
C8160_fm_ptg01.indd 4 20/07/12 11:59 AM

Data Structures
and Algorithms
in C++

Fourth Edition

Adam Drozdek

Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States

C8160_fm_ptg01.indd 1 20/07/12 11:59 AM

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

© 2013 Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein
may be reproduced, transmitted, stored or used in any form or by any means
graphic, electronic, or mechanical, including but not limited to photocopying,
recording, scanning, digitizing, taping, Web distribution, information networks,
or information storage and retrieval systems, except as permitted under
Section 107 or 108 of the 1976 United States Copyright Act, without the prior
written permission of the publisher.

Library of Congress Control Number: 2012942244

ISBN-13: 978-1-133-60842-4

ISBN-10: 1-133-60842-6

Cengage Learning
20 Channel Center Street
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning solutions with
office locations around the globe, including Singapore, the United Kingdom,
Australia, Mexico, Brazil and Japan. Locate your local office at:
www.cengage.com/global

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

To learn more about Cengage Learning, visit www.cengage.com

Purchase any of our products at your local college store or at our preferred
online store www.cengagebrain.com

Data Structures and
Algorithms in C++,
Fourth Edition
by Adam Drozdek

Executive Editor: Marie Lee

Senior Product Manager:
Alyssa Pratt

Associate Product Manager:
Stephanie Lorenz

Content Project Manager:
Matthew Hutchinson

Art Director: Cheryl Pearl

Print Buyer: Julio Esperas

Compositor: PreMediaGlobal

Proofreader: Andrea Schein

Indexer: Sharon Hilgenberg

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, www.cengage.com/support

For permission to use material from this text or product, submit all
requests online at www.cengage.com/permissions

Further permissions questions can be emailed to
permissionrequest@cengage.com

Printed in the United States of America
1 2 3 4 5 6 7 18 17 16 15 14 13 12

Some of the product names and company names used in this book have been used for identification purposes only
and may be trademarks or registered trademarks of their respective manufacturers and sellers.

Any fictional data related to persons or companies or URLs used throughout this book is intended for instructional
purposes only. At the time this book was printed, any such data was fictional and not belonging to any real persons or
companies.

Cengage Learning reserves the right to revise this publication and make changes from time to time in its content
without notice.

The programs in this book are for instructional purposes only. They have been tested with care, but are not guaranteed
for any particular intent beyond educational purposes. The author and the publisher do not offer any warranties or repre-
sentations, nor do they accept any liabilities with respect to the programs.

C8160_fm_ptg01.indd 2 20/07/12 11:59 AM

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	 S e c t i o n 	 6 . 6 	 D e l e t i o n 	 	 ■	 	 243

	6.6	 Deletion

Deleting a node is another operation necessary to maintain a binary search tree. The level
of complexity in performing the operation depends on the position of the node to be de-
leted in the tree. It is by far more difficult to delete a node having two subtrees than to
delete a leaf; the complexity of the deletion algorithm is proportional to the number of
children the node has. There are three cases of deleting a node from the binary search tree:

	 1. The node is a leaf; it has no children. This is the easiest case to deal with. The appropriate
pointer of its parent is set to null and the node is disposed of by delete as in Figure 6.26.

Figure 6.25	 Inserting	nodes	into	a	threaded	tree.

15

20

19

4

17

15

204

17

15

20

17

4

19

15
20

4

15
4

null
15

Figure 6.26	 Deleting	a	leaf.

1

15

20

Delete node

4

16 node 1

15

204

16 Free the space

 2.	 The node has one child. This case is not complicated. The parent’s pointer to the node
is reset to point to the node’s child. In this way, the node’s children are lifted up by one

C8160_ch06_ptg01.indd 243 19/05/12 1:17 PM

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

244	 	 ■	 	 C h a p t e r 	 6 	 B i n a r y 	 T r e e s

level and all great-great-. . . grandchildren lose one “great” from their kinship designa-
tions. For example, the node containing 20 (see Figure 6.27) is deleted by setting the
right pointer of its parent containing 15 to point to 20’s only child, which is 16.

Figure 6.27	 Deleting	a	node	with	one	child.

1

15

20

Delete node

4

16

node

1

15

204

16

Free the space

	 3.	 The node has two children. In this case, no one-step operation can be performed
because the parent’s right or left pointer cannot point to both the node’s children at
the same time. This section discusses two different solutions to this problem.

6.6.1	 Deletion	by	Merging
This solution makes one tree out of the two subtrees of the node and then attaches
it to the node’s parent. This technique is called deleting by merging. But how can we
merge these subtrees? By the nature of binary search trees, every key of the right sub-
tree is greater than every key of the left subtree, so the best thing to do is to find in the
left subtree the node with the greatest key and make it a parent of the right subtree.
Symmetrically, the node with the lowest key can be found in the right subtree and
made a parent of the left subtree.

