
JFP 21 (3): 287–307, 2011. c© Cambridge University Press 2011

doi:10.1017/S0956796811000104

287

Balancing weight-balanced trees

YOICHI HIRAI

The University of Tokyo, JSPS Research Fellow

(e-mail: yh@lyon.is.s.u-tokyo.ac.jp)

KAZUHIKO YAMAMOTO

IIJ Innovation Institute Inc.

(e-mail: kazu@iij.ad.jp)

Abstract

A weight-balanced tree (WBT) is a binary search tree, whose balance is based on the sizes

of the subtrees in each node. Although purely functional implementations on a variant

WBT algorithm are widely used in functional programming languages, many existing

implementations do not maintain balance after deletion in some cases. The difficulty lies

in choosing a valid pair of rotation parameters: one for standard balance and the other for

choosing single or double rotation. This paper identifies the exact valid range of the rotation

parameters for insertion and deletion in the original WBT algorithm where one and only

one integer solution exists. Soundness of the range is proved using a proof assistant Coq.

Completeness is proved using effective algorithms generating counterexample trees. For two

specific parameter pairs, we also proved in Coq that set operations also maintain balance.

Since the difference between the original WBT and the variant WBT is small, it is easy to

change the existing buggy implementations based on the variant WBT to the certified original

WBT with a rational solution.

1 Introduction

Weight-balanced trees (WBTs) (Nievergelt & Reingold, 1972) are binary search

trees, which can be used to implement finite sets and finite maps (associative arrays).

Although other balanced binary search trees, such as AVL trees (Adel’son-Vel’skii &

Landis, 1962) and red–black trees (Guibas & Sedgewick, 1978), use the height of

subtrees for balancing, the balance of WBTs is based on the sizes (number of

elements) of the subtrees below each node. Its purely functional implementations

are widely used in functional programming languages. In fact, fundamental modules

Data.Set and Data.Map in Haskell (Marlow, 2010) and the wttree.scm library in

MIT/GNU Scheme and slib are based on a variant of the WBT algorithm (Adams,

1993).

In order to ensure performance, the algorithm keeps the height of a tree

logarithmic to its size by balancing the sizes of the subtrees in each node. In

2010, a bug report1 confirmed that the Data.Map library broke the tree balance after

1 http://hackage.haskell.org/trac/ghc/ticket/4242

288 Y. Hirai and K. Yamamoto

a

c

b

a

split

a

c

b

c

c

a
Single rotation

Double rotation

x

y z

x

y0 y1

z

x y

z

x y0 y1 z

Fig. 1. A single left rotation and a double left rotation. a, b, and c are elements. x, y, y0, y1,

and z are the size of each tree. If y is too large, a double rotation is chosen. Otherwise, a

single rotation is used.

deletion.2 We investigated the existing literature but failed to find a rigorous proof

that both insertion and deletion preserve the balance of WBTs. Instead, we found

that proving balance preservation requires checking several inequalities in 14 cases

of program behaviors for five different parameter zones. We used a proof assistant

Coq (Bertot & Casteran, 2004) in order to cope with this intensive case analysis.

To keep the balance of WBTs, there are two important parameters Δ and Γ: Δ

decides whether any rotation is made at all and Γ chooses a single rotation or a

double rotation (Figure 1). These parameters must ensure that a newly created tree

is balanced after any insertion or deletion in a given balanced WBT. The original

paper of WBT suggests 〈Δ,Γ〉 = 〈1 +
√

2,
√

2〉, though the irrational parameters are

expensive to implement (Roura, 2001). We found valid rational parameters, which

can be implemented at low cost.

Contributions of the paper are as follows:

• Exact identification of the range of valid parameters of WBT where insertion

and deletion preserve the balance constraints of the original paper

— 〈Δ,Γ〉 = 〈3, 2〉 is the only integer solution in the range,

— Valid parameter pairs lie in a bounded range,

— The boundary is complicated, consisting of nine different lines and a

curve (Figure 5),

2 The Data.Map of the container library 0.3.0.0 or earlier has this bug.

Balancing weight-balanced trees 289

— The original proposal 〈Δ,Γ〉 = 〈1 +
√

2,
√

2〉 in Nievergelt & Reingold

(1972) maintains the strictest balance condition available within the range,

— The smaller Δ is the better performer;

• (soundness) A proof in Coq that insertion and deletion preserve balance of

trees when the parameters lie within the range;

• (completeness) An implemented and tested procedure for producing coun-

terexamples for any parameter pair outside the range.

This paper is organized as follows. We define terminology in Section 2. In Section 3,

we describe the basics of WBT algorithms and explain the difference between the

original WBT algorithm and a variant WBT algorithm. We point out the drawback

of the variant WBT algorithm in Section 4 and explain that our goal is to find

the valid range of the original WBT in Section 5. The valid range is identified

by preliminary tests in Section 6. For soundness of the range, we describe a Coq

certified proof in Section 7. For completeness, we show the method of producing

counterexamples outside the valid range in Section 8. Section 9 explains that our

suggested parameter retains almost the same performance as the existing parameters.

We show related work and conclusions in Sections 10 and 11, respectively.

2 Terminology

The original paper (Nievergelt & Reingold, 1972) uses the name “binary search trees

of bounded balance.” However, following Knuth’s book (Knuth, 1998), we call the

same family of algorithms “weight-balanced trees.” We use “the original WBT” for

the WBT algorithm in the original paper (Nievergelt & Reingold, 1972) and “the

variant WBT” for the WBT algorithm in Adams’s technical report (Adams, 1992) .

