Functional Set Operations with Treaps

Dan Blandford and Guy Blelloch

July 23, 2001

1 Abstract

We present a parallel functional algorithm for finding the union of two ordered sets using
a variant of random balanced binary search trees (treaps). This algorithm is optimal with
respect to the Block Metric bound of Carlsson et al. [7] which states that, given a structure
which supports split and join operations in O(lg(min(a,b))) work, where a and b are the
sizes of the pieces involved, it is optimal to find the union of two lists in O(kIg(% +1)) work,
where £ is the least possible number of blocks that we can break the two lists into before
reforming them into one list. The parallel depth of our algorithm is O(lg?(n)).

In order to obtain a data structure with the required work bounds for split and join, we apply
Tarjan’s technique of “heterogeneous finger search trees” to a functional implementation of
treaps. This results in a particularly simple implementation, although it does mean that our
bounds are all expected-case. If, for example, the functional finger search trees developed by
Kaplan and Tarjan were used instead, we believe this would lead to worst-case rather than
expected-case work bounds.

A full implementation of our algorithms is available on the web at http://www.cs.cmu.edu/(location).

2 Introduction

A useful technique for developing parallel algorithms is functional programming [13]. In
functional programming, data is never mutated; instead, when a data structure needs to be
changed, a new structure is created which shares memory with the original. Such a structure
is automatically fully persistent - all versions of that data structure since it was created can
coexist at the same time, sharing memory where appropriate. In fact, it is possible for a
data structure to have “multiple futures” - one copy of the structure can be modified in
different ways to create new structures, all of which share memory with the original so as

to conserve space. This is a great advantage when working with multiple processors - rather
than copying the entire data structure multiple times so that each processor can have its own
copy, the processors merely need to copy the parts of the data structure that they modify.

An interesting application for persistent data structures is the construction of search en-
gines. For each word in the domain of a search engine there may be a great number of
corresponding documents. If a user enters a query that is an AND or OR of two or more
words, the search engine needs to find the union or intersection of the corresponding sets.
The search engine cannot modify its original list of documents when carrying out this com-
putation, and copying both lists might be prohibitively expensive. If the lists are stored in
a persistent data structure, the new list can share data with the old ones in order to use as
little memory as possible.

Our goal, then, is to find a persistent data structure that supports the set operations (union,
difference, and intersection) as efficiently as possible.

In general, performing set operations on two sorted lists X and Y of size n and m (with
n > m) requires O(mlg(~ + 1)) comparisons. If we make some assumptions about the
inputs, though, these bounds can be improved. Carlsson, Levcopoulos and Petersson [7]
showed that, given a data structure which supports split and join in O(lg(min(|T%|, |T3|)))
time, a lower bound for the list merging problem is O(klg(% +1)), where k = Block(X,Y) is
the number of blocks that the lists need to be broken into before being recombined into one
list. Block(X,Y) is defined more formally in Section 3.1. An example of a serial algorithm
that meets that bound is described in Section 4.1.

In order to meet the O(klg(% + 1)) bound of Carlsson et al. we need a functional repre-
sentation of a sorted list that supports split and join in O(lg(min(|7y],|73]))) time. Kaplan
and Tarjan [16] developed such a structure using 2-3 trees based on their previous work
involving recursive slow-down [17]. (In fact, they have developed functional double-ended
queues that support join in O(1) time [15, 18], but unfortunately these structures do not
admit an O(lg(min(|71], |T»|))) time split operation.)

Kaplan and Tarjan’s data structure is described in some detail in Section 9. With some
modifications it can be used to implement our union-finding algorithms. However, the im-
plementation is somewhat complex.

In this paper we develop a functional data structure based on Treaps [2]. For the serial
union-find algorithm presented in Section 4.1 we require only the trivial technique of flipping
the pointers along the left spine of a Treap. Our parallel algorithms require that we flip the
pointers along both spines. All of our algorithms require O(klIg(% + 1)) expected work, and
our parallel algorithms operate in O(lg*(n)) depth.

2.1 Related Work

The technique of performing searches starting at the top or bottom of a data structure is a
form of finger searching [11]. The idea of finger searching is that, given a pointer (or “finger”)
to any key in a data structure, it should be possible to find nearby keys in faster than the
usual O(lg(n)) time.

Many types of balanced trees permit finger searches using parent pointers. Unfortunately,
parent pointers imply pointer cycles, which are impossible to construct using purely func-
tional programming. The solution we use for this problem is to flip the pointers along both
spines of the tree - each node along the left spine points to its parent instead of its left child,
and each node along the right spine points to its parent instead of its right child. Tarjan
and Van Wyck [23] describe this data structure as a “heterogeneous finger search tree”.

Cole et al. [8] showed that splay trees can be used to implement finger searches. Splay trees
can easily be made functional, and this technique is much simpler than the others mentioned,
but the bounds are amortized, which is a weak bound for persistent data structures that
may have multiple futures.

The problem of merging two lists of size n and m (n > m) has been well studied. Brown
and Tarjan gave the first 0(mlg(+ 1)) algorithm that outputs the result in the same
format as the inputs [5]. Their algorithm was based on finger searching in AVL-trees and
they later showed a variant based 2-3 trees [6]. The same bounds can also be achieved with
skip-lists [21].

