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ABSTRACT
Although skip lists were introduced as an alternative to bal-
anced binary search trees (BSTs), we show that the skip
list can be interpreted as a type of randomly-balanced BST
whose simplicity and elegance is arguably on par with that
of today’s most popular BST balancing mechanisms. In this
paper, we provide a clear, concise description and analysis
of the “BST” interpretation of the skip list, and compare
it to similar randomized BST balancing mechanisms. In
addition, we show that any rotation-based BST balancing
mechanism can be implemented in a simple fashion using a
skip list.

1. INTRODUCTION
Since its introduction in 1989 [12, 13], the skip list has

become a popular data structure for solving the dictionary
problem, both in theory and in practice, and it is gener-
ally billed as a simpler alternative to balanced binary search
trees (BSTs). All fundamental dictionary operations run in
O(log n) time with high probability on an n-element skip
list, the same guarantee offered by treaps [2] and random-
ized BSTs [7].

In this paper, we show that although the skip list may
have been intended as a replacement for the balanced BST,
one can interpret the skip list as a BST whose randomized
balancing mechanism is perhaps on par with today’s most
popular randomized BST variants (e.g., [2, 7]) in terms of
simplicity and elegance. We also show the reverse — that
any rotation-based BST balancing mechanism can be imple-
mented using a skip list. This “duality” allows us to transfer
results from one representation to the other with ease. For
example, by transforming, say, AVL trees [1], BB[α] trees
[11], or red-black trees [3, 6], we obtain a deterministic skip
list with O(log n) worst-case running time guarantees. By
transforming the splay tree [14], we obtain an amortized skip
list that inherits all of the nice properties of splay trees, such
as static optimality (note that both deterministic [10] and
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statically optimal [5] skip lists have already been indepen-
dently derived in the literature).

That the skip list can be interpreted as a type of randomly-
balanced tree is not particularly surprising, and this has
certainly not escaped the attention of other authors [2, 10,
9, 8]. However, essentially every tree interpretation of the
skip list in the literature seems to focus entirely on casting
the skip list as a randomly-balanced multiway branching
tree (e.g., a randomized B-tree [4]). Messeguer [8] calls this
structure the skip tree. Since there are several well-known
ways to represent a multiway branching search tree as a BST
(e.g., replace each multiway branching node with a minia-
ture balanced BST, or replace (first child, next sibling) with
(left child, right child) pointers), it is clear that the skip
list can in principle also be represented by a BST. Munro
et al. state precisely this in the concluding remarks of [10],
without providing further details. To the best of our knowl-
edge, however, there does not appear to be any explicit,
detailed description in the literature of a BST representa-
tion of the skip list. We show that not only can the skip
list be transformed into an equivalent BST in principle, but
that this gives us a simple, natural, and elegant randomized
balancing mechanism that is interesting in its own right as
a purely BST-based result.

The remainder of this paper is structured as follows. In
Section 2, we show how to transform between a skip list, a
multiway branching search tree, and a BST. In Section 3,
we describe BST analogs of the the insert and delete oper-
ations on a skip list. Finally, in Section 4 we show how to
convert any rotation-based BST balancing mechanism into
an equivalent skip list.

2. SKIP LISTS AND WEIGHTED TREES
As shown in Figure 1, there is a natural one-to-one trans-

formation between the skip list, a multiway branching search
tree with edge weights, and a BST with edge weights. To
convert a skip list into a multiway branching search tree,
we collect all elements appearing at the maximum height
level into a root node, and then recursively fill in the sub-
trees between successive keys. Weights on edges indicate
parent-child height differences, and so have negative values.
In order to continue the transformation all the way to a
BST, we apply the standard transformation from a multi-
way branching tree to a BST that replaces (first child, next
sibling) pointers with (left child, right child) pointers.

We root both the multiway search tree and the BST from
the right of a “dummy” root node, r, that corresponds to
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Figure 1: A sample skip list (a), shown as a weighted multiway branching search tree (b) and a weighted
BST (c). In (b) and (c), the weight of an edge corresponds to a height difference in (a), except for the special
edge connecting to the root, whose weight corresponds to the total height of the skip list in (a).

the dummy root node of the skip list. The weight of the edge
connecting to the root is special — it specifies the height of
the skip list, H , and it is the only edge in the tree having
positive weight. All other edges have negative, or in the
case of the BST, nonpositive weight. Note that we use 1-
based indexing for heights, so the lowest level in a skip list
has height 1. This will simplify our code slightly in the
case of the BST, since it allows us more easily to distinguish
zero-weight edges corresponding to zero height differences
from the special edge connecting to the root. In either the
multiway search tree or the BST, we can compute the skip
list height h(x) of any element x by summing up the edge
weights on the path from x to the root.