To check the balance of a WBT, weights of its left subtree and right subtree are

used. In the original WBT, the weight of a tree is the number of contained elements

plus one. In the variant WBT, the weight of a tree is simply the number of contained

elements. Both WBT algorithms use two parameters Δ and Γ mentioned in Section 1.

For the original WBT, we use 〈Δ,Γ〉. For the variant WBT, we use (Δ,Γ).

We use the Haskell syntax to describe algorithms.

3 WBT

In this section, we briefly explain the basics of WBT.

3.1 Data structure

The data structure used in the WBT algorithms can be defined as follows 3:

type Size = Int

data Set a = Tip | Bin Size a (Set a) (Set a)

3 Our code for algorithm implementation, tests, benchmarks, and proofs are available on the author’s web
page http://www.mew.org/~kazu/proj/weight-balanced-tree/ and the archive of the journal.

290 Y. Hirai and K. Yamamoto

A WBT is either Tip containing no element or a Bin-constructed tree containing an

element and two subtrees. For convenience, we define three basic operations—getting

the Size information, creating a singleton, and creating an intermediate node.

size :: Set a -> Size

size Tip = 0

size (Bin sz _ _ _) = sz

singleton :: a -> Set a

singleton k = Bin 1 k Tip Tip

bin :: a -> Set a -> Set a -> Set a

bin k l r = Bin (size l + size r + 1) k l r

As shown above, the size of Tip is 0 and the size of a Bin-constructed tree is the

sum of the sizes of its two subtrees, plus 1.

3.2 Balance of WBT

In order to avoid deep, thin trees shaped like a list, WBT algorithms impose a balance

condition on trees. The balance condition is parameterized with the isBalanced

predicate taking two trees. First, Tip is balanced. Second, a Bin-constructed tree is

balanced if

1. the weights of the left and right subtrees satisfy isBalanced predicate, and

2. its left and right subtrees are balanced.

For testing purposes, the balance condition can be implemented as follows:

balanced :: Set a -> Bool

balanced Tip = True

balanced (Bin _ _ l r) = isBalanced l r && isBalanced r l

&& balanced l && balanced r

The balanced function uses the isBalanced predicate in order to check the first

condition of balancing. Each WBT algorithm has its own isBalanced predicate,

which is shown later. The balanced function then recursively calls itself on both

subtrees in order to check the second condition of balancing.

3.3 Creating WBT

An element is inserted into a WBT according to the order of the element. We assume

a total order for the elements. For example, an element larger than the element in the

top node is inserted into the right subtree. In Haskell, we use the compare function

provided by Ord class to compare two elements.

insert :: Ord a => a -> Set a -> Set a

insert kx Tip = singleton kx

insert kx (Bin sz ky l r) = case compare kx ky of

LT -> balanceR ky (insert kx l) r

GT -> balanceL ky l (insert kx r)

EQ -> Bin sz kx l r

Balancing weight-balanced trees 291

After an element is inserted, the balance between the left and right subtrees might

be broken. This is checked by isBalanced, which uses Δ. If the two subtrees are

still balanced, a new node is simply created; otherwise, a rotation is performed. The

exact condition depends on whether the original or the variant WBT is used. If an

element is inserted into the right subtree and the balance is broken, a left rotation

is performed.

balanceL :: a -> Set a -> Set a -> Set a

balanceL k l r

| isBalanced l r = bin k l r

| otherwise = rotateL k l r

For the rest of this paper, we only consider left rotations. Symmetric arguments

can be applied to right rotations. Note that a left rotation is also performed when

an element is deleted from the left subtree. There are two kinds of left rotations.

One is called a single rotation and the other is called a double rotation (Figure 1).

The isSingle predicate, which uses Γ, decides which rotation is used.

rotateL :: a -> Set a -> Set a -> Set a

rotateL k l r@(Bin _ _ rl rr)

| isSingle rl rr = singleL k l r

| otherwise = doubleL k l r

rotateL _ _ _ = error "rotateL"

singleL :: a -> Set a -> Set a -> Set a

singleL k1 t1 (Bin _ k2 t2 t3) = bin k2 (bin k1 t1 t2) t3

singleL _ _ _ = error "singleL"

doubleL :: a -> Set a -> Set a -> Set a

doubleL k1 t1 (Bin _ k2 (Bin _ k3 t2 t3) t4)

= bin k3 (bin k1 t1 t2) (bin k2 t3 t4)

doubleL _ _ _ = error "doubleL"

Both single and double rotations move a part of the right subtree into the left sub-

tree. A single rotation moves the left subtree of the right subtree. A double rotation

moves a smaller part: the left subtree of the tree moved by a single rotation. A single

rotation can break the balance of the whole tree if the subtree being moved is too

large. To prevent that the isSingle function chooses a double rotation when the sub-

tree is much larger than its right sibling. Each WBT algorithm has its own isSingle

function, which is shown later. The error cases in these above three functions does

not occur since the insert operation adds one element onto the right subtree.