In the parallel setting, previous work has focused either on merging algorithms that take
O(n) work [1, 9, 12, 24, 10, 19] and are optimal when the two sets have nearly equal sizes
or on multi-insertion algorithms that take O(mlg(n + 1)) work and are optimal when the
input values to be inserted are not presorted [20, 14, 22, 3].

More recently, Blelloch and Reid-Miller [4] demonstrated a non-functional parallel merging
algorithm which operates in O(klg(% + 1)) work and O(lg(m)lg(n)) depth using parent
pointers. A functional version of this algorithm requires O(mlIg(% + 1)) work, though the
depth does improve to O(lg(n)).

3 Definitions

3.1 The Block Metric

Carlsson, Levcopoulos, and Petersson [7] define the Block Metric measure of the presorted-
ness of two lists as follows:

Definition 1 Let X and Y be two sorted sequences of length n and m, respectively, and let
Z =< 21y ey Znam > be the resulting merged sequence. Then

Block(X,Y)=||{i]ll<i<n+mand z; € X and z;,; €Y or z; € Y and z;,; € X}||+1

Thus Block measures the number of blocks in the input sequences that appear in the merged
sequence. Note that, if X and Y share some elements, those elements will appear multiple
times in Z and will be counted as belonging to both lists. For example, if X = {1,2} and
Y ={2,3,4} then Z = {1,2,2,3,4}. Thus 2o € X and 2o € Y, and Block(X,Y) = 4. In
other words, any duplicate element is considered to belong to a block of its own.

Carlsson et al. showed that, given a data structure which supports splits and joins in
O(min(d,n — d)) and O(min(|T}|,|T%|)), a lower bound for the list merging problem is
O(klg(% + 1)), where k = Block(X,Y). We will present a serial algorithm that meets
that bound in Section 4.1 and a parallel algorithm that meets that bound in Section 6.
First, though, we must develop the appropriate data structures.

3.2 Treaps

A treap is a kind of balanced tree in which each key has an associated random priority. In
addition to the standard binary-tree ordering of the keys, a treap maintains the invariant
that every parent has a higher priority than either of its children. When both the keys and
priorities in a treap are unique, there is a unique treap containing those keys and priorities,
regardless of the order in which those keys were inserted.

We use two operations to manipulate treaps. The first operation, SPLIT, takes a treap 7T’
and a key v, and returns a triple (7}, v/, T3), such that all keys in T} are less than v, all keys
in 75 are greater than v, and v’ is a duplicate of v if v was in T". The second operation, JOIN,
takes two treaps T} and 75 such that all keys in 7T are less than any key in 75. It returns
a single treap 7' containing the keys in 7} and T5. Both of these operations run in O(lg(n))
expected work.

3.3 Biased and Unbiased Treaps

Since all of the priorities in a treap 1" are drawn from the same distribution, any key in a
treap has an equal chance to be the root. When we split a treap 7" on a key v, if we have
not looked at 1" beforehand then we know nothing about the priorities of the keys in the
resulting treaps T} and T,. Thus those priorities are still random, and so all of the properties
of treaps still hold for 7} and T5. We say that such a treap is unbiased.

I'OOt

A ARAN

Figure 1: An LTreap is a Treap in which the pointers along the left spine are flipped.

Definition 2 A treap is unbiased if the priorities of each of its keys are drawn from the
same distribution. (That is, the priorities are identically and independently distributed.)

However, if we look at the priorities in 7" before choosing our split, we have to be careful
not to introduce bias into the result. For example, if we use a rule in which we always split T’
on the rightmost possible key which is still to the left of the root, then the root of our result
treap 15 will always be the leftmost element of that treap. In our analysis we can assume
that the initial input treaps to our algorithms are unbiased, but whenever we choose where
to split a treap based on knowledge of its priorities we will need to show that the result is
unbiased before making any assumptions about its balance.

4 The Left Spinal Treap

The first new data structure we define is the left spinal treap, abbreviated LTreap. An
LTreap is a treap in which the pointers along the left spine are flipped - that is, each node
on the left spine has a pointer to its right child and a pointer to its parent. (We present an
example in Figure 1.) We maintain a handle into the structure at the leftmost node, and all
searches in the structure are made from that node. As we will show, this allows us to make
finger searches from the leftmost point of the LTreap.

We use four functions to manipulate our LTreap data structures. The first function,
TOLTREAP, converts a standard treap into an LTreap; the second, FROMLTREAP, con-
verts an LTreap into a Treap. The third function, JOINLEFT, joins a Treap onto an LTreap
provided that the largest key in the Treap is less than the smallest key in the LTreap. The
fourth function, SPLITLEFT, splits an LTreap on a given key v. It returns a triple consisting
of a Treap containing keys less than v, the key v if it was found, and an LTreap containing
keys greater than v. Pseudocode for these functions can be found in figures 2, 3, 4, and 5.

For convenience, throughout our pseudocode we will use T, 1", 17, etc, to refer to Treaps,
and L, L', L, etc, to refer to LTreaps.

