ��� ���� ����
delete ���� ���� ��� ��� ���� ��
� ��
� ����
insert ���� 
��� ���� ��� ���� 
�� ���� ����
search ���� ���� ���� ���� ���� ���� ���� ���

������� ins�del ���� ���
� ���� ���
� ����� ��
� ���� ����
search ���� ���� ���� ���� ���� ���� ���� ���
delete ���� ���� ���� 
��� 
��� ���� ���� ����

Time Unit � sec

Table ��� Run time on ordered inputs using integer keys �version � code�

��



n operation BST AVL RB�T RB�B WB BBST DSL TRP SKIP

insert ���
 ���� ���� ��� ���� ���� ���� ���� ����
search ���� ��� ���� ���� ���� ���� ���� ���� ����

������ ins�del ���
 ��� ���� ���� ���� ��� ���� ��
� ����
search ���� ���� ���� ���� ���� ���� ���� ���� ����
delete ���� ���� ��� ���
 ���
 ���� ���� ���� ����
insert ���
 ��� ���� ���� ���� ���� ��
� ���� ���
search ���
 ���� ���� ���� ���� ���� ��� ��� ��



������ ins�del ���� �� ��
 ���� ���� 
��� ���� ��� ����
search ���� ���� ���� ���
 ���� ���� ���� ��� ����
delete ���� ��� ���� ��� ���� ��� ���� ���� ����
insert ���� ���� ���
 ���� ���� 
��� ���� ��� ����
search ��
� ���� ���� ���� ���
 ���� ���
 ���� ����

������� ins�del ���� ���� ���� ���� 
��� ���� ��
� 
��
 ���
search ��
� ���� ��� ��� ���� ���� ���� ���� ����
delete ���� ���� ���� ���� ���� ���� ���� ���� ���
insert 
��
 ���� ���� ���� ���� ���� �� ���� ���
search ���� ��
� ��
� ���� ��
� ��� 
��
 ��� ����

������� ins�del ���� ���� ���� ��� ����� ���
� ����� ���
� �����
search ���� ���� ���� ���� ��
 ���� 
��� ��� ��

delete ���� ��� ���� ��
� 
�
� ���� ���� ���
 ���


Time Unit � sec

Table ��� Run time on random real inputs �version � code�

With real keys and random data� BSTs did not outperform the remaining structures�

Now� the �ve balanced binary tree structure became quite competitive with respect to the

search operations �i�e�� parts �b� and �d��� RB�B generally outperformed the other structures

on parts �a�� �c�� and �e�� Using ordered real keys� the treap was the clear winner on parts

�a�� �c�� and �e� while BBSTs handily outperformed the remaining structures on parts �b�

and �d��

Some of the experimental results using version � of the code are shown in Tables ��� �
�

On the comparison measure� with random data �Table ���� skip lists performed best on

part �a�� Of the deterministic methods� BBSTs slightly outperformed the others on part

�a�� On parts �b� � �e�� AVL� RB�T� RB�B� WB� and BBSTs were quite competitive and
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n operation AVL RB�T RB�B WB BBST DSL TRP SKIP

insert ���� ���� ���� ���� ���� ���� ���� ����
search ��� ���� ��� ��� ��� ���� ��� ����

������ ins�del ���� ��
� ��� ��
� ��
� ��
 ���� ����
search ��� ���� ���� ���� ���� ���� ���� ����
delete ��� ��� ���� ���� ���� ���� ���� ���
insert ���� ���� ���� ���� ���� ���� ��� ����
search ��
� ��
� ��
� ��
� ���� ���� ���� ����

������ ins�del ���� ��� ��� ��� ��� ���� ���� ��
�
search ��
� ��
� ��
� ��
� ���� ���� ��
� ���
delete ���� ���� ���� ���� ��� ���� ���� ����
insert �� ���� ���� ���� �� ���� ��� ��
�
search ���� ��� ���� ���� ���� ���� ���� ���

������� ins�del ���� ���� ��
� ���� ���� ���� ���� ����
search ��� ���� ���� ���� ���� ���� ���� ���
delete ��� ���� ��� ���� ���� ��
� ��� ���
insert ���� ��
� 
�� ��� 
��� ���� ���� 
���
search ���� ��� ���� ���� ���� ��
� ���� ���

