
A New Method for Balancing Binary Search
Trees?

Salvador Roura

Departament de LSI, Universitat Politècnica de Catalunya,
E-08028 Barcelona, Catalonia, Spain.

roura@lsi.upc.es

Abstract. A new balancing method for binary search trees is presented,
which achieves logarithmic worst-case cost on searches and updates. The
method uses the sizes of the subtrees as balancing information; therefore
operations by rank are efficiently performed without any changes in the
data structure. Compared to weighted binary search trees [7], which also
achieve logarithmic worst-case cost by making use of the sizes of the
subtrees, the operations involved with our method are likely to be less
costly in most real situations.

1 Introduction

The binary search tree (BST) data structure is fundamental to computer science.
Since BSTs perform poorly when they are skewed, many variants of balanced
BSTs have been devised so far. Weighted BSTs [7] achieve logarithmic worst-case
cost by using the sizes of the subtrees as balancing information. Other variants,
like AVL trees [1] and red-black trees [4], use information different from the
sizes of the subtrees; thus rank operations are not efficiently supported unless an
additional field is included at every node. The same comment applies to splay
trees [9] and general balanced trees [2], which achieve logarithmic amortised
costs without storing any structural information at the nodes. Other variants
of balanced trees make use of the sizes of the subtrees but do not guarantee
logarithmic worst-case cost; for instance, randomised BSTs [6].

This paper presents a new balancing method for BSTs, which, like weighted
BSTs, achieves logarithmic worst-case cost by using the sizes of the subtrees as
balancing information. So let us first briefly recall weighted BSTs. Suppose that
L and R are the subtrees of a weighted BST, with x and y leaves respectively, and
assume w.l.o.g. that x ≤ y. The balancing property of weighted BSTs states that
y < (1+

√
2)x, or alternatively, that 2y2 < (x+y)2, which is anyway an expensive

property to check. This seems to be the main reason not to use weighted BSTs as
default balancing method: “However, it appears that the bookkeeping required
for maintaining weight balance takes more time than Algorithm A1 . . . ” [5,
? This research was partially supported by the IST Programme of the EU IST-1999-

14186 (ALCOM-FT), and by the project DGES PB98-0926 (AEDRI).
1 Insertion in AVL trees.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 469–480, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

470 S. Roura

page 476]. As shown in the next sections, the method introduced in this paper
is likely to be more efficient than weighted BSTs in most practical situations.

The next sections are organised as follows. Section 2 introduces the main
definitions, including the concept of Logarithmic BST (LBST), and proves that
the height of an LBST is always logarithmical w.r.t. the size of the tree. Sec-
tion 3 presents the insertion and deletion algorithms for LBSTs. The former is
implemented in Sect. 4, where some empirical evidence that LBSTs are faster
than weighted BSTS is provided. Section 5 ends the paper with some further
comments.

2 Basic Definitions

Definition 1. For positive n, let `(n) be defined as

`(n) =
{

0, if n = 0
1 + blog2 nc, if n ≥ 1 .

Note that, except for n = 0, `(n) is the largest position with a bit equal to one
in the binary representation of n; in other words, `(n) is the unique integer such
that 2`(n)−1 ≤ n ≤ 2`(n) − 1.

Given a BST T , let |T | denote the number of keys in T , and let `(T) = `(|T |).
We call our trees Logarithmic BSTs, since their fundamental property is that, at
every node, the discrete logarithm of the size of the left subtree and the discrete
logarithm of the size of the right subtree differ at most in one unit.

Definition 2 (Logarithmic BST). A BST T is an LBST if and only if

– T is an empty tree,
– or T is a non-empty tree with subtrees L and R, such that L and R are

LBSTs and −1 ≤ `(L) − `(R) ≤ 1.

Let us consider the case where T is non-empty. Let λ = `(L), and assume w.l.o.g.
that |L| ≤ |R|. Then `(R) is either λ or λ+1. We analyse both cases separately.
Suppose first that `(R) = λ:

– If λ > 0, from 2λ−1 ≤ |L|, |R| ≤ 2λ−1 we deduce that 2λ+1 ≤ |T | ≤ 2λ+1−1.
Therefore `(T) = λ + 1.

