Closest-Point Problems Simplified on the RAM
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Basic proximity problems for low-dimensional point
sets, such as closest pair (CP) and approximate near-
est neighbor (ANN), have been studied extensively in
the computational geometry literature, with well over a
hundred papers published (we merely cite the survey by
Smid [10] and omit most references). Generally, opti-
mal algorithms designed for worst-case input require hi-
erarchical spatial structures with sophisticated balanc-
ing conditions (we mention, for example, the BBD trees
of Arya et al., balanced quadtrees, and Callahan and
Kosaraju’s fair-split trees); dynamization of these struc-
tures is even more involved (relying on Sleator and Tar-
jan’s dynamic trees or Frederickson’s topology trees).

In this note, we point out that much simpler al-
gorithms with the same performance are possible using
standard, though nonalgebraic, RAM operations. This
is interesting, considering that nonalgebraic operations
have been used before in the literature (e.g., in the orig-
inal version of the BBD tree [2], as well as in various
randomized CP methods).

The CP algorithm can be stated completely in one
paragraph. Assume coordinates are positive integers
bounded by U = 2%. Given a point p in a constant
dimension d where the i-th coordinate p; is the number
Piw * - Pio in binary,

e define its shuffle o(p) to be the number
Plw " *Pdw ***P10** " Pdo in binary, and
e define shifts ;(p) = (p1 + [22¥/(d+1)],...,pa +

[22¥/(d+1)]) for i = 0,...,d, assuming w.lo.g.

that d is even.

For each ¢ = 0,...,d, sort the n given points p according
to o(m(p)). Then a constant-factor approximate CP
can be found among the adjacent pairs in these d + 1
lists. Furthermore, the exact CP can be found among
all pairs at most ¢ positions apart in these lists, where ¢
is a sufficiently large constant (depending exponentially
on d). Correctness can be proved from two observations:
points inside a “quadtree box” appear consecutively in
the shuffle order [3], and every pair of points of distance
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7 lies in a quadtree box of diameter O(r) after some
shift [6].

This algorithm is not original. The approximate
version was most recently proposed by Lopez and
Liao [7, 8], although sorting along shuffle order, or gen-
erally space-filling curves, has been suggested often in
other applied areas such as databases and pattern recog-
nition. In computational geometry, it was used by Bern
et al. [3] (for constructing unbalanced and balanced
quadtrees, which we are trying to do without here), but
is largely overlooked as a theoretical tool (hence the rea-
son for writing this note). Shifting, on the other hand,
is a well-known technique in approximation.

One objection is that we can’t directly compute
o(p). But we can decide whether o(p) < o(g) by a
straightforward procedure:

1 1
for j =2,...,d do

if [ps @ ¢i| < |p; @ ¢;] then i  j;
return p; < ¢;.

Here @& denotes bitwise exclusive-or and |z| denotes
|log, 2 |. Though not realized in previous papers [3, 8],
we actually don’t need extra primitives to compute |- |,
as we can decide whether |2| < |y| by this neat trick:

if x > y then return false else return z < P y.

So, using comparison-based sorting, the entire algo-
rithm can be implemented in O(nlogn) time with only
the bitwise exclusive-or!

Although there are randomized CP algorithms
matching in simplicity, this CP algorithm is remark-
able in that it can be dynamized automatically, since
each sorted list—and hence its pairs of positions < ¢
apart—can be updated in logarithmic time by standard
search trees (we can use a heap to store these pairs).
Contrast this with the previous, far more complicated,
O(logn) dynamic CP method of Bespamyatnikh [4] or
its (many!) predecessors.

The same d + 1 lists give solutions to ANN queries
with a constant approximation factor [7, 8], which can
be refined to 1+4¢ by “scattering” O(1/e?) query points
around the given point. So, ANN queries can be
answered in O((1/¢%)logn) time with O(logn) update
time. In fact, a fancier modification yields query time



O(logn + 1/¢%), improving the original result by Arya
et al. [2]: Define {(p,q) = max; [p; © ¢;|. In list ¢,
assign every point p, with predecessor p~, the level
number ¢(r;(p~), (p)). Given query point ¢, search
for its successor p. Check the next ¢, points after ¢ of
levels exceeding ¢(7; (p), 7i(¢))—b., for suitable constants
c. = O(1/¢?) and b. = ©(log(1/¢)). These points can
be reported in O(logn + ¢.) time by a priority search
tree. Similarly, check ¢, points in the reverse list. After
all lists have been examined, a (1+4¢)-factor ANN will be
found. Again, only the exclusive-or operation is needed.

The same ideas can be applied to other proxim-
ity problems like minimum spanning trees and (1 + ¢)-
spanners. Because the approach directly reduces d-
dimensional proximity problems to 1-dimensional sort-
ing and searching, it effortlessly yields efficient parallel
or external-memory algorithms.

We can also surpass algebraic lower bounds by
exploiting the full power of the word RAM. Rabin’s
randomized linear-time algorithm for CP was perhaps
the earliest such example. For the case U = n®(") (i.e.,
points on a polynomial-size grid), we have immediately
a deterministic linear-time algorithm for CP, if we
use radix-sort instead of a comparison sort (we can
precompute shuffles of points of logarithmic length in
linear time and store them in a table); this result is new
and improves a previous O(nloglogn) deterministic
algorithm of Reif and Tate [9]. For any U, assuming
the shuffle operation (trivially AC®) is built in, we
can solve the CP problem by directly applying the
current deterministic integer-sorting results on the word
RAM. We can also solve the dynamic CP problem or
answer ANN queries in O(min{loglog U, v/logn}) time
on the RAM, by directly using van Emde Boas trees
or Andersson’s exponential search trees; this simplifies
and extends a recent work of Amir et al. [1], who
had to explicitly generalize van Emde Boas trees to
get O(loglogU) algorithms for ANN and incremental
CP only. Similarly, the static structure in another
recent paper of Cary [5] is simplified using the shuffle
operation.
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