
RRB-Trees: Efficient Immutable Vectors

Phil Bagwell Tiark Rompf
EPFL

{first.last}@epfl.ch

Abstract
Immutable vectors are a convenient data structure for functional
programming and part of the standard library of modern languages
like Clojure and Scala. The common implementation is based on
wide trees with a fixed number of children per node, which allows
fast indexed lookup and update operations. In this paper we ex-
tend the vector data type with a new underlying data structure, Re-
laxed Radix Balanced Trees (RRB-Trees), and show how this struc-
ture allows immutable vector concatenation, insert-at and splits in
O(logN) time while maintaining the index, update and iteration
speeds of the original vector data structure.

1. Introduction
Immutable data structures are a convenient way to manage some of
the problems of concurrent processing in a multi-core environment.
Immutable linked lists have served functional programming well
for decades but their sequential nature makes them unsuited for
parallel processing: Guy Steele famously concluded his ICFP’09
keynote with the words “Get rid of cons!”. New data structures with
efficient asymptotic behavior and good constant factors are needed
that allow to break down input data for parallel processing and to
efficiently reassemble computed results.

In the mutable world, arrays are often preferable to lists because
elements can be accessed in constant rather than linear time, and
disjoint parts of the same array can be worked on in parallel. Build-
ing an efficient immutable analogue to the ubiquitous mutable ar-
ray, i.e. an indexable ordered sequence of values, is not an easy
task as a naive immutable version will have an unacceptable lin-
ear cost for updating individual elements. The immutable vector
data structure as pioneered by the programming language Clojure
[4] strikes a good balance between read and write performance and
supports many commonly used programming patterns in an effi-
cient manner. In Clojure, immutable vectors are an essential part
of the language implementation design. Ideal Hash Tries (HAMTs)
[1] were used as a basis for immutable hash maps and the same
structure, 32-way branching trees, was used for immutable vectors.
The resultant design provides efficient iteration and single-element
append in constant time, indexing in log32N = 1

5
lgN time and

updates in 32
5
lgN time. Using 32-wide arrays as tree nodes makes

the data structure cache friendly. An indexed update incurs only
1
5
lgN indirect memory accesses, meaning that, for practical pur-

[Copyright notice will appear here once ’preprint’ option is removed.]

poses, programmers can consider all the operations as “effectively
constant time”.

However parallel processing requires efficient vector concate-
nation, splits and inserts at a given index, which are not easily sup-
ported by the structure. The work presented in this paper extends
the underlying vector structure to support concatenation and inserts
in O(logN) rather than linear time without compromising the per-
formance of the existing operations. This new data structure lends
itself to more efficient parallelization of common types of com-
prehensions. A vector can be split into partitions that can then be
evaluated in parallel. For many common operations such as filter,
the size of the individual partition results is not known a priori. The
resulting sub-vectors can be concatenated to return a result vector
without linear copying. In this way the benefits of parallel process-
ing are not lost in assembling the results.

Although the present work was targeted at the programming
language Scala, the data structure is applicable in other language
environments such as Clojure, C, C++ and so on. Other use cases
include implementations specialized to character strings that would
e.g. facilitate template-based web page generation.

In the remainder of this paper we will use the term vector to
refer to the 32-way branching data structure found in Scala and
Clojure.

1.1 Related Work
Previous work has led to immutable data structures that offer im-
proved solutions to the problem of concatenation, notably Ropes
[3], 2-3 finger trees [5], and B-Trees [2]. However, each has limi-
tations. With Ropes, a data structure originally created to support
the concatenation of strings, the aim is achieved by simply creat-
ing a binary tree that has the two sub-strings as branches. With the
addition of the two string sizes to the node, efficient indexing can
be performed after concatenation. Splits can be performed by cre-
ating a split node above the Rope with the values of the upper and
lower split bounds. However the performance degrades as repeated
concatenations and splits are performed. The index times become
s+ lg c where c is the number of concatenations and s is the num-
ber of splits along a Rope tree path. Balancing is required to pre-
serve worst case performance. Without copying, splits will lead to
memory leakage as the excluded parts of the original string are not
collectible when no longer referenced.