O© 00 O Ui Wi~ O 00~ O U ix Wi~

O~ O Ut i Wi~

—
jesiiNe)

11
12
13

TOLTREAPHELPER(T', L)
if T = null then
return L
else
L’ < new LTreap(T .key, T.right, L)
return TOLTREAPHELPER (T .left, L')

TOLTREAP(T)
return TOLTREAPHELPER(T,null)

Figure 2: Pseudocode for TOLTREAP.

FROMLTREAPHELPER(T, L)
if L = null then
return T
else
T" + new Treap(T, L.key, L.child)
return FROMLTREAPHELPER (7", L.parent)

FROMLTREAP (L)
return FROMLTREAPHELPER(null,L)

Figure 3: Pseudocode for FROMLTREAP.

SPLITLEFTHELPER (T, v, L):
T < new Treap(T, L.key, L.child)
if L.parent # null and k > L.parent.key then
return SPLITLEFTHELPER (7", v, L.parent)
else
(T, m, T;) + spLIT(T", v)
return (7}, m, TOLTREAPHELPER (7)., L.parent))

SPLITLEFT(v,L)
if L = null then
return (null, null, null)
else
return SPLITLEFTHELPER (null, v, L)

Figure 4: Pseudocode for SPLITLEFT.

1 JOINLEFTHELPER(T, T, L)

2 if L # null and T.priority > L.priority then
3 Ty + new Treap(Th, L.key, L.child)

4 return JOINLEFTHELPER(T, Ty, L.parent)
5 else

6 T' < JOIN(T, T%)

7 return TOLTREAPHELPER(T", L)

8

9 JOINLEFT(T, L)
10 if T'= null then
11 return L
12 else
13 return JOINLEFTHELPER(T, null, L)

Figure 5: Pseudocode for JOINLEFT.

We need to analyze the work required for these algorithms. TOLTREAP touches only the
nodes along the left spine of the treap; the left spine of a treap contains expected O(lg(n))
nodes, so the expected work required for TOLTREAP is O(lg(n)).

Seidel and Aragon [2] showed that, if nodes a and b are separated in a treap by d nodes, then
the distance from a to b in that treap is expected to be O(lg(d)). Our SPLITLEFT algorithm
touches only the nodes on the path from the leftmost node in the L'Treap to the predecessor
of v in that LTreap. If there are d nodes which are less than v in the LTreap, then that path
has length O(lg(d)), so the expected work required for SPLITLEFT is O(lg(d)).

Using JOINLEFT to join a Treap and an LTreap requires the same amount of work as is
needed to split them apart again using SPLITLEFT. Thus the expected work needed for
JOINLEFT is O(lg(d)) where d is the number of nodes to the left of the split - that is, the
number of nodes in the Treap.

We also wish to define a “Right Spinal Treap” (RTreap), which is just like an LTreap except
that the pointers are flipped along the right spine rather than the left.

4.1 A Serial Union-Find Algorithm

As an example of how we can use the LTreap we present a serial union-finding algorithm:

TOLRTREAP(T)
if T' = null then
return new LRTreap(null, null, null)
L < TOLTREAP(T left)
R <+ TORTREAP(T .right)
return new LRTreap(L, T key, R)

ST W N~

Figure 6: Pseudocode for TOLRTREAP .

1 SERIALUNION(Ly, Ls)

2 if L1 = null then

3 return Lo

4 if Ly = null then

) return L;

6 (T, v, L}) + SPLITLEFT(Ly, Lo.key)
7 L <+ SERIALUNION(Ly, L)

8 return JOINLEFT(T, L)

Using split and join on a given block costs at most O(lg(s)) expected work where s is the
size of that block. The logarithm is convex, so in the worst case each block is the same size
and the work is O(klIg(% + 1)) where k& = Block(L1, Ly), which is optimal.

Note that we never use the v return value from a split. If a split returns a v which is
non-null, then that v was a duplicate key and we can safely discard it.

Unfortunately, this algorithm cannot be run in parallel. In order to create a parallelizable
algorithm we need to implement some form of divide-and-conquer.

5 The LRTreap

We have defined data structures which permit finger searches from either the left or the right
sides. We will now create a data structure which combines the two types, allowing finger
searches to be done from either side. This data structure, called an LRTreap, is represented
by a triple (L, root, R) where L is an LTreap containing the keys to the left of the root, and
R is an RTreap containing the keys to the right. We can convert an LRTreap to a standard
treap or vice versa in O(lg(n)) expected time just by traversing the spines. (See Figure 6.)
In our pseudocode we refer to LRTreaps using the variable T.

We define two operations, SPLITLR and JOINLR, which can be used on LRTreaps. SPLITLR is
a function which splits an LRTreap on a given key, producing two LRTreaps; it works by
testing the key against the root and then calling either SPLITLEFT or SPLITRIGHT as ap-
propriate. JOINLR does the opposite: it joins two LRTreaps into one by converting one of
them to a standard treap and calling either JOINLEFT or JOINRIGHT. Pseudocode for these
operations can be found in Figures 7 and 8.