The desired node is the rightmost node of the left subtree. It can be located by
moving along this subtree and taking right pointers until null is encountered. This
means that this node will not have a right child, and there is no danger of violat-
ing the property of binary search trees in the original tree by setting that rightmost
node’s right pointer to the right subtree. (The same could be done by setting the left
pointer of the leftmost node of the right subtree to the left subtree.) Figure 6.28 de-
picts this operation. Figure 6.29 contains the implementation of the algorithm.

It may appear that findAndDeleteByMerging() contains redundant code.
Instead of calling search() before invoking deleteByMerging(), findAnd-
DeleteByMerging() seems to forget about search() and searches for the node to
be deleted using its private code. But using search() in function findAndDelete-
ByMerging() is a treacherous simplification. search() returns a pointer to the
node containing el. In findAndDeleteByMerging(), it is important to have this
pointer stored specifically in one of the pointers of the node’s parent. In other words,
a caller to search() is satisfied if it can access the node from any direction, whereas
findAndDeleteByMerging() wants to access it from either its parent’s left or right
pointer data member. Otherwise, access to the entire subtree having this node as
its root would be lost. One reason for this is the fact that search() focuses on the

C8160_ch06_ptg01.indd 244 19/05/12 1:17 PM

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	 S e c t i o n 	 6 . 6 	 D e l e t i o n 	 	 ■	 	 245

Figure 6.28	 Summary	of	deleting	by	merging.

Delete node

node

node->left node ->right

Rightmost node
of the left subtree

Root

node->right

node->left

Root

Figure 6.29	 Implementation	of	an	algorithm	for	deleting	by	merging.

template<class T>
void BST<T>::deleteByMerging(BSTNode<T>*& node) {
 BSTNode<T> *tmp = node;
 if (node != 0) {
 if (!node->right) // node has no right child: its left
 node = node->left; // child (if any) is attached to its
 // parent;
 else if (node->left == 0) // node has no left child: its right
 node = node->right; // child is attached to its parent;
 else { // be ready for merging subtrees;
 tmp = node->left; // 1. move left
 while (tmp->right != 0)// 2. and then right as far as
 // possible;
 tmp = tmp->right;
 tmp->right = // 3. establish the link between
 node->right; // the rightmost node of the left
 // subtree and the right subtree;
 tmp = node; // 4.
 node = node->left; // 5.
 }
 delete tmp; // 6.
 }
}

Continues

C8160_ch06_ptg01.indd 245 19/05/12 1:17 PM

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

246	 	 ■	 	 C h a p t e r 	 6 	 B i n a r y 	 T r e e s

node’s key, and findAndDeleteByMerging() focuses on the node itself as an ele-
ment of a larger structure, namely, a tree.

Figure 6.30 shows each step of this operation. It shows what changes are made
when findAndDeleteByMerging() is executed. The numbers in this figure cor-
respond to numbers put in comments in the code in Figure 6.29.

The algorithm for deletion by merging may result in increasing the height of the
tree. In some cases, the new tree may be highly unbalanced, as Figure 6.31a illustrates.
Sometimes the height may be reduced (see Figure 6.31b). This algorithm is not neces-
sarily inefficient, but it is certainly far from perfect. There is a need for an algorithm that
does not give the tree the chance to increase its height when deleting one of its nodes.

6.6.2	 Deletion	by	Copying
Another solution, called deletion by copying, was proposed by Thomas Hibbard and
Donald Knuth. If the node has two children, the problem can be reduced to one of two
simple cases: the node is a leaf or the node has only one nonempty child. This can be
done by replacing the key being deleted with its immediate predecessor (or successor).
As already indicated in the algorithm deletion by merging, a key’s predecessor is the
key in the rightmost node in the left subtree (and analogically, its immediate successor
is the key in the leftmost node in the right subtree). First, the predecessor has to be

Figure 6.29	 (continued)

template<class T>
void BST<T>::findAndDeleteByMerging(const T& el) {
 BSTNode<T> *node = root, *prev = 0;
 while (node != 0) {
 if (node->el == el)
 break;
 prev = node;
 if (el < node->el)
 node = node->left;
 else node = node->right;
 }
 if (node != 0 && node->el == el)
 if (node == root)
 deleteByMerging(root);
 else if (prev->left == node)
 deleteByMerging(prev->left);
 else deleteByMerging(prev->right);
 else if (root != 0)
 cout << "element" << el << "is not in the tree\n";
 else cout << "the tree is empty\n";
}

C8160_ch06_ptg01.indd 246 19/05/12 1:17 PM

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	 S e c t i o n 	 6 . 6 	 D e l e t i o n 	 	 ■	 	 247

Figure 6.30	 Details	of	deleting	by	merging.

node

tmp

/*1*/

node node

/*2*/

node

tmp

/*4*/

node

tmp

/*5*/

node

/*6*/

/*3*/
tmp

tmp

Figure 6.31	 The	height	of	a	tree	can	be	(a)	extended	or	(b)	reduced	after	deleting	by	merging.