3.4 Original balancing method

In the original WBT, the weight of a tree is its size plus one. After insertion into the

right subtree, if the weight of the left subtree multiplied by Δ is larger than or equal

to the weight of the right subtree, balance is maintained. Otherwise, the balance is

broken.

isBalanced :: Set a -> Set a -> Bool

isBalanced a b = delta * (size a + 1) >= (size b + 1)

292 Y. Hirai and K. Yamamoto

When the balance is broken, the algorithm chooses a single rotation or a double

rotation by comparing the weights of two subtrees of the right subtree (node c in

Figure 1). A single rotation is chosen if the weight of the left subtree of node c is

less than the weight of the right subtree of node c multiplied by Γ. Otherwise, a

double rotation is chosen.

isSingle :: Set a -> Set a -> Bool

isSingle a b = (size a + 1) < gamma * (size b + 1)

3.5 Variant balancing method

In the variant WBT, the weight of a tree is simply its size. Since the weight of an

empty tree is zero, a small tree must be treated specially in isBalanced in order to

have at least one balanced tree of size two. This is implemented as x + y <= 1 in

the following code.

isBalanced :: Set a -> Set a -> Bool

isBalanced a b = x + y <= 1 || delta * x >= y

where x = size a

y = size b

isSingle :: Set a -> Set a -> Bool

isSingle a b = size a < gamma * size b

4 Balancing bugs in the variant WBT

As we said in Section 1, the variant WBT is widely used, but unfortunately a bug

was reported for the Data.Map library of Haskell, which used (5, 2). If one element

is removed from a specific balanced tree, the balance of the resulting tree is broken

in some cases. We defined 86 cases for smoke testing (simple testing in normal cases)

and 32 property tests with QuickCheck (Claessen & Hughes, 2000). Our tests found

bugs for all integer parameter pairs except (4, 2) and (3, 2). Data.Set uses (4, 2), so

we cannot find the bug in the current Data.Set implementation. Note that such

testing cannot prove the absence of counterexamples.

The technical report by Adams (1992) recommends (4 or larger, 1) and his later

paper (Adams, 1993) uses (5, 1). His Standard ML implementation makes use of

(3, 1) and his Scheme implementation wttree.scm both in MIT/GNU Scheme and

slib uses (5, 1). They are all buggy.4

Figure 2 shows a counterexample to the variant WBT with (5, 1). The original

tree on the left side of the figure is balanced. If we delete the element a, a double

rotation is performed, and then, the tree on the right side of the figure is created.

At the node of the element e, the weight of the left and right subtree is 0 and 2,

respectively. This does not satisfy the balance constraint.

4 wttree.scm in slib 3b3 or earlier has this bug but our fix was merged in December 2010. wttree.scm
in MIT/GNU Scheme 9.0.1 or earlier has this bug but our fix was merged in January 2011.

Balancing weight-balanced trees 293

b

a e

d g

c f

b e

d

c g

f

0 2

Fig. 2. Counterexample to the variant WBT with (5,1).

5 Goal

We chose the original WBT as our target algorithm because it has two benefits:

• Since weights are nonzero natural numbers, we do not have to treat small

trees as special. This makes mathematical analysis easier because there are

fewer cases to consider;

• The mathematical analysis in Nievergelt & Reingold (1972) is credible. It

considers the balance preservation by both insertions and deletions.

Note that it is easy to convert an existing program based on the variant WBT to

the original WBT because the only difference is in the isBalanced and isSingle

functions. We will discuss the original WBT in the rest of this paper. We chose

to seek rational valid parameters in addition to 〈1 +
√

2,
√

2〉 suggested by the

original paper. To implement the originally suggested balance condition with integer

arithmetic, we have to compare the squares of the weights. Here is a straightforward

implementation:

isBalanced :: Set a -> Set a -> Bool

isBalanced a b = 2 * y * y <= z * z

where x = size a + 1

y = size b + 1

z = x + y

isSingle :: Set a -> Set a -> Bool

isSingle a b = z * z < 2 * w * w

where z = size a + 1

w = size b + 1

Since integers in typical computer languages are fixed length, this calculation is prone

to overflow. In order to avoid this problem, we have to deploy more complicated

implementation. Rational parameters are preferable.

6 Identifying valid range

Before delving into rigorous mathematical analysis, we used our test suite described

in Section 4 and the Omega solver (Pugh, 1991) to identify the range of valid

parameters. Since only (4, 2) and (3, 2) are possible integer solutions for the variant

WBT, we guessed the valid range for the original WBT is around them. We tested

the original WBT using our test suite, where Δ is an integer between 1 and 10 and

Γ is an integer between 1 and 10. These tests showed that only 〈3, 2〉 is a possible

integer solution for the original WBT.

294 Y. Hirai and K. Yamamoto

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2 2.5 3 3.5 4 4.5 5
Δ

Γ

Fig. 3. Results of tests plotted along 〈Δ,Γ〉. The dotted square symbols � indicate that no

insertion nor deletion broke the balance. The plus symbols + indicate discovery of concrete

counterexamples.

6.1 Tests

To obtain a more precise parameter range around 〈3, 2〉, we tested not only with

integer parameters, but also with rational parameters. Figure 3 shows the results

with the range, where Δ = 2, 2.1, . . . , 5 and Γ = 1, 1.05, . . . , 2.2. The shape of the valid

range seemed more complex than we had expected.

6.2 Automated arithmetic solver

We also ran the automated arithmetic solver Omega (Pugh, 1991) with the same set

of parameter pairs. For each parameter pair, we gave a logical formula in Presburger

arithmetic to the solver. The logical formulas expressed the possibility of balance

breaking by insertion or deletion in a WBT tree.

We produced the inputs for Omega by defining the balance preservation condition

in Coq and then converting the condition into an assertion that only contains linear

inequalities. We then replaced the conjunction in Coq (/\) with the conjunction

in Omega (&&), added parentheses, and applied some other cosmetic changes. The

Omega solver (Pugh, 1991) showed three kinds of behavior. In some cases, the

Omega solver gave a concrete counterexample within a second. In other cases,

within a second, the solver confirmed any large enough balanced WBT tree is

balanced after any insertion or deletion. Sometimes, the solver gave up or did not

respond for a couple of minutes, so we terminated it. Figure 4 illustrates the result.