2-3 finger trees achieve a lgN time for indexing and update
while at the same time maintaining an amortized constant time
for adding items to the vector. Concatenation can be accomplished
in lgN time too. Although attractive, using this data structure
for vectors does compromise the 1

5
lgN time for index, making it

theoretically 5 times slower. Data structures discussed in Okasaki’s
Book [6] also differ in constant factors.

In this paper, we introduce Relaxed Radix Balanced Trees (RRB-
Trees), a new data-structure that extends the vector structure whilst
keeping its basic performance characteristics and allowing efficient
concatenation, splits and inserts.

1 2012/3/11



Figure 1. Basic vector Structure: m-wide trees (example m=4)

1.2 Vectors
For illustration purposes we will present all vector structures using
4-way branching tree examples. Except where specifically stated
the principles apply to any m-way tree structure, including the 32-
way one of interest for immutable vectors. Figure 1 illustrates a
basic vector structure using this convention. We can imagine a 32-
way version by mentally replacing each array of 4 branches with
one of 32.

In developing immutable hash maps for Clojure, lead developer
Rich Hickey used Hash Array Mapped Tries (HAMT) [1] as the
basis. HAMT’s use a 32-way branching structure to implement a
mutable hash map. The immutable version, pioneered by Clojure,
was created understanding that only the tree path needed to be
rewritten as items were added or removed from the map. The same
32 way branching structure was then used to provide an immutable
vector. In this case the ‘key’ to an item is its index in the vector
rather than a hash of the key. Again immutability was achieved by
copying and updating only the tree path for updates and additions,
with the 32-way branching leading to 1

5
lgN index performance.

The choice of 32 for m in the m-way branching of vectors
follows from a trade-off between the different use cases for the
structure. Increasing the branch factor improves index and itera-
tion performance while tending to slow down updating and exten-
sion. As m increases the indexing cost are in principle proportional
to logmN while the update costs are proportional to m logmN .
However in practice the memory cache line, 64-128 bytes in mod-
ern processors, makes the cost of copying small blocks of this size
relatively cheap. As we can see from figure 2, m = 32 represents a
good balance between index and update costs, particularly as com-
mon use cases tend to use indexing and iteration far more than up-
dates.

Choosing m to be a power of two enables shifts to be used to
extract the branching value from the index rather than the slightly
more expensive modulus. Although an important consideration in
the past, modern computer architectures make this a marginal ad-
vantage today.

Figure 2 demonstrates the advantage of using an m-way struc-
ture over that of a binary or 2-3 finger tree. Index times are a little
over four times faster using a 32-way data-structure while update
times are similar. The theoretical five time advantage is diluted by
the caching of the upper tree nodes.

1.3 Concatenation
Two vectors are shown in figure 3. The naive approach to concate-
nate these into one vector requires a “shift left” and copying of all

Figure 2. Time for index and update, depending on m

Figure 3. Two vectors to concatenate. Naive approach requires
copying the right-hand one to fit the tree structure.

the nodes from the right hand vector into the appropriate positions
in the concatenated vector, a process linear in the size of the right
hand vector. Alternatively one can traverse the right hand vector
and add the items to the left vector, again a linear process. In the
remainder of this paper we will show how the proposed RRB-Tree
structure allows efficient concatenation.

2. RRB-Trees
RRB-Trees extend the given vector structure by relaxing the fixed
branching factor m. In doing so it is crucial to prevent the tree
representation from degenerating into a linear linked list and to
maintain lgN tree height.

2.1 Balanced Trees
Balanced tree structures maintain a relation between the maximum
and minimum branching factor mm and ml at each level. These
give corresponding maximum height hm and least height hl needed
to represent a given number of items N .

