


Data Structures and
Algorithms in Python

Michael T. Goodrich
Department of Computer Science
University of California, Irvine

Roberto Tamassia
Department of Computer Science

Brown University

Michael H. Goldwasser
Department of Mathematics and Computer Science

Saint Louis University



VP & PUBLISHER Don Fowley
EXECUTIVE EDITOR Beth Lang Golub
EDITORIAL PROGRAM ASSISTANT Katherine Willis
MARKETING MANAGER Christopher Ruel
DESIGNER Kenji Ngieng
SENIOR PRODUCTION MANAGER Janis Soo
ASSOCIATE PRODUCTION MANAGER Joyce Poh

This book was set in LaTEX by the authors. Printed and bound by Courier Westford.
The cover was printed by Courier Westford.

This book is printed on acid free paper. 

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and understanding for 
more than 200 years, helping people around the world meet their needs and fulfi ll their aspirations. Our 
company is built on a foundation of principles that include responsibility to the communities we serve and 
where we live and work. In 2008, we launched a Corporate Citizenship Initiative, a global effort to address 
the environmental, social, economic, and ethical challenges we face in our business. Among the issues we are 
addressing are carbon impact, paper specifi cations and procurement, ethical conduct within our business and 
among our vendors, and community and charitable support. For more information, please visit our website: 
www.wiley.com/go/citizenship. 

Copyright © 2013 John Wiley & Sons, Inc. All rights reserved. No part of this publication may be 
reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, 
photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of 
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or 
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc. 222 
Rosewood Drive, Danvers, MA 01923, website www.copyright.com. Requests to the Publisher for permission 
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, 
NJ 07030-5774, (201)748-6011, fax (201)748-6008, website http://www.wiley.com/go/permissions.

 Evaluation copies are provided to qualifi ed academics and professionals for review purposes only, for use 
in their courses during the next academic year.  These copies are licensed and may not be sold or transferred 
to a third party. Upon completion of the review period, please return the evaluation copy to Wiley.  Return 
instructions and a free of charge return mailing label are available at www.wiley.com/go/returnlabel.  If you 
have chosen to adopt this textbook for use in your course, please accept this book as your complimentary desk 
copy. Outside of the United States, please contact your local sales representative. 

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1



466 Chapter 11. Search Trees

Deletion

Deleting an item from a binary search tree T is a bit more complex than inserting
a new item because the location of the deletion might be anywhere in the tree. (In
contrast, insertions are always enacted at the bottom of a path.) To delete an item
with key k, we begin by calling TreeSearch(T, T.root(), k) to find the position p
of T storing an item with key equal to k. If the search is successful, we distinguish
between two cases (of increasing difficulty):

• If p has at most one child, the deletion of the node at position p is easily
implemented. When introducing update methods for the LinkedBinaryTree
class in Section 8.3.1, we declared a nonpublic utility, delete(p), that deletes
a node at position p and replaces it with its child (if any), presuming that p has
at most one child. That is precisely the desired behavior. It removes the item
with key k from the map while maintaining all other ancestor-descendant
relationships in the tree, thereby assuring the upkeep of the binary search
tree property. (See Figure 11.5.)

• If position p has two children, we cannot simply remove the node from T
since this would create a “hole” and two orphaned children. Instead, we
proceed as follows (see Figure 11.6):

◦ We locate position r containing the item having the greatest key that is
strictly less than that of position p, that is, r = before(p) by the notation
of Section 11.1.1. Because p has two children, its predecessor is the
rightmost position of the left subtree of p.

◦ We use r’s item as a replacement for the one being deleted at position p.
Because r has the immediately preceding key in the map, any items in
p’s right subtree will have keys greater than r and any other items in p’s
left subtree will have keys less than r. Therefore, the binary search tree
property is satisfied after the replacement.

◦ Having used r’s as a replacement for p, we instead delete the node at
position r from the tree. Fortunately, since r was located as the right-
most position in a subtree, r does not have a right child. Therefore, its
deletion can be performed using the first (and simpler) approach.

As with searching and insertion, this algorithm for a deletion involves the
traversal of a single path downward from the root, possibly moving an item between
two positions of this path, and removing a node from that path and promoting its
child. Therefore, it executes in time O(h) where h is the height of the tree.



11.1. Binary Search Trees 467

r
328

28

29

54 93

68

65

76

82

p

44

17 88

80

97

r

288

54 93

68

65

76

82

44

17 88

80

29

97

(a) (b)

Figure 11.5: Deletion from the binary search tree of Figure 11.4b, where the item
to delete (with key 32) is stored at a position p with one child r : (a) before the
deletion; (b) after the deletion.

r
288

54 93

68

76

82

44

17 88

80

29

65

p

97
r

68

97288

54 9376

44

17 82

29

65

p

80

(a) (b)

Figure 11.6: Deletion from the binary search tree of Figure 11.5b, where the item
to delete (with key 88) is stored at a position p with two children, and replaced by
its predecessor r : (a) before the deletion; (b) after the deletion.


