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	6.6	 Deletion

Deleting a node is another operation necessary to maintain a binary search tree. The level 
of complexity in performing the operation depends on the position of the node to be de-
leted in the tree. It is by far more difficult to delete a node having two subtrees than to 
delete a leaf; the complexity of the deletion algorithm is proportional to the number of 
children the node has. There are three cases of deleting a node from the binary search tree:

	 1. The node is a leaf; it has no children. This is the easiest case to deal with. The appropriate 
pointer of its parent is set to null and the node is disposed of by delete as in Figure 6.26.

Figure 6.25	 Inserting	nodes	into	a	threaded	tree.
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Figure 6.26	 Deleting	a	leaf.
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 2.	 The node has one child. This case is not complicated. The parent’s pointer to the node 
is reset to point to the node’s child. In this way, the node’s children are lifted up by one 
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level and all great-great-. . . grandchildren lose one “great” from their kinship designa-
tions. For example, the node containing 20 (see Figure 6.27) is deleted by setting the 
right pointer of its parent containing 15 to point to 20’s only child, which is 16.

Figure 6.27	 Deleting	a	node	with	one	child.
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	 3.	 The node has two children. In this case, no one-step operation can be performed 
because the parent’s right or left pointer cannot point to both the node’s children at 
the same time. This section discusses two different solutions to this problem.

6.6.1	 Deletion	by	Merging
This solution makes one tree out of the two subtrees of the node and then attaches 
it to the node’s parent. This technique is called deleting by merging. But how can we 
merge these subtrees? By the nature of binary search trees, every key of the right sub-
tree is greater than every key of the left subtree, so the best thing to do is to find in the 
left subtree the node with the greatest key and make it a parent of the right subtree. 
Symmetrically, the node with the lowest key can be found in the right subtree and 
made a parent of the left subtree.

The desired node is the rightmost node of the left subtree. It can be located by 
moving along this subtree and taking right pointers until null is encountered. This 
means that this node will not have a right child, and there is no danger of violat-
ing the property of binary search trees in the original tree by setting that rightmost 
node’s right pointer to the right subtree. (The same could be done by setting the left 
pointer of the leftmost node of the right subtree to the left subtree.) Figure 6.28 de-
picts this operation. Figure 6.29 contains the implementation of the algorithm.

It may appear that findAndDeleteByMerging() contains redundant code. 
Instead of calling search() before invoking deleteByMerging(), findAnd-
DeleteByMerging() seems to forget about search() and searches for the node to 
be deleted using its private code. But using search() in function findAndDelete-
ByMerging() is a treacherous simplification. search() returns a pointer to the 
node containing el. In findAndDeleteByMerging(), it is important to have this 
pointer stored specifically in one of the pointers of the node’s parent. In other words, 
a caller to search() is satisfied if it can access the node from any direction, whereas 
findAndDeleteByMerging() wants to access it from either its parent’s left or right 
pointer data member. Otherwise, access to the entire subtree having this node as 
its root would be lost. One reason for this is the fact that search() focuses on the 
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Figure 6.28	 Summary	of	deleting	by	merging.
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Figure 6.29	 Implementation	of	an	algorithm	for	deleting	by	merging.

template<class T>
void BST<T>::deleteByMerging(BSTNode<T>*& node) {   
    BSTNode<T> *tmp = node;
    if (node != 0) {
        if (!node->right)            // node has no right child: its left
             node = node->left;      // child (if any) is attached to its  
   // parent;
        else if (node->left == 0)    // node has no left child: its right
             node = node->right;     // child is attached to its parent;
        else {                       // be ready for merging subtrees;
             tmp = node->left;      // 1. move left
             while (tmp->right != 0)// 2. and then right as far as  
   // possible;
                tmp = tmp->right;
             tmp->right =           // 3. establish the link between 
                node->right;        //    the rightmost node of the left
                                    //    subtree and the right subtree;
             tmp = node;            // 4.
             node = node->left;     // 5.
        }
        delete tmp;                 // 6.
     }
}

Continues
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node’s key, and findAndDeleteByMerging() focuses on the node itself as an ele-
ment of a larger structure, namely, a tree.

Figure 6.30 shows each step of this operation. It shows what changes are made 
when findAndDeleteByMerging() is executed. The numbers in this figure cor-
respond to numbers put in comments in the code in Figure 6.29.

The algorithm for deletion by merging may result in increasing the height of the 
tree. In some cases, the new tree may be highly unbalanced, as Figure 6.31a illustrates. 
Sometimes the height may be reduced (see Figure 6.31b). This algorithm is not neces-
sarily inefficient, but it is certainly far from perfect. There is a need for an algorithm that 
does not give the tree the chance to increase its height when deleting one of its nodes.