– If λ = 0, we have |T | = 1 and `(T) = λ + 1 as well.

Suppose now that `(R) = λ + 1:

– If λ > 0, the fact that 2λ−1 ≤ |L| ≤ 2λ − 1 and 2λ ≤ |R| ≤ 2λ+1 − 1 implies
3 · 2λ−1 + 1 ≤ |T | ≤ 3 · 2λ − 1. In this case `(T) equals either λ + 1 or λ + 2.

– If λ = 0, then |T | = 2 and `(T) = λ + 2.

A New Method for Balancing Binary Search Trees 471

These two cases are summarised in Fig. 1, using the symbolism that we
will keep for the rest of the paper. Every node is labeled with the name of the
subtree rooted at that node. For every combination of the weights and every
subtree S, the several possibilities for `(S) are shown, unless `(S) is the same
in all situations (in that case it is shown just once). For example, in Fig. 1 we
have that `(L) = λ and `(R) = λ imply `(T) = λ + 1, whilst `(L) = λ and
`(R) = λ + 1 imply `(T) = λ + 1 or `(T) = λ + 2.

l
l+1

l

l+1/l+2
l+1

T

L R

Fig. 1. Cases for an LBST with right subtree larger than left subtree

It is not difficult to prove that the height of an LBST T is always Θ(log |T |).
Let λ = `(T). It is enough to notice that every grandchild G of T must satisfy
`(G) ≤ λ − 1. Otherwise we would have the situation of Fig. 2. Since both the
brother of P and the brother of G would include at least 2λ−2 nodes, and G
would include at least 2λ−1 nodes, T would have at least 2λ + 2 nodes, which is
a contradiction. Therefore, every path from the root of T to a leaf visits at most
2(λ + 1) nodes, where λ = log2 |T | + O(1).

T

lP

G

l

l

Fig. 2. Impossible case for an LBST

472 S. Roura

Theorem 3 below states that the constant 2 is in fact asymptotically tight,
i.e., that the worst-case height of an LBST T is ∼ 2 log2 |T |. But first we need
to introduce two functions. For every N ≥ 0, define I(N) = 4 · 2N + 2N , and
J(N) = 6 · 2N + 2N + 1. Observe that 4 = I(0) < J(0) < I(1) < J(1) < · · ·
Hence, for every n ≥ 4, there is a unique N such that either I(N) ≤ n < J(N)
or J(N) ≤ n < I(N + 1).

Theorem 3. Let H(n) be the maximum height of an LBST with n keys. Then
H(0) = 0, H(1) = 1, H(2) = H(3) = 2, and for every n ≥ 4,

H(n) =
{

2N + 3, if I(N) ≤ n < J(N)
2N + 4, if J(N) ≤ n < I(N + 1) .

(The proof is by induction on N .)

We thus know that, if I(N) ≤ n < I(N + 1), H(n) ≤ 2(N + 2). But N + 2 ≤
log2 I(N) ≤ log2 n, and we can conclude that the height of an LBST with n ≥ 2
keys is never larger than 2 log2 n. Note that the constant 2 is asymptotically
tight, i.e., H(n) ∼ 2 log2 n. Recall that the worst-case height of a weighted BST
with n keys is also ∼ 2 log2 n.

3 The Insertion and Deletion Algorithms

In the insertion and deletion algorithms, we will make use of the following algo-
rithm, which obtains an LBST from a BST such that its left subtree L and its
right subtree R are LBSTs, where `(L) = λ − 2 and `(R) = λ. Let A and D be
the left and right subtrees of R, respectively. Figure 3 includes the five possible
combinations for `(A) and `(D), provided that `(R) = λ.

A D

R

l-1

l-1
l-1

l-1
l-1

l-1

l

l-2

l

l-2
l

Fig. 3. Five possible cases for an LBST R with `(R) = λ

As shown in Fig. 4, a single rotation suffices for the first, second and fourth
cases of Fig. 3. For instance, consider the first case, where `(A) = `(D) = λ − 1.

A New Method for Balancing Binary Search Trees 473

After the rotation, the left subtree of R, labeled T in the figure, is such that
λ − 1 ≤ `(T) ≤ λ, and thus `(T) differs in at most one unit with `(D).