Then hl = logmmN and hm = logmlN
or as hl =

1
lgmm

lgN and hm = 1
lg ml

lgN
Trees that are better balanced will have a height ratio, hr , that

is closer to 1, perfect balance.

hr =
lg ml

lg mm

2 2012/3/11



Figure 4. RRB Tree: Leftmost slot A points to a cumulative size
table.

The closer ml approaches mm the more perfectly the tree is
balanced. For a B-Tree ml =

1
2
mm so

hr =
lg 1

2
mm

lg mm

hr =
lg mm − 1

lg mm

hr = (1− 1

lg mm
)

As mm gets large B-Trees approach perfect balance, the well know
characteristic.

2.2 Relaxed Radix Search
In the case of vectors, the branch factor m is always 32 and the trees
are perfectly balanced. The constant m allows the radix search to
find the child node directly during indexing. When two such trees
are concatenated this constraint must be relaxed in order to avoid
the linear cost of copying. Less than m items or sub-trees may be
stored in a node. However this implies that we can no longer use
radix search in a simple manner.

The radix search relies on the fact that at a given level there
are expected to be exactly mh−1 items in each sub-tree. Thus the
index i will be found in sub-tree bi/(mh−1)c of that node. The
convention is that the index and node offsets are zero based. If there
are less than the expected number of items, we need to use another
method, which we will call relaxed radix search.

In B-Trees, keys are found by storing the key range in the parent
nodes and performing a linear or binary search at the parent node to
find the sub-tree containing the required key. We can use a similar
scheme for RRB-trees, however the index ranges, rather than keys,
are stored at the parent node in an array, and only at those nodes
that contain sub-trees with nodes that are not m slots wide.

Figure 4 illustrates the basic structure of an RRB Tree. The tree
node A comprises an array of pointers that point to sub-trees, C, D
and E. Associated with this array is the range array that contains
the accumulated total number of leaf items in these sub-trees. For
convenience we will call the pointer and its associated range a slot.
In the example, slot 0 points to node C and is said to contain 3
sub-trees, which are leaf items in this case.

Suppose we would like to retrieve the item at index position 3,
namely the first item in node D. An integer divide of the index by
4 would select slot 0. However, we find the index to be equal or
greater than the range value stored at that slot, 3, so we must try the
next slot, 1. Here the index is less than the range so the indexing
continues in slot 1’s sub-tree node D. Before doing so, we subtract

the previous slot, 0 with range, 3, from the index to give a new zero
base index of 0 for the continued search. We then find the desired
item at position 0 of node D.

In general, if ml is close to m a radix search at the parent node
will fall close to the desired slot. For example if ml = m− 1 then,
worst case for a tree of height 2, it will only contain (m−1)2 items.
Indexing to the mth slot, we would expect to find the sub-tree in the
chosen slot, however some of the time the next slot must be tested.

While indexing, before following a sub-tree, we must inspect
the sub-tree range value to ascertain which sub-tree to follow (no
backtracking is necessary). The range values are in fact the count of
actual items in the leaves in and to the left of that slot. We may need
to check two possible range values rather than just indexing to the
correct path directly. This extra test is relatively cheap on modern
machines as reading the first value will cause a cache line to be
loaded and the next few adjacent values are brought into the cache
at the same time as the first one. Carrying out a short linear search
has a very small overhead. Furthermore, if all possible indexes are
considered and the nodes are randomly m or m−1, then we would
expect the radix search to succeed 3

4
of the time.

The average number of items in a slot is m − 1
2

. Starting with
the first slot, the probability that we will not find the item in the
slot is 0.5

m
. For the second slot it will be 1.0

m
, the third 1.5

m
and so on

to the mth 0.5m
m

. Summing the series the average probability of a
miss is 0.25.