15

3010

5 402011

12

10

305

4 40207

15

3010

4020

(a)

(b)

10

5 11

30

20 40

12

Delete node 15

Delete node 15

5

74

C8160_ch06_ptg01.indd 247 19/05/12 1:17 PM

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

248	 	 ■	 	 C h a p t e r 	 6 	 B i n a r y 	 T r e e s

 located. This is done, again, by moving one step to the left by first reaching the root of
the node’s left subtree and then moving as far to the right as possible. Next, the key of
the located node replaces the key to be deleted. And that is where one of two simple
cases comes into play. If the rightmost node is a leaf, the first case applies; however, if
it has one child, the second case is relevant. In this way, deletion by copying removes
a key k1 by overwriting it by another key k2 and then removing the node that holds k2,
whereas deletion by merging consisted of removing a key k1 along with the node that
holds it.

To implement the algorithm, two functions can be used. One function,
deleteByCopying() , is illustrated in Figure 6.32. The second function,
findAndDeleteByCopying(), is just like findAndDeleteByMerging(), but it
calls deleteByCopying() instead of deleteByMerging(). A step-by-step trace
is shown in Figure 6.33, and the numbers under the diagrams refer to the numbers
indicated in comments included in the implementation of deleteByCopying().

Figure 6.32	 Implementation	of	an	algorithm	for	deleting	by	copying.

template<class T>
void BST<T>::deleteByCopying(BSTNode<T>*& node) {
 BSTNode<T> *previous, *tmp = node;
 if (node->right == 0) // node has no right child;
 node = node->left;
 else if (node->left == 0) // node has no left child;
 node = node->right;
 else {
 tmp = node->left; // node has both children;
 previous = node; // 1.
 while (tmp->right != 0) { // 2.
 previous = tmp;
 tmp = tmp->right;
 }
 node->el = tmp->el; // 3.
 if (previous == node)
 previous ->left = tmp->left;
 else previous ->right = tmp->left; // 4.
 }
 delete tmp; // 5.
}

This algorithm does not increase the height of the tree, but it still causes a prob-
lem if it is applied many times along with insertion. The algorithm is asymmetric;
it always deletes the node of the immediate predecessor of the key in node, possi-
bly reducing the height of the left subtree and leaving the right subtree unaffected.
Therefore, the right subtree of node can grow after later insertions, and if the key

C8160_ch06_ptg01.indd 248 19/05/12 1:17 PM

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	 S e c t i o n 	 6 . 6 	 D e l e t i o n 	 	 ■	 	 249

in node is again deleted, the height of the right tree remains the same. After many
insertions and deletions, the entire tree becomes right unbalanced, with the right
 subtree bushier and larger than the left subtree.

To circumvent this problem, a simple improvement can make the algorithm
symmetrical. The algorithm can alternately delete the predecessor of the key in node
from the left subtree and delete its successor from the right subtree. The improve-
ment is significant. Simulations performed by Jeffrey Eppinger show that an expected
internal path length for many insertions and asymmetric deletions is Θ(n lg3 n) for n
nodes, and when symmetric deletions are used, the expected IPL becomes Θ(n lg n).
Theoretical results obtained by J. Culberson confirm these conclusions. According to
Culberson, insertions and asymmetric deletions give Θ(n!n) for the expected IPL
and Θ(!n) for the average search time (average path length), whereas symmetric
deletions lead to Θ(lg n) for the average search time, and as before, Θ(n lg n) for the
average IPL.

These results may be of moderate importance for practical applications. Experi-
ments show that for a 2,048-node binary tree, only after 1.5 million insertions and
asymmetric deletions does the IPL become worse than in a randomly generated tree.

Theoretical results are only fragmentary because of the extraordinary complex-
ity of the problem. Arne Jonassen and Donald Knuth analyzed the problem of ran-
dom insertions and deletions for a tree of only three nodes, which required using
Bessel functions and bivariate integral equations, and the analysis turned out to rank
among “the more difficult of all exact analyses of algorithms that have been carried
out to date.” Therefore, the reliance on experimental results is not surprising.

Figure 6.33	 Deleting	by	copying.

tmp

/*1*/

node

previous

/*2*/

previoustmp

node

node

/*3*/

previoustmp

node

Copy el
from tmp
to node

/*4*/

previoustmp

node

/*5*/

previous

C8160_ch06_ptg01.indd 249 19/05/12 1:17 PM

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