Let us focus now on the BST representation of our skip
list. Note that the standard method for searching in a skip
list (follow right pointers until we would overshoot the el-
ement we seek, then move down instead) corresponds ex-
actly to the standard BST search procedure. Since it is
well known that search in a skip list runs in O(log n) time
with high probability, we therefore immediately obtain an
O(log n) high probability bound on the height of our equiva-
lent BST as well as the running time of its search operation.
Since our insertion and deletion procedures in the BST will
correspond exactly to their analogs on the skip list, we will
also be able to obtain an O(log n) high probability bound
on their running times without the need for any additional
analysis.

There is an inherent asymmetry in the BST generated
by our transformation, since only right edges can have zero
weight. Later, we will relax this restriction and consider
what we call a symmetric BST that allows zero weights on
left and right edges. The symmetric BST transforms into
a somewhat non-proper skip list in which an element can
belong to a particular level without actually being linked
into the list at that level. As a result, we must be somewhat
cautious when trying to carry over performance bounds from
the skip list directly to the symmetric BST. However, we
can still show O(log n) high probability bounds in this case
by trivially modifying the standard skip list analysis in an
appropriate fashion. Details are given in the appendix.

3. INSERTION AND DELETION IN THE BST
ANALOG OF A SKIP LIST

Let us examine how operations on a skip list translate
naturally into operations on the analogous BST. Both our
insertion and deletion procedures on a BST will behave ex-
actly as their skip list counterparts (according to the trans-
formation above).

We begin with insertion. Recall that the standard inser-
tion algorithm on a skip list inserts an element in its proper
location in the level-1 list, then repeatedly (as long as a fair
coin flip comes up heads) “promotes” the element by in-
serting it into higher levels. In the BST representation, we
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follow the exact same approach: first insert the element at
a leaf using the standard BST insertion algorithm, then re-
peatedly (as long as a fair coin flip comes up heads) promote
the element.

As it turns out, when we view promotion of an element
in the context of a BST, we end up with a very simple and
natural procedure based on BST rotation. Consider the pro-
motion of an element x with parent p, left child l, and right
child r, and let w(x, y) denote the weight of the edge from x
to y in the BST. To reflect the fact that we move x one level
higher in the skip list, we increment w(x, p) while decre-
menting w(x, l) and w(x, r). If w(x, p) happens to be zero
initially, however, we repeatedly rotate x with its parent
until w(x, p) becomes non-zero, then we perform the incre-
ments and decrements. We can express the entire insertion
operation in pseudocode as follows.

Insert(T, x):

1 Insert x as a leaf in T (standard BST insert)
2 Set w(x, parent(x)) = H − h(parent(x))
3 while Random(0,1) = 0
4 Promote(x)
5 If w(x, parent(x)) = 0 and x is a left child
6 Rotate x with parent(x)

Promote(x):

1 while w(x, parent(x)) = 0
2 Rotate x with parent(x)
3 Increment w(x, parent(x))
4 Decrement w(x, lchild(x)) and w(x, rchild(x))

Note that the while loop in the promotion routine is guar-
anteed to terminate before x reaches the root as a result of
the positive weight assigned to the right edge leaving the
root. Lines 5-6 in the Insert routine exist solely to ensure
that we do not create any zero-weight left edges; in the case
of a symmetric BST, these lines can be omitted. Finally,
note that we only perform rotations along edges having zero
weight (and this will be true for deletion as well). This is
important, since it allows us to leave nearby edge weights
unchanged, as shown in Figure 2.

Consider now the deletion of some element x with parent
p. In a skip list, we delete x by unlinking it from every
level in which it exists. As it turns out, the analog of this
operation on a BST is again remarkably simple. If x has only
1 child c, we delete it simply by replacing x with c (adding
w(x, c) into w(x, p), since the edges (x, c) and (x, p) are now

  x

  x

  x

  x

... ...

Figure 3: Elements affected by skip list deletion of
x (circled) versus elements affected by BST deletion
of x (shaded).

effectively merged together). If x has two children l and
r, we repeatedly demote x until it has only one child, then
delete it as before. Demotion is a symmetric operation to
promotion, where we decrement w(x, p) while incrementing
w(x, l) and w(x, r). However, if one of w(x, l) or w(x, r) is
zero (recall that w(x, l) can only be zero in the symmetric
case), we repeatedly rotate x downward with a child to which
it is connected with a zero-weight edge. Pseudocode for the
entire delete operation is as follows.

Delete(x):

1 If x has no children, simply delete x
2 while x has two children
3 Demote(x)
4 Let c be the single child of x
5 w(x, parent(x)) = w(x, parent(x)) + w(x, c)
6 Replace x with c.