Comparing Figures 3 and 4, we saw that Omega found new counterexamples for

parameters, where QuickCheck was not able to. We guessed that the first experiment

could not find some existing counterexamples outside the lower boundaries.

6.3 Finding boundaries

We conjectured that the following four boundaries determine the valid parameter

range:

Right Δ < 4.5

Left Γ � Δ − 1

Balancing weight-balanced trees 295

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2 2.5 3 3.5 4 4.5 5
Δ

Γ

Fig. 4. Results using the automated arithmetic solver Omega plotted along 〈Δ,Γ〉. The square

symbols � indicate the parameter pairs are valid. The plus symbols + indicate discovery of

concrete counterexamples. Blanks mean time-out.

 0.8

1

 1.2

 1.4

 1.6

 1.8

2

 2.2

2 2.5 3 3.5 4 4.5 5
Δ

Γ

Γ >= (Δ + 1) / Δ

Δ < 4.5

Γ <= Δ - 1

Γ = 3/2

Γ = 4/2

Γ = 4/3

Γ = 5/3

Fig. 5. The boundaries of the valid parameter range for the original WBT are shown with

inequalities. The points � are some rational valid parameters.

Lower Γ � (Δ + 1)/Δ

Upper Γ �

⎧⎪⎪⎨
⎪⎪⎩

3/2 (2.5 � Δ < 3)

4/2 (3 � Δ < 3.5)

4/3 (3.5 � Δ < 4)

5/3 (4 � Δ < 4.5).

Plotting these lines results in Figure 5.

The only integer solution is 〈3, 2〉. The suggested value of the original paper

〈1 +
√

2,
√

2〉 is the point of intersection of the left boundary and lower boundary

and is most balanced since 1 +
√

2 is the smallest value of Δ.

7 Soundness: proving validity in Coq

We first ensure the soundness, that is, for parameter pairs inside the valid range, in-

sertion and deletion always keep the balance. We formalized a proof in Coq (Bertot &

Casteran, 2004), a proof assistant. The soundness proof involved many cases, and

in each case, we had to check balance constraints on many different nodes. Keeping

296 Y. Hirai and K. Yamamoto

Definition isBalancedSize (x y:Q):Prop :=delta × (x + 1) ≥ (y + 1).

Definition isSingleSize (x y:Q): bool :=(1 + x) ’<’ (ratio × (1 +y))

Definition balancedQ (l r:Q) :=l ≥ 0 ∧ r ≥ 0 ∧ isBalancedSize l r ∧ isBalancedSize r l.

Definition singly balanced (x y z w: Q) := balancedQ x (y + z + 1) ∧ balancedQ y z ∧
balancedQ (x + y + z + 1 + 1) w.

Definition doubly balanced (x y z w: Q) :=
balancedQ x y ∧ balancedQ z w ∧ balancedQ (x + y + 1) (z + w + 1).

Definition deep insert (x v y z w: Q) := balancedQ x v →∼balancedQ x (v + 1) →
y + z + 1 + w + 1 == v + 1→ balancedQ y z → balancedQ (y + z + 1) w →
if (isSingleSize (y + z + 1) w) then singly balanced x y z w else doubly balanced x y z w.

Definition deep delete (x v y z w: Q) :=
0 ≤ x → balancedQ (1 +x) v →∼balancedQ x v → y +z + 1+w + 1==v → balancedQ y z →
balancedQ (y + z + 1) w →
if (isSingleSize (y + z + 1) w) then singly balanced x y z w else doubly balanced x y z w.

Lemma NR deep insert: good params →∀ (x v y z w: Z), deep insert (x#1) (v#1) (y#1) (z#1) (w#1).

Lemma NR deep delete:good params → ∀ (x v y z w:Z), deep delete (x#1) (v#1) (y#1) (z#1) (w#1).

b

a

a

c

b

c

x+1

zw w

c

a

w

Double rotation

Single rotationy z

b

y z

yx
x

Fig. 6. Two intermediate arithmetic lemmas. The variables x, y, z, and w informally stand for

the size of each subtree shown in the picture although the formal definition says nothing

about tree structures. good params denotes the restriction on parameters shown in Section 6.3.

The operator “<” denotes comparison that returns a Boolean. Note that in the final lemmas,

the domain is restricted to integers. We used this restriction for case analysis on particularly

small trees. An integer z can be converted into a rational number by writing (z#1).

track of those numerous cases and constraints by hand is troublesome and error-

prone.

In the 15,700 lines5 of Coq proof script, the first and second parts are abount

insertion and deletion, while the third and fourth parts are about set operations. The

first part proves arithmetic statements involving Δ and Γ. The second part proves

that any insertion or deletion on any balanced tree yields a balanced tree if the

parameter pair 〈Δ,Γ〉 lies within the conjectured range.

The first arithmetic statements are made in terms of rational numbers. We just

considered the sizes of five subtrees involved in rotations. Since Δ and Γ are not

fixed, the problem did not fit in Presburger arithmetic so that we could not use

omega tactic. While proving lemmas shown in Figure 6, we intensively used the

Psatz interface to the CSDP solver (Borchers, 1999). For a proof goal consisting of

5 An anonymous referee pointed out that since the script is written in a sparse manner, it is probably
possible to prove the same results with about 3,000 lines in a more concise style.

Balancing weight-balanced trees 297

Lemma insert balanced: good params →
∀ (t: FSet) (k: K), balance rec t → validsize rec t → balance rec (insert k t).

Lemma delete balanced: good params →
∀ (t: FSet) (k: K), balance rec t → validsize rec t → balance rec (delete k t).