D

R

L

T

R

A D

T

L A

l

l-1

l-1
l-1
l-1

l-2

l-2
l

l-1

l-1

l-1
l-1

l-2
l-2

l

l-1/l
l-1

l-1/l

Fig. 4. Cases of Fig. 3 for which a single rotation suffices

Figure 5 proves that, for the third case of Fig. 3, a double rotation suffices. Let
B and C be the left and right subtrees of A, respectively (notice that `(A) ≥ 1
implies that A is never empty). As in Fig. 3, there are five possible combinations
for `(B) and `(C). For each one and after two rotations, the first rotation between
A and R, the second between A and T , the balancing property is reestablished.

The fifth and last case of Fig. 3 also requires a double rotation (see Fig. 6),
but this case is slightly different from the case in Fig. 5. Indeed, only three of
the five combinations for `(B) and `(C) are possible here, since `(B) = λ − 1
and `(C) = λ (or `(B) = λ and `(C) = λ − 1) together with `(D) = λ − 1 would
imply `(R) = λ + 1, which is against the hypotheses.

We are now ready to present the insertion algorithm of a new key x into a
given LBST T , which follows the traditional approach of balanced trees:

• If T is empty, return a BST with x as only key.
• Otherwise, let L and R be the left and right subtrees of T , respectively.

• If x is smaller than the root of T , recursively insert x into L;
if afterwards `(L) = `(R) + 2, perform a local update.

• If x is larger than the root of T , recursively insert x into R;
if afterwards `(R) = `(L) + 2, perform a local update.

The local updates mentioned above, meant to reestablish the balancing property
of LBSTs, are those included in Figs. 4, 5 and 6. Note that, in fact, only the
second and third cases of Fig. 3 are possible here, because |R| must be exactly
2λ−1 after the recursive insertion.

We now consider how to delete a key x from a given LBST T . The deletion
algorithm also uses the local updates included in Figs. 4, 5 and 6:

474 S. Roura

L

T

R

D

A

CB

L B C D

T R

A

l

l-1

l-3
l-1

l-3

l-1

l-2

l-2

l-2

l-2
l-2

l-2
l-2

l-2

l-2/l-1
l-1
l-1

l-1

l-3

l-1
l-1

l-1

l-1
l-1

l-2/l-1

l-1/l
l-1/l

l-2 l-2

l-2
l-2

l-3
l-2
l-2

l-2

l-2

Fig. 5. Third case of Fig. 3; a double rotation suffices

L

T

R

D

A

CB

L B C D

T R

A

l
l

l-1/l

l-1

l-1

l-1
l-1

l-1

l-1/l

l-1/l
l-1

l-2
l-2

l-2

l

l

l-1

l-1

l-1

l-1
l-1

l-2

l-2
l-2

Fig. 6. Fifth case of Fig. 3; a double rotation suffices

A New Method for Balancing Binary Search Trees 475

• If T is empty, x is not in T ; hence no updates are needed.
• If T has x as unique key, return the empty tree.
• Otherwise, let L and R be the left and right subtrees of T , respectively.

• If x is smaller than the root of T , recursively delete x from L;
if afterwards `(R) = `(L) + 2, perform a local update.

• If x is larger than the root of T , recursively delete x from R;
if afterwards `(L) = `(R) + 2, perform a local update.

• If x is equal to the root of T , remove it.

The removal of the root of T can be done in several ways. For instance, we
can replace the root of T by the minimum of the keys in R when |L| ≤ |R|, or
by the maximum of the keys in L when |L| > |R|. The algorithm to extract the
minimum of the keys from a non-empty LBST T is quite simple:

• If the left subtree of T is empty, the minimum key is the root of T ,
and the right subtree of T is the remaining tree.

• Otherwise, recursively extract the minimum from the left subtree of T ;
afterwards perform a local update if necessary.

Once again, the local updates required here are identical to those of the insertion
algorithm and deletion algorithm. The algorithm to extract the maximum of the
keys of a non-empty LBST is symmetrical.

4 Implementing LBSTs

The C code presented in this paper implements the insertion algorithm for LB-
STs. This code has been written to emphasise the simplicity of the algorithms,
so faster programmes could be obtained at the price of obscuring the code. Due
to space limitations the deletion algorithm has been omited.