1 spLITLR(Y, v)

2 if T.root = null then

3 return (Y, null, T)

4 else if T.root > k then

5 (T, m, L") < sPLITLEFT(Y.L,v)

6 T, <+ TOLRTREAP(T)

7 Ty < new LRTreap(L',T.root,T.R)
8 return (T1,m,Y5)

9 else if T.root == v then

10 T; < FROMLTREAP(Y.L)

11 T, <+ FROMRTREAP(T.R)

12 return (TOLRTREAP(T}), Y.root, TOLRTREAP(T3))
13 else \\ Y.root < v

14 (R, m, T) < sPLITRIGHT(Y.R,v)

15 T, + new LRTreap(Y.L,Y.root,R')

16 Ty <+ TOLRTREAP(T)

17 return (T1,m,Y5)

18

Figure 7: Pseudocode for sPLITLR.

1 JOINLR(Yy, Y2)

2 if IsEMPTY(Y;) then

3 return Yo

4 else if ISEMPTY(Y3) then

5 return YT,

6 else if T;.root.priority > Ys.root.priority then
7 Ty < FROMLRTREAP(Y3)

8 R’ + JOINRIGHT(Y.R, Tb)

9 T < new LRTreap(Y:.L,Y.root, R')
10 return T
11 else
12 T; < FROMLRTREAP(Y)

13 L' + JOINLEFT(Y2.L, T)

14 T < new LRTreap(L’, Ts.root, T9.R)
15 return T

Figure 8: Pseudocode for JOINLR.

Henceforth, when discussing a specific key v, we will denote the number of keys less than v by
a and the number of keys greater than v by b. We wish to show that the SPLITLR operation
requires O(lg(min(a, b))) expected work.

We would like to directly use the result of Seidel and Aragon [2] which states that, if nodes
v and v’ are separated in a treap by d nodes, then the expected distance from v to v’ is
O(lg(d)). Unfortunately, we are hindered in this approach by the fact that we cannot search
along any path that includes the root. The bound still holds, however:

Theorem 5.1 The expected work required to split an LRTreap on a key v is O(1g(min(a, b))).

Proof. There are three possibilities, depending on where in the treap the root is.

First, the root could be to the left of v. (This corresponds to the case on Line 5 in the
sPLITLR code.) This occurs with probability (a/n), and the expected work required to find
v is O(lg(b)).

Similarly, the root could be to the right of v. (This is Line 14.) This occurs with probability
(b/n), and the expected work required to find v is O(lg(a)).

Lastly, v could be the root. (This is Line 10.) In this case, we have to convert the whole
LRTreap into a standard treap, perform the operation, and convert it back, which takes
O(lg(a +b)). Fortunately, this only happens with probability (1/n).

So the total expected work to find v is

O(alg(b) +blg(a) + 1g(a + b))

n

But when a < b, alg(b) < blg(a) and lg(a + b) < b, so this is equivalent to O(blg(a)/n),
which is O(lg(a)). Likewise, when b < a, this is equivalent to O(lg(b)). Thus the total
expected work is O(lg(min(a, b))). =

We can use the SPLITLR function to search for a key as well, so these work bounds also
apply for searching.

Likewise, joining two LRTreaps Y; and Y5 (where all keys in T; are less than all keys in
T5) requires touching no more nodes than would be required to split them apart after they
were joined. Thus this bound applies to the join operation as well.

We note that the code as described makes two passes along the spines of the smaller
LRTreap. A more practical implementation could gain a constant factor of efficiency by
merging those two passes into one.

10

1 Tl A

T2

T2A T2C T2C

Figure 9: The four steps of our algorithm: split Ty, split Y, recurse, rejoin.

GREATESTVALUE(Y)
if ISEMPTY(T) then
return NEGATIVE_INFINITY
if T.R # null then
return T.R.key
else
return T .root

N OO W N

Figure 10: Pseudocode for GREATESTVALUE. The LEASTVALUE code is similar.

6 Union-Find

We now turn our attention to the problem of finding the union of the elements of two
treaps. Given two sorted sets of keys represented by LRTreaps, we wish to find an LRTreap
containing the union of the two sets.

Our algorithm is shown in Figure 9, and can be described in four steps. Given two LRTreaps
T, and Y5, with Ty.root.priority > Ts.root.priority, we first split T on the root of T;. We
then split T; on the two keys of Ty that were nearest the previous split. This separates from
T, a maximal block containing the root. In the third step, we recursively find the union of
the pieces of the two LRTreaps; and in the fourth step, we join the results back together.

Pseudocode for our algorithm is shown in Figure 11. Note that, should Y54 be empty
(that is, if the first split made is trivial), then GREATESTVALUE(Y,) will return NEGA-
TIVE_INFINITY (see Figure 10). Thus Y;4 will also be empty, and UNION(Y14,Y54) will
immediately return an empty LRTreap. A similar case applies if Toc is empty - so the
possibility of trivial splits is handled without the necessity of checking for them in the code.

Note also that we never use the v, v/, and v” values returned by our calls to SPLITLR. If
one of those values is non-null, then it is a duplicate key and can be safely discarded.