Fig. 7. Two program theorems shown in the second half. balance rec means that the whole

tree is balanced. validsize rec means that every node in the tree has the correct size information

on it.

polynomial inequations, the Psatz interface tries to build a proof automatically with

the help of an external solver called CSDP. For some special small sizes, we had to

manually compute the ceil function when we stated that an integer less than 13.5

must be less than or equal to 13.

In the second part, we treated actual programs operating on actual tree structures

and proved lemmas shown in Figure 7. The second part does not rely on rational

numbers. Instead, we introduced integer variables called deltaU and deltaD to denote

the rational number deltaU/deltaD. In this part, we had to use induction on trees.

Moreover, we had to give special treatment to some particularly small trees because

the arithmetic lemmas required trees to have sufficiently many subtrees.

Set operations. We also verified that the set operations (union, difference, and inter-

section) preserve the balance condition under parameter pairs 〈3, 2〉 and 〈5/2, 3/2〉,
respectively, in the third and fourth parts. (The reason for choosing the second pair

is the benchmark described in Section 9.) That is, if two WBTs are balanced, their

union, difference, and intersection are also balanced.6 For the set operations, we

used the efficient hedge-union algorithms used in the current version of Data.Set

and Data.Map library, not the simple divide-and-conquer. The technical paper by

Adams (1992) describes the hedge approach as well as the divide-and-conquer

approach.

8 Completeness: producing counterexamples

This section shows how to produce counterexamples outside the valid parameter
range. First of all, we exclude parameter pairs not satisfying some basic constraints.
The basic constraints are as follows:

Δ � 2, (1)

1 � Γ � Δ. (2)

If the first constraint is not satisfied, there are no balanced trees of size two. On the

other hand, if the second constraint is broken, only single or double rotations are

chosen so that it is impossible to maintain balance.

6 For intersection, we used an experimental Function command of Coq 8.2 because the intersection
function has a complicated recursion: when the intersection function calls itself, the new argument is
generated by another function with recursion so the ordinary Fixpoint command cannot guess the
decreasing argument.

298 Y. Hirai and K. Yamamoto

b

a

a

d

b

d

y y

d

a

y

Double rotation

Single rotationx

b

x

xc

c

c

deleted

Fig. 8. A counterexample outside the right boundary. x and y denote the size of each subtree.

The original tree on the left side is balanced. However, after deletion of the only element

in the left subtree, neither a single rotation nor a double rotation maintains the balance at

node a.

8.1 Outside the right boundary

Assume that the parameter pair is outside the right boundary:

Δ � 4.5.

Consider the trees in Figure 8. The size of each tree is defined as follows:

x = �Δ�, y = �2Δ� − �Δ� − 4.

This original tree on the left side of the figure is balanced. To see that, we look
at each node. Let us consider the balance at node a first. Since the size of the right
subtree x+ y+3 is larger than that of the left subtree, we only have to confirm that
the right subtree is not too large. More specifically, Δ times the weight of the left
subtree must be greater than or equal to the weight of the right subtree. Since the
weight of a tree is the size plus one, we are seeking this inequality:

Δ × (1 + 1) � (3 + x + y) + 1.

This can be confirmed as follows:

2Δ − (x + y + 4) = 2Δ − �2Δ� � 0.

Node d also must satisfy a similar constraint as follows:

f(Δ) = Δ(y + 1) − (x + 3) = Δ�2Δ� − (Δ + 1)(�Δ� + 3) � 0.

It is possible to mathematically analyze that the left-hand side has a positive value

for Δ � 4.5 but the analysis is boring. Instead, we plot the graph of f(Δ) in Figure 9,

where f(Δ) denotes the expression above.
It is obvious that node b is balanced. Thus, the entire original tree is balanced. If

we delete the left subtree of node a, the balance is broken:

Δ − (x + y + 4) = Δ − �2Δ� < 0 (by Equation (1)).

So, either a single or double rotation takes place. After a double rotation, the

balance at node a is broken because Δ − (�Δ� + 1) < 0. Otherwise, after a single

rotation, the balance at node a is also broken since Δ − (�Δ� + 3) < 0.

Balancing weight-balanced trees 299

-10

-5

0

 5

 10

 15

 20

 25

 30

0 1 2 3 4 5 6 7 8
f(

Δ)

Δ

Fig. 9. The value of f(Δ) is greater than 0 if Δ � 4.5.

a

c

x

y z

c

a

x - 1 y

z

Fig. 10. A counterexample of the left boundary. The original tree in the left side is balanced.

However, after deletion of one element in the left subtree, a single rotation breaks the balance

at node c if y is large enough.

8.2 Outside the left boundary

Assume that the parameter pair is outside the left boundary:

Γ > Δ − 1 equivalently Δ − Γ − 1 < 0. (3)

Consider the trees in Figure 10. Each of x, y, and z is the size of a subtree of the
original tree. x and z are defined using y:

z =

⌊
y + 1

Γ

⌋
, x =

⌈
y + z + 2

Δ

⌉
− 1.

This original tree is balanced because of the following. At node c, the right subtree
of size z is not too much larger than the left subtree of size y for sufficiently large y:

Δ(y + 1) − (z + 1) = Δ(y + 1) −
(⌊

y + 1

Γ

⌋
+ 1

)

� Δ(y + 1) −
(
y + 1

Γ
+ 1

)

=

(
Δ − 1

Γ

)
y + C

� 0

where C does not contain x, y, or z. The last inequality holds for large y because

the coefficient for y is Δ − 1/Γ, which is positive since Δ > 1 � 1/Γ.