2.3 Cache Line Awareness and Binary Search
Understanding that cache line loads give this benefit to radix
searches with a short linear search, we may expect that a binary
or even a simple linear search at a node could be attractive. A bi-
nary search would be desirable as it requires fewer constraints in an
eventual concatenation algorithm. However, a binary search with
m = 32 may cause several cache misses with the attendant cache
line loads and cache prefetching cannot be easily employed. Em-
pirical testing shows that the relaxed radix search gives an overall
indexing speed that is nearly three times faster than a binary or
purely linear search at the node (see benchmarks).

2.4 Concatenation
Figure 5 illustrates the concatenation of two RRB-Trees. Again we
consider the case m = 4 for simplicity but the same principles can
be applied for greater values. The process starts at the bottom of the
right edge of the left hand tree and bottom of the left edge of the
right hand.

B-Trees ensure balancing by constraining the node branching
sizes to range between m and 2m. However, as mentioned earlier
B-Trees nodes do not facilitate radix searching. Instead we chose
the initial invariant of allowing the node sizes to range between m
and m − 1. This defines a family of balanced trees starting with
well known 2-3 trees, 3-4 trees and (for m=32) 31-32 trees. This
invariant ensures balancing and achieves radix branch search in the
majority of cases. Occasionally a few step linear search is needed
after the radix search to find the correct branch.

The extra steps required increase at the higher levels. The least
number of leaf items in the tree is given by (m−1)h. The maximum
number of leaf items is mh, The worst case number of extra steps
at the top is given by the maximum less the minimum divided by
the slot size at that level.

mh − (m− 1)h

m(h−1)

or 4.69 where m = 32 and h = 5. Assuming a random distribution
for node sizes between m− 1 and m then the expected worst case
would be 2.49 on average.

3 2012/3/11



Figure 5. Vector Concatenation, 3-4 tree bottom level

Figure 6. Vector Concatenation, 3-4 tree first level

Figure 5 illustrates the concatenation/balancing algorithm with
a 3-4 tree. Again, the principle applies to the whole tree family
including the case m=32. First we move down the right hand edge
of the left tree and the left hand edge of the right tree. Then we
move up one level. In order to have a well formed tree we must
rebalance the nodes enclosed in the box to conform to the invariant.

This requires that we must copy branch entries from the right to
the left until each slot count lies between m− 1 and m. Further we
need to maintain the sequential order. In the example, we need to
copy the item in the 3rd node and the three items in the 4th node
into a new node that now meets the invariant. However, in general
several or even all the nodes may need to be copied before they
meet the invariant.

In the worst case m2 nodes must be copied at each balancing. It
is always possible to redistribute a slot with 1 to m entries amongst
m slots to meet the invariant. The worst case cost of concatenation
is therefore proportional to m2

lgm
lgN or O(logN). This is a constant

factor times the cost of completing a simple immutable update to a
value in a vector.

The first four of the resulting nodes form a new right hand node
to the left tree while the remaining two nodes are carried up to the
next level to be included in the balancing at that level, as shown in
figure 6. Here the right hand two nodes are combined to form a new

4 way node and the new next level up node is created to complete
the concatenation. In general, this process repeats until we reach
the top of the tree.

Note that only these modified tree edge nodes are rewritten. The
rest of the tree is untouched and concatenation results in a new
immutable vector.

2.5 Summing Over Two Levels
Further inspection suggests a less constrained approach that achieves
the desired relaxed radix search directly and reduces the concate-
nation cost by a factor of around three on average.

Considering all the slots at a node, if a slots contain a total of p
sub-tree branches then the maximum extra linear search steps e is
given by e = a − (b p−1

m
c + 1). Only b p−1

m
c + 1 slots, each slot

containing exactly m items, are required for perfect radix searching
while there are actually a. Now we can carry out the balancing step
just as before but individual nodes can have any number of sub-
trees as long as e, the extras search steps, is not exceeded.