Demote(x):

1 if w(x, rchild(x)) = 0
2 Rotate x with rchild(x)
3 Decrement w(x, parent(x))
4 Increment w(x, lchild(x)) and w(x, rchild(x))
5 while w(x, lchild(x)) = 0
6 Rotate x with lchild(x)

In the symmetric case, we replace the Demote operation
with one that allows for the possibility of zero-weight left
edges.

Demote-Symmetric(x):

1 while w(x, lchild(x)) = 0
2 Rotate x with lchild(x)
3 while w(x, rchild(x)) = 0
4 Rotate x with rchild(x)
5 Decrement w(x, parent(x))
6 Increment w(x, lchild(x)) and w(x, rchild(x))

The running time of both Insert and Delete is O(log n)
with high probability, which we can easy argue by deferring
to the well-established analysis of skip lists (for a detailed
analysis of the symmetric skip list, see the appendix). The
Insert operation is the most straightforward, since it corre-
sponds exactly to insertion on a skip list. For Delete, we
must be slightly more careful. It is true that Delete(x) re-
structures our BST to reflect exactly the unique BST we
would obtain from a skip list with element x deleted. How-
ever, the work required to do this is slightly more in the
case of the BST than it is for a skip list. As shown in Figure
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Figure 4: Illustration of how right and left rotation in a BST corresponds to raising and lowering a section
of a skip list.

3, when we delete x we only need to modify the pointers
attached to the circled elements to the left of x. In terms
of the BST, however, Delete(x) ends up traversing all of the
shaded elements. Fortunately, this is exactly the same set of
elements we follow while searching for the predecessor of x
in the skip list, which (just as with searching for any other
element) requires only O(log n) time with high probability.
In the symmetric case, the picture in Figure 3 becomes sym-
metric, with a “staircase” of shaded elements on both sides
of x’s column. In this case, one can bound the running time
of delete by the time required to search for x’s predecessor
plus the amount of time required to search for x’s successor
but starting from the end of the skip list. In total, this is
still O(log n) with high probability.

As we can see, implementation of the insertion and dele-
tion operations on the BST analog of a skip list is quite
straightforward, roughly comparable in complexity to heaps
and randomized BSTs. In fact, one could argue that the
BST interpretation is even preferable to that of a skip list
in light of the fact that the BST always occupies O(n) space
in the worst case, rather than O(n) space in expectation for
the skip list.

4. THE BALANCED BST AS A SKIP LIST
Consider any BST balancing mechanism M based solely

on rotations; this is sufficiently broad to cover almost every
popular BST balancing mechanism. In this section, we show
that M can be implemented in a simple and natural fashion
in terms of a skip list. To do this, we use the same one-
to-one transformation between skip lists and weighted BSTs
described in the preceding section. Since this transformation
requires an edge-weighted BST and we are starting with an
unweighted BST, we define the weights of all left and right
edges to be −1 and 0, respectively.

Note that it is reasonably easy to navigate through the

resulting skip list as if we were navigating the BST. For
example, let x be an element in the BST with left child l,
right child r, and parent p. We denote by S(x) the highest
instance of x in the skip list.

• To move from S(x) to S(r), take one step to the right
from S(x).

• To move from S(x) to S(l), take one step left, one step
down, and one step right from S(x).

• To move from S(x) to S(p) if x is a right child of p,
take one step left from S(x) (we can tell if x is a right
child of p if, after stepping left from S(x), we cannot
step upward).

• To move from S(x) to S(p) if x is a left child of p, take
one step left, one step up, and one step right from
S(x).

It is also worth noting that the transformation described
above always results in a skip list of size O(n), regardless of
the BST we start with. We can bound the size of the skip list
by counting the number of pairs of elements that are linked
together, since each pair of elements will be linked at most
once. Consider now an element x in our BST. The only ele-
ments to which x can end up linked after the transformation
are parent(x), the elements along the right spine of x’s left
subtree, and the elements along the left spine of x’s right
subtree. By “charging” each link (x, y) to whichever of x
and y has larger depth in the tree, we see that each element
is charged at most twice.

Consider now a rotation along some edge (x, y) in our
BST. As shown in Figure 4, a right rotation corresponds
to raising up the contiguous range (t, x] of the skip list
by one unit in height, where t = LLA(x) = LLA(y) de-
notes the lowest left ancestor of x. We can ensure that
LLA(x) always exists by making the root of our BST the



right child of a dummy root node, just as in the previous
section. Similarly, a left rotation corresponds to the opera-
tion of lowering the contiguous section (t, x] in the skip list,
where again t = LLA(x). Therefore, we can focus our at-
tention on implementing the skip list operations raise(x, y)
and lower(x, y), to be called whenever we would be calling
right-rotate(x, y) and left-rotate(x, y) in the BST.

