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Basi proximity problems for low-dimensional point

sets, suh as losest pair (CP) and approximate near-

est neighbor (ANN), have been studied extensively in

the omputational geometry literature, with well over a

hundred papers published (we merely ite the survey by

Smid [10℄ and omit most referenes). Generally, opti-

mal algorithms designed for worst-ase input require hi-

erarhial spatial strutures with sophistiated balan-

ing onditions (we mention, for example, the BBD trees

of Arya et al., balaned quadtrees, and Callahan and

Kosaraju's fair-split trees); dynamization of these stru-

tures is even more involved (relying on Sleator and Tar-

jan's dynami trees or Frederikson's topology trees).

In this note, we point out that muh simpler al-

gorithms with the same performane are possible using

standard, though nonalgebrai, RAM operations. This

is interesting, onsidering that nonalgebrai operations

have been used before in the literature (e.g., in the orig-

inal version of the BBD tree [2℄, as well as in various

randomized CP methods).

The CP algorithm an be stated ompletely in one

paragraph. Assume oordinates are positive integers

bounded by U = 2

w

. Given a point p in a onstant

dimension d where the i-th oordinate p

i

is the number

p

iw
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� de�ne its shu�e �(p) to be the number
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dw
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in binary, and

� de�ne shifts �

i

(p) = (p

1

+ bi2

w

=(d+ 1); : : : ; p

d

+

bi2

w

=(d+ 1)) for i = 0; : : : ; d, assuming w.lo.g.

that d is even.

For eah i = 0; : : : ; d, sort the n given points p aording

to �(�

i

(p)). Then a onstant-fator approximate CP

an be found among the adjaent pairs in these d + 1

lists. Furthermore, the exat CP an be found among

all pairs at most  positions apart in these lists, where 

is a suÆiently large onstant (depending exponentially

on d). Corretness an be proved from two observations:

points inside a \quadtree box" appear onseutively in

the shu�e order [3℄, and every pair of points of distane
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r lies in a quadtree box of diameter O(r) after some

shift [6℄.

This algorithm is not original. The approximate

version was most reently proposed by Lopez and

Liao [7, 8℄, although sorting along shu�e order, or gen-

erally spae-�lling urves, has been suggested often in

other applied areas suh as databases and pattern reog-

nition. In omputational geometry, it was used by Bern

et al. [3℄ (for onstruting unbalaned and balaned

quadtrees, whih we are trying to do without here), but

is largely overlooked as a theoretial tool (hene the rea-

son for writing this note). Shifting, on the other hand,

is a well-known tehnique in approximation.

One objetion is that we an't diretly ompute

�(p). But we an deide whether �(p) < �(q) by a

straightforward proedure:

i 1;

for j = 2; : : : ; d do

if jp

i

� q

i
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j

� q

j

j then i j;

return p

i

< q

i

.

Here � denotes bitwise exlusive-or and jxj denotes

blog

2

x. Though not realized in previous papers [3, 8℄,

we atually don't need extra primitives to ompute j � j,

as we an deide whether jxj < jyj by this neat trik:

if x > y then return false else return x < x�y.

So, using omparison-based sorting, the entire algo-

rithm an be implemented in O(n logn) time with only

the bitwise exlusive-or!

Although there are randomized CP algorithms

mathing in simpliity, this CP algorithm is remark-

able in that it an be dynamized automatially, sine

eah sorted list|and hene its pairs of positions � 

apart|an be updated in logarithmi time by standard

searh trees (we an use a heap to store these pairs).

Contrast this with the previous, far more ompliated,

O(logn) dynami CP method of Bespamyatnikh [4℄ or

its (many!) predeessors.

The same d+ 1 lists give solutions to ANN queries

with a onstant approximation fator [7, 8℄, whih an

be re�ned to 1+" by \sattering" O(1="

d

) query points

around the given point. So, ANN queries an be

answered in O((1="

d

) logn) time with O(logn) update

time. In fat, a fanier modi�ation yields query time



O(logn + 1="

d

), improving the original result by Arya

et al. [2℄: De�ne `(p; q) = max

j

jp

j

� q

j

j. In list i,

assign every point p, with predeessor p

�

, the level

number `(�

i

(p
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); �
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(p)). Given query point q, searh

for its suessor p. Chek the next 

"

points after q of

levels exeeding `(�

i

(p); �

i

(q))�b
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, for suitable onstants



"

= �(1="

d

) and b

"

= �(log(1=")). These points an

be reported in O(logn + 

"

) time by a priority searh

tree. Similarly, hek 

"

points in the reverse list. After

all lists have been examined, a (1+")-fator ANN will be

found. Again, only the exlusive-or operation is needed.

The same ideas an be applied to other proxim-

ity problems like minimum spanning trees and (1 + ")-

spanners. Beause the approah diretly redues d-

dimensional proximity problems to 1-dimensional sort-

ing and searhing, it e�ortlessly yields eÆient parallel

or external-memory algorithms.

We an also surpass algebrai lower bounds by

exploiting the full power of the word RAM. Rabin's

randomized linear-time algorithm for CP was perhaps

the earliest suh example. For the ase U = n

O(1)

(i.e.,

points on a polynomial-size grid), we have immediately

a deterministi linear-time algorithm for CP, if we

use radix-sort instead of a omparison sort (we an

preompute shu�es of points of logarithmi length in

linear time and store them in a table); this result is new

and improves a previous O(n log logn) deterministi

algorithm of Reif and Tate [9℄. For any U , assuming

the shu�e operation (trivially AC

0

) is built in, we

an solve the CP problem by diretly applying the

urrent deterministi integer-sorting results on the word

RAM. We an also solve the dynami CP problem or

answer ANN queries in O(minflog logU;

p

logng) time

on the RAM, by diretly using van Emde Boas trees

or Andersson's exponential searh trees; this simpli�es

and extends a reent work of Amir et al. [1℄, who

had to expliitly generalize van Emde Boas trees to

get O(log logU ) algorithms for ANN and inremental

CP only. Similarly, the stati struture in another

reent paper of Cary [5℄ is simpli�ed using the shu�e

operation.
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