An example of balancing using this constraint, with e = 1, is
shown in figure 7. At the bottom there are 6 nodes to be considered
for balancing and the total number of items is 16. In this case
e = 6 − b 16−1

4
c − 1 or 2, one more than the allowed radix

search error. Balancing is required. Starting from the left we skip
any slots with m entries. If all nodes are of this size the invariant
is met automatically and we fall back to the typical use case of
concatenating standard vectors with all nodes of size m except the
right hand one. From the first small one the process continues to
the right until the total of all slots from the small one are enough
to reduce the slot count by one (the ones enclosed by the ellipse).
Moving along, we copy slots to reduce the number of nodes.

Since the node at this level is going to be copied anyway, we
take the opportunity to copy in enough slots to make the total up
to m or 4 in this case. Since the total possible number of slots is
2m, m from the left and m from the right, this ensures no more
than m are left on the right to carry up and the node will typically
be skipped at the next level re-balancing so there is no extra work.
Now we carry the remainder up to the next level and repeat the
exercise.

In figure 8, the first level node on the right hand side of the left
tree only has two slots. Here there are 4 nodes to consider with a
total of 11 sub-nodes. In this case e = 4 − b 11−1

4
c − 1 or 1. No

balancing is required so the top 4 slot node can be constructed and
the concatenation is complete.

In general it can be shown that skipping over slots with m − e
2

or greater entries is sound. Once the smallest one has been reached
there will always be enough nodes to copy in to the right to reduce
to the correct value of e.

Suppose the small slot is the nth one and that the number of
slots to give direct radix searching is r calculated from the total
number of sub-nodes as described above, then r + e is the final
count. Each of the nodes to the left of the nth will be between
m − e

2
and m and thus skipped. There can be a maximum of 2m

slots to be balanced. Hence even if the small slot is the 2mth one
then the minimum total number of sub nodes/items to its left will be
2m(m− e

2
) or 2m2−em. But there are 2m−e slots needed to give

direct radix searching therefore the total number of sub nodes/items
must be m(2m− e) or 2m2− em. The same as is needed to allow
the small slot at the 2mth position.

In practice we compute all the new node sizes first to reduce the
copying work. The actual copying is done just once.

So far we have assumed that the maximum error e is 1 but larger
values can also be used. A larger allowed radix search error causes
the time to index a value to increase while the concatenation cost
reduces. With m = 32 empirical testing shows that setting e = 2
gives a good compromise, with small impact on the index time

4 2012/3/11



Figure 7. Sum 2 Levels, 3-4 tree bottom level

Figure 8. Sum 2 Levels, 3-4 tree first level

while retaining low concatenation cost. The resulting tree will be
very close to perfect balance as on average ml+2 = m = 32. The
slight increase in depth contributes to the increased index times.

With the current balancing strategy the worst case situation can
arrive that the smallest slot is the left most one and all the ones
to the right of it are m except the last two. In this case balancing
will cause shuffling of all 2m slots giving a worst case copy cost
of 2m(m − e), still constant. The process of shuffling described
above is a heuristic that we have found to provide the performance
characteristics desired. The worst case just described could easily
be avoided by first checking which small slot is cheapest to start
with. Alternative algorithms, for example based on dynamic pro-
gramming, that try to achieve a globally optimal shuffling could be
used as well, however the chosen algorithm performs well in prac-
tice.

3. Benchmark Results
We evaluate the performance of RRB-Trees in several empirical se-
tups. The two most relevant attributes are the impact of concatena-
tion on indexing performance and the time required to concatenate
RRB-Trees.

