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available for garbage collection. Our standard recursive setup accomplishes, after the 
deletion, the task of setting the appropriate link in the parent and updating the counts 
in all nodes in the path to the root. The symmetric method works for deleteMax(). 

 Delete. We can proceed in a similar manner to de-
lete any node that has one child (or no children), but 
what can we do to delete a node that has two chil-
dren? We are left with two links, but have a place in 
the parent node for only one of them. An answer to 
this dilemma, first proposed by  T. Hibbard in 1962, 
is to delete a node x by replacing it with its successor. 
Because x has a right child, its successor is the node 
with the smallest key in its right subtree. The replace-
ment preserves order in the tree because there are no 
keys between x.key and the successor’s key. We can 
accomplish the task of replacing x by its successor in 
four (!) easy steps: 

■ Save a link to the node to be deleted in t. 
■ Set x to point to its successor min(t.right). 
■ Set the right link of x (which is supposed to 

point to the BST containing all the keys larger 
than x.key) to deleteMin(t.right), the link 
to the BST containing all the keys that are larger 
than x.key after the deletion. 

■ Set the left link of x (which was null) to t.left
(all the keys that are less than both the deleted 
key and its successor).

Our standard recursive setup accomplishes, after the 
recursive calls, the task of setting the appropriate link 
in the parent and decrementing the node counts in 
the nodes on the path to the root (again, we accom-
plish the task of updating the counts by setting the counts in each node on the search 
path to be one plus the sum of the counts in its children). While this method does the 
job, it has a flaw that might cause performance problems in some practical situations. 
The problem is that the choice of using the successor is arbitrary and not symmetric. 
Why not use the predecessor? In practice, it is worthwhile to choose at random between 
the predecessor and the successor.  See Exercise 3.2.42 for details.
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  ALGORITHM 3.3 (continued) Deletion in BSTs

public void deleteMin() 
{  
   root = deleteMin(root); 
}

private Node deleteMin(Node x) 
{
   if (x.left == null) return x.right;
   x.left = deleteMin(x.left);
   x.N = size(x.left) + size(x.right) + 1;
   return x; 
}

public void delete(Key key) 
{  root = delete(root, key);  }

private Node delete(Node x, Key key) 
{
   if (x == null) return null;
   int cmp = key.compareTo(x.key);
   if      (cmp < 0) x.left  = delete(x.left,  key);
   else if (cmp > 0) x.right = delete(x.right, key);
   else 
   {
      if (x.right == null) return x.left;
      if (x.left == null) return x.right;
      Node t = x;
      x = min(t.right);  // See page 407.
      x.right = deleteMin(t.right);
      x.left = t.left;
   }
   x.N = size(x.left) + size(x.right) + 1;
   return x; 
}

These methods implement eager Hibbard deletion in BSTs, as described in the text on the facing 
page. The delete() code is compact, but tricky. Perhaps the best way to understand it is to read 
the description at left, try to write the code yourself on the basis of the description, then compare 
your code with this code. This method is typically effective, but performance in large-scale applica-

tions can become a bit problematic (see Exercise 3.2.42). The deleteMax() method is the same as 
deleteMin() with right and left interchanged.
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