As shown in Fig. 7, an LBST is identified with a pointer to its root node.
Every node contains a key, two pointers to its children and a counter of type size
with the number of keys in the subtree rooted at the node. We assume that keys
and counters are long integers, and that empty trees are equal to null, which is
a pointer to a node with no key and size 0. The call singleton(x) returns an
LBST with x as only key.

Figure 7 also includes some fundamental functions. Given two sizes a and b,
the call smaller ell(a, b) tells us whether `(a) < `(b) or not. Let λ = `(b). If
a ≥ b, we trivially have `(a) ≥ λ. Otherwise, we perform a logical “and” of a and
b, shift the result one bit to the left, and compare the final result (let us call it
α) against b. Assume that λ ≥ 1. If `(a) = λ, we have `(α) = λ+1; hence α > b
and the function returns FALSE. If `(a) < λ, then α is at most 2(b− 2λ−1). This
happens when `(a) = 2λ−1 −1, i.e., when the digital representation of a includes
as many bits equal to one as possible. Since b < 2λ, we have α ≤ 2b − 2λ < b,
and the function returns TRUE, es expected. The function always returns FALSE
for the special case λ = 0.

The call rot left(t) returns the result of rotating t to its left, updating
conveniently the fields b->s and t->s. The call inc left(t) returns the result

476 S. Roura

of balancing t by means of the rotations in Figs. 4, 5 and 6, assuming that
`(t->r) = `(t->l) + 2. Notice that one call to the function smaller ell()
suffices to discriminate the first, second and fourth cases from the third and fifth
cases of Fig. 3. The functions rot right() and inc right() are easily obtained
from the functions rot left() and inc left().

Given two sizes A and B such that `(A) ≤ `(B) + 1, we use the macro
balanced(A, B) to know whether `(B) ≤ `(A) + 1 or not. Note that the log-
ical instructions in this macro and in the function smaller ell() are usually
fast in most computers.

typedef long key, size;
typedef struct node *lbst;
typedef struct { key k; lbst l, r; size s; } node;

int smaller_ell(size a, size b)
{ if (a >= b) return FALSE;

return ((a&b)<<1) < b;
}

lbst rot_left(lbst t)
{ lbst b = t->r; t->r = b->l; b->l = t;

b->s = t->s; t->s = 1 + t->l->s + t->r->s;
return b;

}

lbst inc_left(lbst t)
{ if (smaller_ell(t->r->r->s,t->r->l->s)) t->r = rot_right(t->r);

return rot_left(t);
}

#define balanced(A, B) !(smaller_ell(A, (B)>>1))

lbst Insert(key x, lbst t)
{ if (t == null) return singleton(x);

t->s++;
if (x < t->k)

{ t->l = Insert(x, t->l);
if (!balanced(t->r->s, t->l->s)) t = inc_right(t);

}
else
{ t->r = Insert(x, t->r);

if (!balanced(t->l->s, t->r->s)) t = inc_left(t);
}

return t;
}

Fig. 7. Insertion algorithm in C

A New Method for Balancing Binary Search Trees 477

The left side of Table 1 shows the empirical average search cost and height
of an LBST produced after n random insertions into an initially empty tree, for
several values of n. Table 1 also includes the total number of single and double
rotations that take place during the construction of the LBST. The first four
rows are averaged over 100 executions; the last four rows are averaged over 10
executions. The right side of Table 1 includes the same measures, this time for
LBSTs built in increasing order. We define the average search cost as the internal
path length divided by the number of keys.