6.6.2	 Deletion	by	Copying
Another solution, called deletion by copying, was proposed by Thomas Hibbard and 
Donald Knuth. If the node has two children, the problem can be reduced to one of two 
simple cases: the node is a leaf or the node has only one nonempty child. This can be 
done by replacing the key being deleted with its immediate predecessor (or successor). 
As already indicated in the algorithm deletion by merging, a key’s predecessor is the 
key in the rightmost node in the left subtree (and analogically, its immediate successor  
is the key in the leftmost node in the right subtree). First, the predecessor has to be 

Figure 6.29	 (continued)

template<class T>
void BST<T>::findAndDeleteByMerging(const T& el) {    
    BSTNode<T> *node = root, *prev = 0;
    while (node != 0) {
        if (node->el == el)
             break;
        prev = node;
        if (el < node->el)
             node = node->left;
        else node = node->right;
    }
    if (node != 0 && node->el == el)
         if (node == root)
              deleteByMerging(root);
         else if (prev->left == node)
              deleteByMerging(prev->left);
         else deleteByMerging(prev->right);
    else if (root != 0)
         cout << "element" << el << "is not in the tree\n";
    else cout << "the tree is empty\n";
}
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Figure 6.30	 Details	of	deleting	by	merging.
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Figure 6.31	 The	height	of	a	tree	can	be	(a)	extended	or	(b)	reduced	after	deleting	by	merging.
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 located. This is done, again, by moving one step to the left by first reaching the root of 
the node’s left subtree and then moving as far to the right as possible. Next, the key of 
the located node replaces the key to be deleted. And that is where one of two simple 
cases comes into play. If the rightmost node is a leaf, the first case applies; however, if 
it has one child, the second case is relevant. In this way, deletion by copying removes 
a key k1 by overwriting it by another key k2 and then removing the node that holds k2, 
whereas deletion by merging consisted of removing a key k1 along with the node that 
holds it.

To implement the algorithm, two functions can be used. One function,  
deleteByCopying() , is illustrated in Figure 6.32. The second function, 
findAndDeleteByCopying(), is just like findAndDeleteByMerging(), but it 
calls deleteByCopying() instead of deleteByMerging(). A step-by-step trace 
is shown in Figure 6.33, and the numbers under the diagrams refer to the numbers  
indicated in comments included in the implementation of deleteByCopying().

Figure 6.32	 Implementation	of	an	algorithm	for	deleting	by	copying.

template<class T>
void BST<T>::deleteByCopying(BSTNode<T>*& node) {    
    BSTNode<T> *previous, *tmp = node;
     if (node->right == 0)               // node has no right child;
          node = node->left;
     else if (node->left == 0)           // node has no left child;
          node = node->right;
     else {
          tmp = node->left;              // node has both children;
          previous = node;               // 1.
          while (tmp->right != 0) {      // 2.
              previous = tmp;
              tmp = tmp->right;
          }
          node->el = tmp->el;          // 3.
          if (previous == node)
               previous ->left  = tmp->left;
          else previous ->right = tmp->left;  // 4.
     }
     delete tmp;                              // 5.
}

This algorithm does not increase the height of the tree, but it still causes a prob-
lem if it is applied many times along with insertion. The algorithm is asymmetric;  
it always deletes the node of the immediate predecessor of the key in node, possi-
bly reducing the height of the left subtree and leaving the right subtree unaffected. 
Therefore, the right subtree of node can grow after later insertions, and if the key 
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in node is again deleted, the height of the right tree remains the same. After many 
insertions and deletions, the entire tree becomes right unbalanced, with the right 
 subtree bushier and larger than the left subtree.

To circumvent this problem, a simple improvement can make the algorithm 
symmetrical. The algorithm can alternately delete the predecessor of the key in node 
from the left subtree and delete its successor from the right subtree. The improve-
ment is significant. Simulations performed by Jeffrey Eppinger show that an  expected 
internal path length for many insertions and asymmetric deletions is Θ(n lg3 n) for n 
nodes, and when symmetric deletions are used, the expected IPL becomes Θ(n lg n). 
Theoretical results obtained by J. Culberson confirm these conclusions. According to 
Culberson, insertions and asymmetric deletions give Θ(n!n) for the expected IPL 
and Θ(!n) for the average search time (average path length), whereas symmetric 
deletions lead to Θ(lg n) for the average search time, and as before, Θ(n lg n) for the 
average IPL.

These results may be of moderate importance for practical applications. Experi-
ments show that for a 2,048-node binary tree, only after 1.5 million insertions and 
asymmetric deletions does the IPL become worse than in a randomly generated tree.

Theoretical results are only fragmentary because of the extraordinary complex-
ity of the problem. Arne Jonassen and Donald Knuth analyzed the problem of ran-
dom insertions and deletions for a tree of only three nodes, which required using 
Bessel functions and bivariate integral equations, and the analysis turned out to rank 
among “the more difficult of all exact analyses of algorithms that have been carried 
out to date.” Therefore, the reliance on experimental results is not surprising.

Figure 6.33	 Deleting	by	copying.
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