Table 1. Comparison of Index Times nano-secs
n 2n RegV RRB RRB RRB RRB Bin Srch

p = 1 p = 0.25 p = 0.17 p = 0.12 p = 0 p = 0
10 1024 23 45 46 45 46 93
11 2048 28 45 43 46 47 98
12 4096 28 44 82 47 47 116
13 8192 41 39 45 50 48 118
14 16384 27 50 46 46 66 130
15 32768 27 53 56 57 64 155
16 65536 31 53 57 62 66 161
17 131072 35 53 59 58 66 175
18 262144 33 58 60 61 66 189
19 524288 34 66 59 61 67 200
20 1048576 34 63 64 71 80 225
21 2097152 38 63 62 74 82 230
22 4194304 38 61 69 69 82 243
23 8388608 37 59 54 66 82 258

Average 32 54 57 58 65 171
Factor 1.00 1.66 1.77 1.79 2.00 5.27

3.1 Index Performance Benchmark
Table 1 tabulates the benchmarks for the per index cost of indexing
through vectors of different sizes and having undergone varying
amounts of concatenation. A random size is chosen for the two test
vectors to be concatenated. Then each of the vectors is created by
either creating a regular vector or dividing the size randomly into
two sub-sizes and repeating the size partitioning. Whether the size
is re-partitioned or not is chosen randomly based on probability p
set for each benchmark. Results are for p = 1, 0.25, 0.17, 0.125
and 0. If the probability p is chosen then there will be a probability
p that no further subdividing of size will be done and a regular
vector will be created. Once two sub-vectors have been created
they are concatenated. This concatenation process continues at the
next level up until a vector is finally constructed of the initial size
required. In this way vectors are created that are regular, p = 1 or
the result of many small random vectors concatenated, p = 0 or
somewhere in between. A large number of trials was made and the
results averaged in each vector size range.

The summary performance factor gives a guide to the cost of
using RRB-Tree structures using regular vectors as the basis of
comparison.

It is worth mentioning that updates and iterations have negli-
gible speed penalties. In both cases the range information does not
need to be updated and iterations only follow the branch references,
behaving in the same way as a regular vector.

The last column reports the index times for RRB-Trees contain-
ing almost no regular vector parts using a binary search at the node
branching instead of the relaxed radix search. These index times are
over five times longer than the regular vector while nearly 3 times
longer than using radix search.

3.2 Concatenation Costs
Test vectors were created as for the Index tests and the total num-
ber of memory locations copied during the final concatenation
recorded. This includes the tree nodes, leaf items, range arrays and
temporary size arrays created during the concatenating and balanc-
ing process. The results can be seen in Table 2. These can be com-
pared to the cost to complete a simple value update, 32

5
lg N or 160

for a 5 level tree.

5 2012/3/11



Table 2. Copy costs of Concatenation RRB-Tree
n 2n RegV RRB RRB RRB RRB

p = 1 p = 0.25 p = 0.17 p = 0.12 p = 0
10 1024 76 272 273 307 307
11 2048 152 484 534 531 572
12 4096 160 225 260 220 240
13 8192 173 319 318 393 489
14 16384 194 508 556 547 757
15 32768 226 786 871 808 1009
16 65536 315 1164 1149 1145 1304
17 131072 313 619 567 648 795
18 262144 325 570 793 616 887
19 524288 326 808 871 1006 1191
20 1048576 371 1114 1149 1345 1410
21 2097152 456 1417 1687 1617 1674
22 4194304 464 755 923 1106 1183
23 8388608 473 871 938 1100 1631
a)Costs include all element copies - items,
sub-tree references and sizes

3.3 Observation
Notice that as the size passes through boundaries 10, 15 and 20
index speed and concatenation costs reflect the extra tree level
added.

4. Splits and Insert At
The split operation can be more easily understood as being the
result of removing a left and right slice from the vector.

A right slice is accomplished by simply passing down the edge
defined by the right slice index and making it the right hand edge of
the tree. Nodes to the right of the index are simply dropped when
the nodes on the index are copied to make the new right edge of the
tree.

Similarly a left slice is accomplished by passing down the edge
defined by the left slice index and making it the left hand edge.
Nodes to the left of the index are dropped and nodes to the right
are shifted left when copying to create the left edge of the tree.
Trees created in this way may not meet the invariant outlined
above. There may be one more than e extra slots for a given level.
However, a subsequent concatenations will restore the invariant.
By taking this lazy approach redundant balancing is avoided. Splits
have the same cost as an update namely m

lg m
lgN .