300 Y. Hirai and K. Yamamoto

The left subtree of c is not too much larger than the right subtree, either:

Δ(z + 1) − (y + 1) = Δ

(⌊
y + 1

Γ

⌋
+ 1

)
− (y + 1)

> Δ
y + 1

Γ
− (y + 1)

=

(
Δ

Γ
− 1

)
(y + 1)

� 0 (by Equation (2)).

At node a, the right subtree is not smaller: x � y + z + 1. At the same time, the
right subtree is not too large:

Δ(x + 1) − (y + z + 2) = Δ

(⌈
y + z + 2

Δ

⌉)
− (y + z + 2) � Δ

y + z + 2

Δ
− (y + z + 2) = 0.

If we delete one element from the left subtree of node a, the balance is broken as
follows:

Δx − (y + z + 2) = Δ

(⌈
y + z + 2

Δ

⌉
− 1

)
− (y + z + 2) < Δ

y + z + 2

Δ
− (y + z + 2) = 0.

At this time, a single rotation is chosen because

Γ(z + 1) − (y + 1) = Γ

(⌊
y + 1

Γ

⌋
+ 1

)
− (y + 1) > Γ

y + 1

Γ
− (y + 1) = 0.

After the single rotation, the size of the left subtree of node c is x + y and that
of the right subtree is z. The balance is broken if the following expression has a
negative value:

Δ(z + 1) − (x + y + 1) = Δ

(⌊
y + 1

Γ

⌋
+ 1

)
−

(⌈
y +

⌊
y+1
Γ

⌋
+ 2

Δ

⌉
+ y − 1

)

< Δ

(
y + 1

Γ
+ 1

)
−

(
y +

⌊
y+1
Γ

⌋
+ 2

Δ
+ y − 1

)

< Δ

(
y + 1

Γ
+ 1

)
−

(
y + y+1

Γ
+ 1

Δ
+ y − 1

)

=
(Δ + 1)(Δ − Γ − 1)

ΔΓ
y + C

where C does not contain x, y, or z. The coefficient for y is negative by Equation (3).

This implies, for sufficiently large y, the rotated tree becomes unbalanced after a

delete operation.

8.3 Outside the lower boundary

Assume that the parameter pair is outside the lower boundary:

Γ <
Δ + 1

Δ
equivalently, ΓΔ − Δ − 1 < 0. (4)

Consider the tree in Figure 11. We define the sizes x, y, and w using z and an
auxiliary variable named r:

w = �Δ(z + 1)�, y = w − 1, r = y + z + w + 2, x =

⌈
r + 1

Δ

⌉
− 1.

Balancing weight-balanced trees 301

b

a

a

c

b

c

x

y z

x - 1 y zw w

Fig. 11. A counterexample for parameter pairs outside the lower boundary. x, y, z, and w

denote the size of each subtree. The original tree on the left side is balanced. However, after

deletion of one element in the left subtree, a double rotation breaks the balance at node c if

z is large enough.

For large values of x, the original tree on the left side of the figure is balanced.
To see that, let us look at each node. On node a, the right subtree is not too large:

Δ(x + 1) = Δ

⌈
r + 1

Δ

⌉
� Δ

r + 1

Δ
= r + 1.

The left subtree of node a is not too large if r is large enough:

Δ(r + 1) > r + 2 > �r + 1	 >

⌈
r + 1

Δ

⌉
= x + 1.

On node c, the right subtree is not too large:

Δ(y + z + 1 + 1) = Δ
(
�Δ(z + 1)� + z + 1

)
� �Δ(z + 1)� + 1 = w + 1.

On the other hand, the left subtree of node c is not too large for large values of z:

Δ(w + 1) = Δ
(
�Δ(z + 1)� + 1

)
� �Δ(z + 1)� + z + 1 = y + z + 2

where the inequality in the middle holds when z is large enough. This is because

both sides are almost linear on z, where the coefficient on the left side Δ2 is larger

than the coefficient on the right side Δ + 1. The inequality between the coefficients

Δ2 > Δ + 1 holds because Δ � 2.
On node b, the right subtree is not too large:

Δ(y + 1) = Δw = Δ�Δ(z + 1)� > �Δ(z + 1)� � z + 1

where the inequalities come from Δ � 2 and the fact that z is an integer. On the
other hand, the left subtree of node b is not too large:

Δ(z + 1) � �Δ(z + 1)� = w = y + 1.

Although the original tree is balanced as we have seen, if we delete an element
from the left subtree of node a, the balance is broken:

Δx − (r + 1) = Δ

(⌈
r + 1

Δ

⌉
− 1

)
− (r + 1) < Δ

(
r + 1

Δ

)
− (r + 1) = 0.

This implies either a single rotation or a double rotation takes place. Actually, a
double rotation takes place if z is large enough because the following expression has
a nonpositive value:

Γ(w + 1) − (y + z + 2) = Γ(�Δ(z + 1)� + 1) − (�Δ(z + 1)� + z + 1)

< Γ(Δ(z + 1) + 1) − (Δ(z + 1) + z)

= (ΓΔ − Δ − 1)z + C.

302 Y. Hirai and K. Yamamoto

b

a

a

c

b

c

x

xy y

c

a

b

x

y

Double rotation

Single rotation

Deleted

Fig. 12. A counterexample for parameter pairs outside the upper boundary. x and y denote

the sizes of the subtrees. The original tree on the left side is balanced. However, deletion of

the single element in the left subtree breaks the balance. A double rotation maintains the

balance but a single rotation breaks the balance at node a. When the parameter pair is

outside the upper boundary, a single rotation is chosen.

where C does not contain x, y nor z. The coefficient of z is negative according to the
inequation (4). So, we can choose a large enough z that ensures a double rotation.
If a double rotation is chosen, the balance is broken at node c:

Δ(z + 1) − (w + 1) = Δ(z + 1) − (�Δ(z + 1)� + 1) < Δ(z + 1) − Δ(z + 1) = 0.

