

Algorithms

Robert Sedgewick
and

Kevin Wayne

Princeton University

FOURTH EDITION

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

available for garbage collection. Our standard recursive setup accomplishes, after the
deletion, the task of setting the appropriate link in the parent and updating the counts
in all nodes in the path to the root. The symmetric method works for deleteMax().

 Delete. We can proceed in a similar manner to de-
lete any node that has one child (or no children), but
what can we do to delete a node that has two chil-
dren? We are left with two links, but have a place in
the parent node for only one of them. An answer to
this dilemma, first proposed by T. Hibbard in 1962,
is to delete a node x by replacing it with its successor.
Because x has a right child, its successor is the node
with the smallest key in its right subtree. The replace-
ment preserves order in the tree because there are no
keys between x.key and the successor’s key. We can
accomplish the task of replacing x by its successor in
four (!) easy steps:

■ Save a link to the node to be deleted in t.
■ Set x to point to its successor min(t.right).
■ Set the right link of x (which is supposed to

point to the BST containing all the keys larger
than x.key) to deleteMin(t.right), the link
to the BST containing all the keys that are larger
than x.key after the deletion.

■ Set the left link of x (which was null) to t.left
(all the keys that are less than both the deleted
key and its successor).

Our standard recursive setup accomplishes, after the
recursive calls, the task of setting the appropriate link
in the parent and decrementing the node counts in
the nodes on the path to the root (again, we accom-
plish the task of updating the counts by setting the counts in each node on the search
path to be one plus the sum of the counts in its children). While this method does the
job, it has a flaw that might cause performance problems in some practical situations.
The problem is that the choice of using the successor is arbitrary and not symmetric.
Why not use the predecessor? In practice, it is worthwhile to choose at random between
the predecessor and the successor. See Exercise 3.2.42 for details.

search for key E

node to delete

deleteMin(t.right)

t

5

7

x

successor
min(t.right)

t.left

x

update links and
node counts after

recursive calls

A

C

E

H

M

R

S

X

A

C

E

H

M

R

S

X

A

C

H

A

C

H

M

R

M

R

S

X

E

S

X

deleting E

Deletion in a BST

go right, then
go left until

reaching null
left link

410 CHAPTER 3 ■ Searching

 ALGORITHM 3.3 (continued) Deletion in BSTs

public void deleteMin()
{
 root = deleteMin(root);
}

private Node deleteMin(Node x)
{
 if (x.left == null) return x.right;
 x.left = deleteMin(x.left);
 x.N = size(x.left) + size(x.right) + 1;
 return x;
}

public void delete(Key key)
{ root = delete(root, key); }

private Node delete(Node x, Key key)
{
 if (x == null) return null;
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x.left = delete(x.left, key);
 else if (cmp > 0) x.right = delete(x.right, key);
 else
 {
 if (x.right == null) return x.left;
 if (x.left == null) return x.right;
 Node t = x;
 x = min(t.right); // See page 407.
 x.right = deleteMin(t.right);
 x.left = t.left;
 }
 x.N = size(x.left) + size(x.right) + 1;
 return x;
}

These methods implement eager Hibbard deletion in BSTs, as described in the text on the facing
page. The delete() code is compact, but tricky. Perhaps the best way to understand it is to read
the description at left, try to write the code yourself on the basis of the description, then compare
your code with this code. This method is typically effective, but performance in large-scale applica-

tions can become a bit problematic (see Exercise 3.2.42). The deleteMax() method is the same as
deleteMin() with right and left interchanged.

4113.2 ■ Binary Search Trees