11

1 uNION(Yq, To)

2 if ISEMPTY(Y) then

3 return Ty

4 if ISEMPTY(Y2) then

5 return YT,

6 if Yo.root.priority > Yj.root.priority then

7 (Tl, TZ) — (Tg, Tl)

8 (Yo4, v, Toc) < SPLITLR(T2, Y;.root)

9 (Y4, v, T)) < SPLITLR(Y, GREATESTVALUE(Y24))
10 (YTip, v", Tic) < SPLITLR(Y', LEASTVALUE(Y9¢))
11 T4 < UNION(Y14, To4)

12 Y¢ + uNION(Tye, Too)
13 return JOINLR(Y 4, JOINLR(Y5, T¢))

Figure 11: Pseudocode for UNION.

7 Analysis

In this section, all expectations are calculated over the random assignment of priorities to
keys in Y.

An important property of our algorithm is that, at any recursive step, we decide which splits
to make based only on the location of the highest-priority root among the two LRTreaps.
We then use splits to remove that root from future recursive steps. This ensures that we do
not introduce bias: at any recursive step, every key is equally likely to be the root.

We formalize this property with a definition:

Definition 3 An “almost-unbiased” split of an LRTreap is one which is chosen with no
knowledge about that LRTreap other than its root node.

Almost-unbiased splits have an interesting property that we will make use of in our analysis:

Lemma 7.1 In an LRTreap T of size n, let N be the number of nodes visited by any almost-
unbiased split. If that split visits N,s non-spinal nodes and Ny spinal nodes, then E[N]| <
2E[Ny,) + 1.

Proof. Our SPLITLEFT and SPLITRIGHT algorithms visit nodes of two categories: spinal
nodes and non-spinal nodes. They first travel up the spine of T until they reach a place to
begin the split; then, they enter the interior of T and splits the two LRTreaps apart. Thus
we have N = N, + N,,.

Consider any LRTreap Y’ that has been split off from Y with an almost-unbiased split. The
split was chosen without regard for the priorities of the keys in Y’ so all of those priorities

12

O

Figure 12: The path (bold) connecting any k leaves (squares) of a treap to each other and
to the root contains expected O(klg(® + 1)) nodes.

now are drawn from the same distribution. Thus Y’ is unbiased, so each of its spines has
the same expected length, independent of the root of Y. We know that one of those spines
contains exactly N, nodes; the other spine contains at most N,s; + 1 nodes. (Some of the
non-spinal nodes involved in the split may have stayed in Y. The root of Y’, however, counts
as a spinal node but still contributes 1 to the length of each spine of Y'.) Thus we have
E[N] < E[Nys] + 1. We know E[N| = E[N;| + E[Nys], so we have E[N] < 2E[N,,]+1. =

We can now begin to analyze the work required by our algorithm. To do this we will need
the following lemma:

Lemma 7.2 Given any unbiased treap T, and given k leaves of that treap, there is a unique

minimal set of nodes P (called a “path”) which connects those k leaves to each other and to
the root of T, and E[|P|] is O(klg(+ 1)).

Proof. The path is unique because the treap is acyclic. To show the size of the path, we
consider an algorithm which traverses exactly that path.

Suppose that we take each of the £ — 1 leaves that the path touches and finger-search for
them in order starting from the root. For each pair of adjacent leaves the finger search will
travel up the tree until it finds the common ancestor of the two, then travel back down to the
target leaf. Seidel and Aragon [2] showed that such a finger search takes O(lg(d)) expected
time per search, where d is the number of keys separating two endpoints. The logarithm
is convex, so in the worst case all the spaces between the endpoints will be equal, and the
finger-search algorithm will take expected time O(lg(n)) for the search from the root to the
first endpoint and O(lg(3 + 1)) for each other search, for total expected time O(klg(% +1)).

The finger-searches described above touch exactly the nodes which are on the path we

13

describe, so there can be at most O(klg(% + 1)) of those nodes. .
We can now state the following theorem:

Theorem 7.3 The expected work required for the UNION algorithm is O(klg(3 4 1)), where
k = Block(Y1,Ys) and n = | Y|+ |Ta.

Proof. We first consider T;. We know that Y; will eventually be split into O(k) pieces
by calls to SPLITLR. (A single call to SPLITLR might produce two splits of Yy, if the key
being split on is a duplicate key. But both of those splits are counted in our Block metric,
so this is still within our work bound.) We can trace the path P that those splits will take
through Ty, and by Lemma 7.2 we know that E[|P|]is O(klg(% + 1)). Now observe that,
regardless of the order in which we perform the splits, each node in the path will be used
as a non-spinal node by exactly one split. (After a node is used as a non-spinal node, it
becomes a spinal node of whatever LRTreap it ends up in.) If we denote the work required
for split i by N(i), then the total work required is:

EW] = E ZN(@')] (1)

< E Z(2an(z‘>+1>> (2)
= 2F zk:an +k

= 2E[|P|]+k
— O(klg(%Jrl))

where (2) follows from (1) and Lemma 7.1 and the fact that all the splits made by our
algorithm are almost-unbiased.

An identical argument applies to Ts.