Table 1. Empirical average search cost, height, and number of single and double
rotations of LBSTs built under random and sorted insertions

Random order Increasing order
keys A.S.C. Height # S.R. # D.R. A.S.C. H. # S.R. # D.R.
15625 13.254 17.60 3415.78 3413.68 12.952 15 15611 0
31250 14.276 18.97 6829.06 6822.12 13.952 16 31235 0
62500 15.290 20.15 13636.65 13660.82 14.952 17 62484 0

125000 16.316 21.45 27336.78 27282.39 15.952 18 124983 0
250000 17.340 22.8 54678.0 54634.3 16.952 19 249982 0
500000 18.366 23.9 109496.4 109073.1 17.951 20 499981 0

1000000 19.376 25.3 218454.2 218615.9 18.951 21 999980 0
2000000 20.379 26.3 436917.6 437033.4 19.951 22 1999979 0

It is not difficult to prove that any LBST obtained after inserting the keys
in increasing order is (almost) perfectly balanced (and hence the results for
sorted insertions given in Table 1). An exact analysis of random LBSTs is much
harder. However, the empirical results provided in Table 1 indicate that the
average search cost is ∼ β · log2 n for some constant β very close to 1, which can
be regarded as optimal for practical purposes. A similar result holds for other
variants of balanced BSTs.

A single insertion into an LBST T may require up to Θ(log |T |) rotations.
However, less than n rotations are enough to build in increasing order an LBST
with n keys, and, from Table 1, the total number of rotations under random
insertions also seems to be Θ(n). The next theorem states that this is not a
coincidence.

Theorem 4. The total number of rotations required to build an LBST T from
an empty tree is O(|T |).
(The theorem can be proved by means of the potential method; the author’s
proof is too long to be included in this paper. Note that the same property is
true for weighted BSTs [3].)

Tables 2 and 3 include some empirical results about the time efficiency of our
algorithms. The tests consisted in the construction of BSTs with n keys, for five
different balancing strategies and several values of n. Two limiting situations
were considered, namely when keys are inserted at random (Table 2), and when

478 S. Roura

keys are inserted in increasing order (Table 3). The times, expressed in seconds,
were obtained with a PC2, and averaged over 1000 executions for the first four
rows, and over 100 executions for the last four rows.

Table 2. Empirical times (in seconds) to build LBSTs, proper weighted BSTs, relaxed
weighted BSTs, AVL trees and red-black tres in random order

keys LBSTs WBSTs 3WBSTs AVLs RBTs
15625 0.01424 0.01711 0.01437 0.01791 0.02811
31250 0.04909 0.05457 0.04933 0.05543 0.07658
62500 0.14171 0.15370 0.14291 0.15323 0.19947

125000 0.36025 - 0.36261 0.40145 0.48025
250000 0.8667 - 0.8694 0.9547 1.1331
500000 2.0340 - 2.0344 2.2339 2.5683

1000000 4.6638 - 4.6783 5.1646 5.7938
2000000 10.6002 - 10.6326 11.6718 13.0526

The code used for LBSTs was the one provided in this paper, with the
function smaller ell() replaced by a macro for efficiency. The code used for
weighted BSTs was the same except for the balancing condition, which was
“2y2 < (x + y)2”, where x and y are respectively the number of leaves of the
“small” subtree and of the “large” subtree (this condition was only checked after
an insertion into the “large” subtree). The computation of 2y2 and (x+y)2 caused
an overflow for large values of n; hence the empty fields in Tables 2 and 3. A re-
laxed variant of weighted BSTs was also implemented, with “y < 3x” as balanc-
ing condition (we call these trees 3WBSTs). The property for 3WBSTs is cheaper
to check than the one for proper weighted BSTS, but it can degrade somehow the
tree, since the worst-case height becomes ∼ ln 2/ ln(4/3) · log2 n ' 2.40942 log2 n.
The code for AVL trees and the code for red-black trees were taken from [10,
page 153] and from [8, page 554] respectively. Both codes were slightly modified,
to make them comparable with the code of the rest of balancing strategies.

Under random insertions, LBSTs and 3WBSTs performed similarly, and
faster than WBSTs. Since the trees obtained are very well balanced in all the
cases, the crucial factor was the high cost of evaluating the balancing property
of WBSTs. For sorted insertions, both WBSTs and 3WBSTs were about 30 per-
cent slower than LBSTs; note that 3WBSTs built in increasing order are not
perfectly balanced. In general, red-black trees achieved the worst times, while
AVL trees turned out to be about 10 percent slower than LBSTs. The imple-
mentation of AVL trees was the only one without a counter field with the sizes of
the subtrees. If rank operations were needed, this extra field should be updated
conveniently during the insertions, which would increase the insertion time of
AVL trees. Note that the time of sorted insertions was much smaller than the
time of random insertions. This was probably due to the high memory locality
of the former, which induced an efficient use of the cache memory.
2 Pentium(r) II Processor, 128 MB of RAM, DJGPP C compiler.