In general, one cannot hope to raise and lower an arbitrary
range of elements in a skip list in O(1) time, since there are
simply too many pointers to reconnect at the boundaries
of the range. However, in our case we are dealing with a
range (t, x] for which x has the tallest column height in the
range, and the height of t’s column is at least as large as
that of x’s column. For this special case, one can achieve
an implementation of raise and lower in O(1) time. To do
this, we implicitly modify the rightward pointers emanating
from column t and column x so they are offset by one unit of
height. This is done by storing each column of the skip list
(say, for element x) in an array Ax[·], where x is augmented
with an offset ∆(x) that is applied to any index used to
access Ax. That is, if we wish to follow the rightward pointer
from Ax[i], we actually follow the rightward pointer from
Ax[i + ∆(x)]. As a consequence of the special structure of
the range (t, x] we can use the ∆(t) and ∆(x) offsets to avoid
explicitly modifying any leftward pointers. For example,
when moving leftward along a pointer that lands us at At[i],
we instead choose to locate ourselves at At[i − ∆(t)]. We
can therefore implement raise(x, y) and lower(x, y) in O(1)
time by appropriately incrementing or decrementing ∆(t)
and ∆(x). In the case of raise, we also need to add one
new rightward pointer from the top of x’s column across to
y (as well as the corresponding leftward pointer from y; see
Figure 4); for lower, these pointers are deleted.

Finally, we remark that BST balancing mechanisms in-
volving rotations as well as the join operation (e.g., splay
trees [14], randomized BSTs [7], where we delete an element
x by replacing x by the join of its two subtrees) are also
generally easy to accommodate. In this case, the process of
deleting x by joining together its two subtrees is equivalent
to rotating x downward until it falls off the bottom of the
BST, so we can simulate the join operation using rotations.
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APPENDIX

A. THE SYMMETRIC SKIP LIST
In this section we analyze the performance of the symmet-

ric skip list, the somewhat non-proper skip list obtained by
transforming a BST with zero-weight left edges. We show
that a trivial modification of the standard skip list analysis
allows us to prove that insertion, deletion, and search in an
n-element symmetric skip list all take O(log n) time with
high probability (that is, with probability at least 1 − 1/nk

for any constant k ≥ 1 of our choosing). In fact, the analy-
sis that follows applies to both standard and symmetric skip
lists.

For starters, the height of an n-element (symmetric) skip
list is O(log n) with high probability — this follows from
a union bound over all elements, since the height of a sin-
gle generic element e is O(log n) with high probability: the
probability that h(e) > k log n is exactly 1/nk (we always
use base-2 logarithms in this paper).

In both the symmetric and standard skip lists, the running
time of insertion or deletion of an element e is bounded by
the time required to search for e plus the height of the skip
list. Hence, we need only show that search takes O(log n)
time with high probability. Furthermore, since deletion of
an element e leaves a (symmetric) skip list in the same state
as if e had never been inserted to begin with, it suffices to
analyze the running time of search in a (symmetric) skip list
that has been freshly built by inserting n elements.

Consider now the operation of searching for a generic el-
ement e in a (symmetric) skip list of height at most k log n.
To do this, we examine the search path to e, as shown in
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Figure 5. In a standard skip list, this search path only trav-
els right and down, but in a symmetric skip list it may also
move left. However, in this case the search path will never
intersect itself; more formally, if we refer to a single (ele-
ment, height) pair as a node in the skip list, then the search
path through a symmetric skip list never visits the same
node more than once. If we now follow the search path
in reverse, we find ourselves moving upward at each node
whenever possible (if the fair coin flip at that node came up
heads), otherwise we move left or right (in the symmetric
case). Let us focus now solely on the upward movement,
since this is common to both cases.

Let the random variable Xa denote the total number of
times we obtain heads when flipping a fair coins (so E[x] =
a/2). Since we can write Xa = Y1 + . . . + Ya as a sum
of independent “indicator” random variables Yj (each tak-
ing the value 0 or 1 with probability 1/2), we can apply a
standard variant of the Chernoff bound to bound the proba-
bility of Xa deviating significantly below its mean. For any
β ∈ [0, 1/2],

Pr[Xa ≤ βE[Xa]] ≤ e−(1−1/β)2E[Xa]/2

≤ e−E[Xa]/8

≤ e−a/16

Our skip list has height at most k log n, so we can move
upward along the reverse search path (i.e., flip heads) at
most k log n times. Let T denote the length of our search
path. Since each node flips an independent coin,

Pr[T > 4k log n] ≤ Pr[X4k log n ≤ k log n]

= Pr[X4k log n ≤
1

2
E[X4k log n]]

≤ e−(4k log n)/16

=
1

nΘ(k)

which proves our desired high probability bound, since we
are free to choose the constant k to be as large as we wish.