To see that the joins are within our work bound, consider the final product LRTreap T
after all joins have been made, and imagine reversing the join-order to split it back up into
its component blocks. We would first perform two splits to remove the root block from Y.
We would then recursively perform splits to remove the root blocks from the two pieces

14

of T, and so on. The splits made in this fashion are determined only by the root of the
component that is being split. Thus these splits are almost-unbiased splits, so we can again
apply the argument above to see that the splits cost O(klg(% + 1)) expected work. But
joining two LRTreaps together takes the same amount of work as splitting them apart, so
E[Wjoin] = O(klg(% + 1)) as well.

We still need to show that the costs of the trivial splits and joins made are within our work
bound. We define a “trivial” call to UNION to be one in which either T; or 15 is empty.
Observe that such calls immediately return without generating any further calls, so the total
number of such calls can be no more than twice the number of nontrivial calls.

Now, each nontrivial call that is made results in at least one nontrivial join operation. Our
algorithm makes at most 2k nontrivial joins in all, so there can be at most 2k nontrivial
calls and 6k total calls. No call can contain more than a constant number of trivial splits
and joins, so the work done on trivial splits and joins is O(k).

Thus the total expected work required is O(klg(3 + 1)). =

7.1 Parallel Performance

We still need to consider the parallel performance of this algorithm. We can easily make our
algorithm parallel by spawning separate threads for each recursive call. Since each call deals
with a separate portion of the LRTreap, each thread will read and write from a separate
part of the memory, so the algorithm will run on an EREW PRAM.

We would like to analyze the depth of our algorithm. Observe that, every time the algorithm
recurses, the root is cut out of one of the LRTreaps. Thus the depth of the part of that
LRTreap in the next recursion will be one less. That means that the sum of the depths of
the LRTreaps decreases at each recursion. The expected depth of an LRTreap is O(lg(n)),
so the depth of the recursion is O(lg(n)).

At each step of the recursion, the algorithm does at most O(lg(n)) expected work, so the
total depth of the algorithm is O(lg*(n)). To map this onto an EREW PRAM we need to
deal with load-balancing. This can be done with a primitive scan operation or by including
the depth of a scan in our time bound.

8 Intersection and Difference

With only slight modifications, we can also use our UNION algorithm to find the intersection
or difference of two sets.

For INTERSECT, we want to include only duplicate keys in the final result, so we let 15

15

1 INTERSECT(Yq, T2)

2 if ISEMPTY(T) or ISEMPTY(Y2) then

3 return new LRTreap(null, null, null)

4 if Yo.root.priority > Yi.root.priority then

5 (Tl, TZ) — (Tg, Tl)

6 (Yo4, v, Toc) < SPLITLR(T2, Y;.root)

7 (YTya, v, T)) < SPLITLR(Y;, GREATESTVALUE(Y34))
8 (Y\g, v, Tic) < sPLITLR(Y), LEASTVALUE(Y))
9 T, <+ new LRTreap(null, v, null)
10 Y, <+ new LRTreap(null, v, null)
11 Y,» + new LRTreap(null, ", null)
12 Y1+ JOINLR(Y,, JOINLR(Yr, Tyr)
13 Y4 < INTERSECT(Y 14, To4)
14 Y¢ + INTERSECT(Y ¢, YToo)
15 return JOINLR(Y 4, JOINLR(Y 5, Y¢))

Figure 13: Pseudocode for INTERSECT.

contain only the three duplicate keys v, v/, and v”. We convert those keys to LRTreaps and
then use JOINLR to form Y;p in order to handle the possibility that those keys might be
null. Pseudocode for INTERSECT is shown in Figure 13.

For DIFFERENCE, the algorithm is a bit more complicated as we need to keep track of
a boolean b that indicates which of Y; and Y, is the subtrahend. Also, if we encounter
duplicate keys, we may need to explicitly remove the originals from whichever set they were
in. To split off the leftmost key from Yyc, for example, we use the code (Yo, v", Toc) +
SPLITLR(Y ¢, v") where we know from before that v” was that leftmost key. Note that we
never use the value Ty as it will always be empty. Pseudocode for DIFFERENCE is shown in
Figure 14.

9 Discussion

We have already mentioned the data structure of Kaplan and Tarjan [16] which allows splits
and joins in worst-case O(lg(min(a,b))) time. We used treaps to implement a similar data
structure; for comparison, we will describe their structure here to provide an indication of
its complexity.

We start by defining a 6-list to be a list that can contain no more than 6 elements. We can
then recursively represent a sorted list L as follows. A list L contains three pieces: a prefix,
a suffix, and a sub-list. The prefix and suffix are 6-lists; the sub-list ¢(L) is a list whose
elements are all either doubles or triples of elements from L. If L contains 6 or less elements
then ¢(L) is empty and all of the elements are stored in the prefix and suffix.