A New Method for Balancing Binary Search Trees 479

Table 3. Empirical times (in seconds) to build LBSTs, proper weighted BSTs, relaxed
weighted BSTs, AVL trees and red-black tres in increasing order

keys LBSTs WBSTs 3WBSTs AVLs RBTs
15625 0.01125 0.01467 0.01474 0.01253 0.03040
31250 0.02651 0.03447 0.03431 0.03018 0.06751
62500 0.05939 0.07635 0.07672 0.06719 0.14485

125000 0.12968 0.16485 0.16570 0.14448 0.31201
250000 0.2746 - 0.3541 0.3072 0.6568
500000 0.5844 - 0.7600 0.6559 1.3985

1000000 1.2266 - 1.6241 1.3908 2.9786
2000000 2.5781 - 3.4708 2.9299 6.3003

5 Final Remarks

Other operations for BSTs, like joins, splits, unions, intersections, set subtrac-
tions, and so on, can be easily and efficiently implemented using the ideas in this
paper. Moreover, since a counter field is kept at each node, rank operations are
efficiently performed without any further modification of our data structure.

There are several variants of LBSTs that may be considered. First, it is
possible to use the number of leaves instead of the number of keys as balancing
information. The algorithms obtained perform similarly to the ones presented in
this paper. On the other hand, we could relax the condition in Definition 2 to
be −k ≤ `(L) − `(R) ≤ k for some constant k ≥ 1; alternatively, we could define
`(n) = 1+ blogb nc for some base b 6= 2, or combine several of these possibilities.
In general, LBSTs with large k (or with large b) perform less rotations than
plain LBSTs, since its balancing condition is less astringent. On the other hand,
its worst-case height increases as k (or b) increases.

Finally, it must be said that the experimental results presented in this paper
are only an indication that LBSTs can be a practical alternative to traditional
balancing strategies. Nevertheless, there are many factors that should be consid-
ered in our election: time (and space) efficiency, algorithm and code complexity,
variety of supported operations (rank operations, set operations, etc.), ease of
obtaining non-recursive versions to increase efficiency, average and worst-case
cost (measured as number of visited nodes, rotations, etc.), and so on.

Acknowledgments. The comments of Josep Dı́az, Rolf Fagerberg and Conrado
Mart́ınez improved the presentation of this work.

References

[1] G.M. Adel’son-Vel’skii and E. M. Landis. An algorithm for the organization
of information. Dokladi Akademia Nauk SSSR, 146(2):263–266, 1962. English
translation in Soviet Math. Doklay 3, 1259-1263, 1962.

[2] A. Andersson. General balanced trees. Journal of Algorithms, 30:1–18, 1999.

480 S. Roura

[3] N. Blum and K. Mehlhorn. On the average number of rebalancing operations in
weight-balanced trees. TCS: Theoretical Computer Science, 11:303–320, 1980.

[4] L.J. Guibas and R. Sedgewick. A dichromatic framework for balanced trees. In
Proc. of the 19th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 8–21, October 1978.

[5] D.E. Knuth. The Art of Computer Programming: Sorting and Searching, volume 3.
Addison-Wesley, Reading, MA, 2nd edition, 1998.

[6] C. Mart́ınez and S. Roura. Randomized binary search trees. Journal of the ACM,
45(2):288–323, March 1998.

[7] J. Nievergelt and E. Reingold. Binary search trees of bounded balance. SIAM
Journal on Computing, 2(1):33–43, 1973.

[8] R. Sedgewick. Algorithms in C. Addison-Wesley, 3rd edition, 1998.
[9] D.D. Sleator and R.E. Tarjan. Self-adjusting binary search trees. Journal of the

ACM, 32(3):652–686, July 1985.
[10] M.A. Weiss. Data Structures & Algorithm Analysis in C++. Addison-Wesley,

2nd edition, 1999.

	Introduction
	Basic Definitions
	The Insertion and Deletion Algorithms
	Implementing LBSTs
	Final Remarks