8.4 Outside the upper boundaries

Some specific small trees determine the upper boundaries. Consider the trees in
Figure 12. The sizes of the subtrees in the figure are defined as follows:

x = �Δ� − 1, y = �Δ − 1/2� − 1.

Since we already have the other boundaries, we only have to consider 2.5 � Δ <
4.5. Thus, in this last case, we only have to deal with four different small trees. It is
easy to check that these four trees are balanced and that its balance is broken if the
left subtree of node a is removed. If a double rotation is chosen, the resulting tree
is balanced. If a single rotation is chosen, the balance at node a is broken:

Δ − (x + 2) = Δ − �Δ� − 1 < 0.

In order to obtain a counterexample, it is enough to ensure a single rotation. For
this, satisfying the following inequality is enough:

Γ >
x + 2

y + 1
= Γ.

In the table below, we summarize the above result for the four different trees.

x y Γ = (x + 2)/(y + 1)

2.5 � Δ< 3 1 1 3/2

3 � Δ< 3.5 2 1 4/2

3.5 � Δ< 4 2 2 4/3

4 � Δ< 4.5 3 2 5/3

Balancing weight-balanced trees 303

Ti
m
e

Fig. 13. Performance of the insert operation using different WBT algorithms.

8.5 Tests of the counterexamples

To check the correctness of the boundaries, we defined four tests for each boundary

that produced counterexample trees following the descriptions given above. The

results of the tests are exactly the same as illustrated in Figure 5.

9 Performance

The balance constraints are ultimately for performance. We benchmarked the

original WBT with 〈3, 2〉 to compare against the variant WBT with (3, 2) and

(4, 2), and Logarithmic BST described in Section 10. Their code is based on the

Haskell Data.Map implementation in the containers package version 0.3.0.0.7 We

used Dell OptiPlex 960 with a 2.66 GHz Intel Core 2 Quad CPU with 2 GB memory

running Linux 2.6.35. The Haskell compiler was the Glasgow Haskell Compiler

version 6.12.3 with the -O2 option. Benchmarking a language with lazy evaluation

is not straightforward. We used the criterion package version 0.5.0.5 and the

progression package version 0.4 as reliable benchmark tools. Data.Map is defined

as strict and we used a strict data type Int as key. So, we removed the toList

overhead used in criterion when reducing Data.Map to its normal form. We also

benchmarked the original WBT with several rational parameters.

Comparison between the original and variant WBTs. We evaluated the performance

of the insertion operation, the deletion operation, and the lookup operation. For all

operations, we prepared 1k, 10k, and 100k elements both in the increasing order

and random order. They are labeled as inc 103, inc 104, inc 105, rnd 103, rnd 104,

and rnd 105, respectively, in Figures 13–15. Some error bars are invisibly short.

For the insertion operation, we measured the entire time to construct a WBT tree

from all elements. The results are illustrated in Figure 13. For the delete operation,

we first constructed a WBT tree from all elements then measured the entire time

to delete each element in the insertion order from the full tree. The results are

7 As of this writing, performance tuning is going on. The containers package version 0.3.0.0 does not
include such performance tuning.

304 Y. Hirai and K. Yamamoto

Ti
m
e

Fig. 14. Performance of the delete operation using different WBT algorithm.

Ti
m
e

Fig. 15. Performance of the lookup operation using different WBT algorithm.

illustrated in Figure 14. For the lookup operation, we first constructed a WBT tree

from all elements then we measured the entire time to look up each element in the

tree. The results are illustrated in Figure 15. To show the results of three different

sizes in a graph, we divide each entire time by each size. We can say that the original

WBT with 〈3, 2〉 has at least the same performance as the variant WBT with (3, 2)

and (4, 2) and Logarithmic BST.

Comparison among different parameter choices for the original WBT. Likewise, we

compared the performance of eight different parameter pairs within the valid range

for insertion, deletion, and lookup (Figures 16–18). We found that the smaller

Δ, which enforces the stricter balance condition, performs better. For incremental

inputs, the largest time difference between the slowest and the fastest reached 43%

for insertion. For randomized inputs, the largest difference was 14% for lookup.

10 Related work

Coq verification of balanced tree algorithms. Filliâtre and Letouzey (2004) proved

correctness of AVL tree and red-black tree implementations in Coq and extracted

OCaml codes from the Coq implementation. At some stages during the

Balancing weight-balanced trees 305

Ti
m
e

Fig. 16. Performance of the insert operation with different verified parameter pairs.

Ti
m
e

Fig. 17. Performance of the delete operation with different verified parameter pairs.

Ti
m
e

Fig. 18. Performance of the lookup operation with different verified parameter pairs.

implementation, they were not able to prove a balancing condition in Coq. This

led to discovery of an implementation bug relating to the balance of the AVL tree

implementation in the OCaml standard library at the time. In this paper, we pointed

out balancing bugs of the algorithm, not merely in an implementation.

Charguéraud (2010) verified many functional tree algorithms in Okasaki’s book

(Okasaki, 1998) with a new method of transforming a program into a proposition

transformer. However, neither Charguéraud’s verification nor the book contains

WBT algorithms. If we apply Charguéraud’s method to verifying WBT algorithms,

306 Y. Hirai and K. Yamamoto

it would be much easier to verify an existing WBT implementation. However, the

arithmetic argument in the first half of our Coq script would still be useful.