If we refer to the i-th level list with ¢!(L), then a list can be represented as a stack S(L) in

16

1 \\ b is true if Yo is the subtrahend, false otherwise.
2
3 DIFFERENCE(Y1, Yo, b)
4 if ISEMPTY(Y;) or ISEMPTY(Y3) then
5 return b7 YT;: Ty
6 if Yo.root.priority > Yi.root.priority then
7 (Tl, TZ) — (Tg, Tl)
8 b <+ notbd
9 (To4, v, Toc) < SPLITLR(T2, Y;.root)
10 (T4, v, T)) < sPLITLR(Y, GREATESTVALUE(Y24))
11 (Y)g, v", Tic) < SPLITLR(Y, LEASTVALUE(Y2¢))
12 if b then
13 if v = null then
14 Tip « Tip
15 else
16 (Y1, v, Tipr) < SPLITLR(Y 5, v)
17 TIB — JOINLR(TlBL,TlBR)
18 else
19 T1p < new LRTreap(null, null, null)
20 if v’ # null then
21 (Toa, v', To) + SPLITLR (Y24, v')
22 if v"" # null then
23 (Yo, k", To¢) + SPLITLR(Ya¢, v")
24 Y4 < DIFFERENCE(Y14, Y24, b)
25 Y¢ DIFFERENCE(Y:¢, YToc, b)
26 return JOINLR(Y 4, JOINLR(Y:5, T¢))

Figure 14: Pseudocode for DIFFERENCE.

which the i-th element of S(L) contains pointers to the prefix and suffix of ¢/(L).

An element of ¢!(L) can be represented as a 2-3 tree of depth i. For ease of searching, the
leftmost key of such a 2-3 tree is stored with the tree itself.

A prefix or suffix is defined to be green if it contains two to four elements, yellow if it
contains one or five elements, and red if it contains zero or six elements. The color of a list
is defined to be the “worst” of the colors of its prefix and suffix, where red is defined to be
“worse” than yellow, which is “worse” than green.

Kaplan and Tarjan maintain the following invariant over every list L:

“If ¢*(L) is a red list then ¢ > 0 and there exists a green list ¢/(L), j < 7, such that any list
*(L), j <k <1, is yellow.”

In a functional setting, a list L is not actually represented by S(L) but by a different stack
S’(L) in which every maximal sequence of yellow lists is replaced by a single element which
contains a pointer to the sequence. The sequence is stored as a stack with the lowest-order

17

geometric perfect

. block sizes ; interleaving
6 6 -
5 5
4 4
3 3
2 2
1 1
0 2000@200060008000000000 0 2000@000®000@0001VO000O
n n
random walk random walk
m=n m = 100
7 7
6 6
5 5
4 4
ST 3
2 20\
1 1

0 2000@00060008000000000 O 2000@00060008000D00000
n n

Figure 15: The performance constants of our algorithm using 2-3 trees (solid line) and treaps
(dashed line).

list on top. This allows constant-time access to the topmost non-yellow list in any stack.

The structure described above permits implementations of SPLIT and JOIN which take
O(lg(min(a,b))) time, where a and b are the sizes of the pieces involved. With minor mod-
ifications we can allow the structure to keep track of a key which is near the midpoint of
the list. sPLIT, JOIN, and GETMIDPOINT are the only operations that are required for our
UNION, INTERSECT, and DIFFERENCE algorithms, so we can use the structure described
above as a substitute for our treap data structures.

10 Analysis

We have implemented our algorithms in Java using both our Treap-based structures and
Kaplan and Tarjan’s 2-3-tree-based structures. (Our implementation of the 2-3-tree-based
structures was only partial: it did not compress maximum sequences of yellow lists into one
stack entry as described above. This affects the time bound of the structure but does not
alter the number of comparisons it performs.) We conducted tests of our algorithms under
varying conditions. We used four different distributions of random data. Our tests are shown
in Figure 15.

For the first method the block sizes were geometrically distributed with mean 10. Blocks

18

were created and assigned to sets until the total size of the two sets reached 2n.

For the second method the keys were perfectly interleaved - that is, each block had size 1.
This represents worst-case performance for our algorithm, since each set had to be completely
broken down into keys before being reformed. The x-axis shows the number of keys in each
set.

For the third method we generated the data through random walks. Datapoints were
generated as a list in which the difference between any datapoint and its successor was a
random variable uniformly distributed on the range [—.5,.5). The lists were then sorted and
converted to trees. The x-axis shows the number of keys in each set.

For the fourth method we also generated the data through random walks, but one of the
sets was fixed to a size of 100 keys. Our performance factor improved with n in this case
because the average size of each block increased with n. The x-axis shows the number of
keys in the set whose size was not fixed.

In all tests we performed 100 trials at each datapoint. For each trial, we counted the num-
ber of comparisons made during the merge and divided by k1g(2£™ +1) to find the constant
performance factor involved in our algorithm. The total included comparisons to the POSI-
TIVE_INFINITY and NEGATIVE_INFINITY values returned when invoking GREATESTVALUE or
LEASTVALUE on an empty structure; these values were independent of the underlying im-
plementation, so this did not bias our results.

11 Future Work

One interesting avenue for future work would be to improve the parallel depth of this algo-
rithm. Suppose we let n, m be the sizes of the two inputs, with n > m. At present our
algorithm always chooses the higher-priority root among the two treaps for the first split.
If instead we let our algorithm choose the lower-priority root, then the recursive call depth
drops to O(lg(m)), so the total depth should be O(lg(n)lg(m)). Unfortunately, this leads to
the intermediate treaps becoming biased, which violates our work bound for this algorithm.