������� ins�del ��� ����� ��� ����� ����� ���� ��� ���
search ���� ���� ���� ���� ���� ���� ��� ���
delete ��� 
��� ��
� 
�
� 
�
� ���� ��
� ����

Time Unit � sec

Table ��� Run time on ordered real inputs �version � code�

�




outperformed BSTs and the randomized schemes� BBSTs performed best on parts �b� and

�d�� RB�Ts did best on part �e� and RB�B and AVL did best on part �c�� In comparing

the results of Table �� to those of Table �� �using version � code�� we see that the change

to version � generally increased the comparison cost of the deterministic tree structures by

about �� � For the DSL� the change in code had mixed results� Notice that for RB�T and

DSLs� the comparison count for parts �a�� �c�� and �e� are the same as for the version � code�

This is because for inserts and deletes� it is necessary to do the equal check �rst when using

these structures� For SKIPs the count is the same for all �ve parts as the version � and �

codes are the same�

With ordered data �Table ���� treaps required the fewest comparisons for part �a�� Skip

lists did best on parts �c� and �e�� and AVL trees generally outperformed the other structures

on parts �b� and �d�� Once again� the comparison counts were generally higher using the

version � code than using the version � code�

Run time data using real keys is given in Tables �� and �
� The sum of the run time for

parts �b� and �d� of the experiment is graphed in Figure � for random data and in Figure ��

for ordered data� The graph of Figure � shows only one line MIX for AVL� RB�T� RB�B�

WB� and BBST while that of Figure �� shows MIX for AVL� RB�T� RB�B� and WB as the

times for these are very close� With random data� RB�B generally performed best on part

�a�� on parts �b� and �d�� the front runner varied among AVL� RB�T� and WB� and on parts

�c� and �e� RB�Bs generally did best� On ordered data� TRPs did best on parts �a�� �c�� and

�e� while BBSTs did best on parts �b� and �d��

� Conclusion

We have developed a new weight balanced data structure called ��BBST� This was developed

for the representation of a dictionary� In developing the insert�delete algorithms� we sought

to minimize the search cost of the resulting tree� Our experimental results show that BBSTs

generally have the best search cost of the structures considered� Furthermore� this translates
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n operation BST AVL RB�T RB�B WB BBST DSL TRP SKIP

insert ���� ���
 ���� ���� ���� ���� ���� ���� ����
search ���� ���� ���� ���� ���� ���� ���� ���� ����

������ ins�del ��� ��� ���� ���
 ��
 ���� ���
 ���� ���

search ���� ���� ���� ���� ���� ���� ���� ���
 ����
delete ���� ���� ���� ���
 ���� ���� ���� ���
 ����
insert ���� ���� ���� ���� ��
� ���� ��

 ���
 ����
search ���� ���� ��� ���� ��� ���� ���� ���� ��
�

������ ins�del ��� ���� ���� ���� ���� ��� ���� ��

 ����
search ��� ���� ���� ���� ��� ���� ��� ��� ����
delete ��� ��� ���� ���� ���� ���� ���� ��� ����
insert ���� ���� ���� ���� ���� 
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into reduced search time when the key comparison cost is relatively high �e�g�� for real keys��

The insert and delete algorithms for ��BBSTs are not as e�cient as those for other dictionary

structures �such as AVL trees�� As a result� we recommend ��BBSTs for environments where

searches are done with much greater frequency than inserts and�or deletes� Based on our

experiments� we conclude that AVL trees remain the best dictionary structure for general

applications�

We have also proposed two simpli�ed versions of the BBST called SBBST and BBSTD�

The SBBST seeks only to provide logarithmic run time per operation and unlike the general

BBST� does not reduce search cost at every opportunity� The SBBST provides slightly

better balance than provided by WB��� trees� The BBSTD does not attempt to maintain

��balance� However it performs rotations to reduce search cost whenever possible� Both

versions are very competitive with BBSTs� The SBBST exhibited much better run time

performance than BBSTs on random data and the BBSTD slightly outperformed the BBST

on ordered data� However� BBSTs generated trees with the lowest search cost �though not

by much��
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