In contrast to both Filliâtre and Letouzey’s verification and Charguéraud’s

verification, we have not verified that our target algorithm correctly implements

finite set/map operations. We expect this to be straightforward.

Another difference is that our target algorithm is parameterized and there

are many restrictions on the parameters. Moreover, some of the restrictions are

combinatorially determined by small trees of size ≈ 10. Many conditions on many

cases yield a large amount of case analysis, which makes hand-written proofs more

error-prone and machine certified proofs more advantageous in our case.

Other balanced tree algorithms. Logarithmic BST (Roura, 2001) is another variant of

WBT. To implement Logarithmic BST, isBalanced and isSingle use bit operations

and other code can be shared with the WBT family.

(.<.) :: Size -> Size -> Bool

a .<. b

| a >= b = False

| otherwise = ((a .&. b) ‘shiftL‘ 1) < b

isBalanced a b = not (size a .<. (size b ‘shiftR‘ 1))

isSingle a b = not (size b .<. size a)

The paper (Roura, 2001) says “· · · (the original WBT with 〈1 +
√

2,
√

2〉) which

is anyway an expensive property to check. This seems to be the main reason not to

use weighted BSTs as default balancing method.” We show the original WBT with

our choice of parameters 〈3, 2〉 here in order to compare it with the Logarithmic

BST version shown above.

isBalanced :: Set a -> Set a -> Bool

isBalanced a b = 3 * (size a + 1) >= size b + 1

isSingle :: Set a -> Set a -> Bool

isSingle a b = size a + 1 < 2 * (size b + 1)

For mathematical reliability, Logarithmic BST is simpler, but we have shown

rigorous analysis of the original WBT is attainable using Coq. For performance, we

benchmarked Logarithmic WBT against the original WBT with 〈3, 2〉 (Figures 13–

15). For large (105 elements) trees on randomized inputs, the original WBT performs

as well as or slightly better than Logarithmic WBT.

11 Conclusion

We identified the exact range of the valid rotation parameters of the original weight-

balanced tree and proved in Coq that it can maintain balance after any insertion

and deletion operations. Within the range, the only integer solution is 〈3, 2〉, which

allows simpler implementation of the original weight-balanced tree. Benchmarks

showed that the original weight-balanced tree with 〈3, 2〉 works in almost the same

Balancing weight-balanced trees 307

performance as the variant at (3,2) and (4,2). We benchmarked other valid rational

parameters and found the smaller Δ is the better performer. We proved in Coq

that set operations, such as union, intersection, and difference, can maintain balance

under 〈3, 2〉 and 〈5/2, 3/2〉. We also showed how to produce counterexamples outside

the boundaries of the valid range.

Acknowledgments

The authors would like to thank Taylor Campbell for his bug report that initiated

our research and Eijiro Sumii for discussion and instructive comments on our early

draft. The authors are grateful to anonymous referees for a number of presentation

improvements and a concise title.

References

Adams, S. (1992) Implementing sets efficiently in a functional language, Technical report CSTR

92-10. University of Southampton.

Adams, S. (1993) Efficient sets: A balancing act. J. Funct. Program., 3(4), 553–562.

Adel’son-Vel’skii, G. M. & Landis, E. M. (1962) An algorithm for the organization of

information. Dokl. Akad. Nauk SSSR, 146(2), 263–266.

Bertot, Y. & Casteran, P. (2004) Interactive Theorem Proving and Program Development.

Coq’Art: The Calculus of Inductive Constructions. Springer.

Borchers, B. (1999) CSDP, a c library for semidefinite programming. Optim. Methods Softw.,

11(1), 613–623.

Charguéraud, A. (2010) Program verification through characteristic formulae.In Proceedings

of the 15th International Conference on Functional Programming (ICFP). ACM.

Claessen, K. & Hughes, J. (2000) QuickCheck: A lightweight tool for random testing of haskell

programs. In Proceedings. of the Fifth International Conference on Functional Programming

(ICFP). ACM.

Filliâtre, J.-C. & Letouzey, P. (2004) Functors for proofs and programs. In Programming

Languages and Systems, Schmidt, D. (ed), Lecture Notes in Computer Science, vol. 2986.

Springer, pp. 370–384.

Guibas, L. J. & Sedgewick, R. (1978) A dichromatic framework for balanced trees. In

Proceedings of the 19th Annual Symposium on Foundations of Computer Science (SFCS ’78).

IEEE, pp. 8–21.

Knuth, D. E. (1998) The Art of Computer Programming: Sorting and Searching. 2nd ed., vol. 3.

Addison-Wesley.

Marlow, S., et al. (2010) Haskell 2010 Language Report, Marlow, S. (ed), Available online

http://www.haskell.org/ (May 2011).

Nievergelt, J. & Reingold, E. M. (1972) Binary search trees of bounded balance. In Proceedings

of the Fourth Annual Acm Symposium on Theory of Computing. ACM, pp. 137–142.

Okasaki, C. (1998) Purely Functional Data Structures. Cambridge University Pres.

Pugh, W. (1991) The Omega test: A fast and practical integer programming algorithm for

dependence analysis. In Proceedings. of the 1991 ACM/IEEE Conference on Supercomputing.

ACM.

Roura, S. (2001) A new method for balancing binary search trees. In Automata, Languages and

Programming, Orejas, F., Spirakis, P. & van Leeuwen, J. (eds), Lecture Notes in Computer

Science, vol. 2076. Springer, pp. 469–480.