A possible solution to the above problem would be to switch the underlying balanced tree
structures from treaps to 2-3 trees. The structures of Kaplan and Tarjan described in our
discussion support the same split and join operations as our LRTreap structures, although
the implementation is more complex. Using that implementation, bias would no longer
be a concern, so we could make the change described above and decrease the depth to
O(lg(n)lg(m)). Additionally, our bounds should become worst-case rather than expected-
case.

19

References

1]

2]

3]

4]

[5]

(6]

7]

[10]

[11]

[12]

[13]

[14]

R. J. Anderson, E. W. Meyer, and M. K. Warmuth. Parallel approximation algorithms
for bin packing. Information and Computation, 82:262-277, 1989.

C. R. Aragon and R. G. Seidel. Randomized search trees. In Proceedings of the 30th
Annual Symposium on Foundations of Computer Science, pages 540-545, 19809.

A. Baumker and W. Dittrich. Fully dynamic search trees for an extension of the BSP
model. In Proceedings of the 8th Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 233-242, 1996.

G. Blelloch and M. Reid-Miller. Fast set operations using treaps. In 10th Annual ACM

M. R. Brown and R. E. Tarjan. A fast merging algorithm. Journal of the Association
for Computing Machinery, 26(2):211-226, Apr. 1979.

M. R. Brown and R. E. Tarjan. Design and analysis of a data structure for representing
sorted lists. SIAM Journal of Computing, 9(3):594-614, Aug. 1980.

S. Carlsson, C. Levcopoulos, and O. Petersson. Sublinear merging and natural merge
sort. In Proceedings of the International Symposium on Algorithms SIGAL’90, pages
251-260, Tokyo, Japan, Aug. 1990.

R. Cole, B. Mishra, J. Schmidt, and A. Siegel. On the dynamic finger conjecture for splay
trees. i. splay sorting log n-block sequences. SIAM Journal on Computing, 30(1):1-43,
2000.

E. Dekel and I. Azsvath. Parallel external merging. Journal of Parallel and Distributed
Computing, 6:623-635, 1989.

X. Guan and M. A. Langston. Time-space optimal parallel merging and sorting. IEEE
Transactions on Computers, 40:592—602, 1991.

L. J. Guibas, E. M. McCreight, M. F. Plass, and J. R. Roberts. A new representation
for linear lists. In Proc. of the 9th Annual ACM Symposium on Theory of Computing,
pages 49-60, 1977.

T. Hagerup and C. Riib. Optimal merging and sorting on the EREW PRAM. Infor-
mation Processing Letters, 33:181-185, 1989.

K. Hammond. Parallel functional programming: An introduction. In First International
Symposium on Parallel Symbolic Computation PASCO, pages xiii+431, 181-93, Sept.
1994.

L. Highan and E. Schenk. Maintaining B-trees on an EREW PRAM. Journal of Parallel
and Distributed Computing, 22:329-335, 1994.

20

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

H. Kaplan, C. Okasaki, and R. Tarjan. Simple confluently persistent catenable lists.
In Proceedings of the 6th Scandinavian Workshop on Algorithm Theory, pages 119-130,
July 1998.

H. Kaplan and R. Tarjan. Purely functional representations of catenable sorted lists. In
Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, pages
202-211, May 1996.

H. Kaplan and R. E. Tarjan. Persistent lists with catenation via recursive slow-down.
In Proceedings of the 27th Annual ACM Symposium on Theory of Computing, pages
93-102, 1995.

R. E. Kaplan, H.; Tarjan. Purely functional, real-time deques with catenation. Journal
of the ACM, 46:577-603, 1999.

J. Katajainen, C. Levcopoulos, and O. Petersson. Space-efficient parallel merging. In
Proceedings of the 4th International PARLE Conference (Parallel Architectures and
Languages Europe), volume 605 of Lecture Notes in Computer Science, pages 3749,
1992.

W. Paul, U. Vishkin, and H. Wagener. Parallel dictionaries on 2-3 trees. In Lecture
Notes in Computer Science 143: Proceedings of the 10th Colloquium on Automata,
Languages and Programming, Barcelona, Spain, pages 597-609, Berlin/New York, July
1983. Springer-Verlag.

W. Pugh. A skip list cookbook. Technical Report CS-TR-2286.1, University of Maryland
Institute for Advanced Computer Studies, Dept. of Computer Science, University of
Maryland, June 1990.

A. Ranade. Maintaining dynamic ordered sets on processor networks. In Proceedings
of the 4th Annual ACM Symposium on Parallel Algorithms and Architectures, pages
127-137, San Diego, CA, June-July 1992.

R. E. Tarjan and C. J. V. Wyck. An O(n log log n)-time algorithm for triangulating a
simple polygon. Siam J. Computing, 17:143-173, 1988.

P. J. Varman, B. R. Iyer, D. J. Haderle, and S. M. Dunn. Parallel merging: Algorithm
and implementation results. Parallel Computing, 15:165-177, 1990.

21