5. Implementation Considerations
The original Scala and Clojure Vector implementation uses inter-
nal nodes with an array carrying the 32 way branch. In this imple-
mentation the array is increased by one when a node is converted
to an RRB Tree node. The zeroth element carries a reference to
the array containing range values. There is no overhead on vectors
that have not been concatenated. Further by using a separate range
array, rather than a range/pointer object the speed of iteration, a
common use case, is unaffected.

After concatenation on some of the nodes the zeroth element
will point to the array of range values. Since only internal nodes
carry this extra element the extra memory overhead is close to one
in m2 or 1 in 1024 and can be considered negligible.

A typical vector after concatenation will contain a mix of nodes
with standard 32 way sub-trees and RRB-Tree nodes with range
values. In the JVM implementation the object type can be used
to determine whether to use the optimised standard vector index
method or the slower RRB tree index method.

There is no speed loss or memory overhead on the standard
vectors when the concatenation and slice capability is unused.

5.1 Constant Time Addition
The Clojure vector implementation includes an optimization to
allow constant time append of single elements. The last 32-wide
block of elements is kept outside the tree structure so that it can
be accessed in constant time, without going through multiple tree
levels. To append an element (on the right) to a Clojure Vector, only
this max. 32-wide array has to be copied.

It is possible to extend this model to multiple levels and to
varying positions. In the Scala standard library implementation,
vectors have a notion of focus, which identifies a single 32-wide
block that is accessible in constant time. Every update operation (be
it at the left end, the right end, or any other position), will put the
target block in focus. Updates to a block ‘in focus’ will copy only
that particular 32-wide block. Moreover, all the tree nodes from
the root to the block in focus are kept in a display, i.e. a constant-
time stack. Moving the focus to an adjacent 32-block incurs only
one indirection through the display, possibly copying the node one
level up. Indexed reads also use the display to minimize the number
of indirections.

When putting a position in focus, the downward pointers are
replaced by null entries. As long as the focus remains within that
block, only the bottom array needs to be copied. If the focus moves
to an adjacent block, display slot 1 needs to be copied, at the old
focus position the pointer is put back in and the newly focused one
is nulled.

The design decision behind this model is to optimise for spacio-
temporal access locality. The assumption is that sequentially rewrit-
ing parts of a Vector (starting from an arbitrary position) is a com-
mon operation; the same holds for reading elements close to the
last update.

6. Conclusions
The RRB-Tree based vector provides a viable extension to the
existing 32-way immutable vector used in Clojure and Scala to
provide O(logN) concatenation and splits while maintaining the
basic costs associated with other operations. For practical purposes
they can be considered constant time.

The data structure could also be attractive as the basis of a string
implementation or for in-memory database structures using any
language.

The ability to partition and concatenate vectors is highly desir-
able when performing typical parallel comprehensions.

Although the current heuristics for node shuffling yield very sat-
isfactory results, further research could study alternative algorithms
to better optimise for particular use cases.

References
[1] P. Bagwell. Ideal hash trees. Technical report, EPFL, 2001.
[2] R. Bayer and E. McCreight. Organization and maintenance of large

ordered indexes. Acta informatica, 1(3):173–189, 1972.
[3] H.-J. Boehm, R. Atkinson, and M. Plass. Ropes: An alternative to

strings. Software: Practice and Experience, 25(12):1315–1330, 1995.
[4] R. Hickey. The Clojure programming language, 2006. URL

http://clojure.org/.
[5] R. Hinze and R. Paterson. Finger trees: a simple general-purpose data

structure. Journal of Functional Programming, 16(2):197–217, 2006.
[6] C. Okasaki. Purely functional data structures. Cambridge University

Press, 1999.

6 2012/3/11


