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466 Chapter 11. Search Trees

Deletion

Deleting an item from a binary search tree T is a bit more complex than inserting
a new item because the location of the deletion might be anywhere in the tree. (In
contrast, insertions are always enacted at the bottom of a path.) To delete an item
with key k, we begin by calling TreeSearch(T, T.root(), k) to find the position p
of T storing an item with key equal to k. If the search is successful, we distinguish
between two cases (of increasing difficulty):

• If p has at most one child, the deletion of the node at position p is easily
implemented. When introducing update methods for the LinkedBinaryTree
class in Section 8.3.1, we declared a nonpublic utility, delete(p), that deletes
a node at position p and replaces it with its child (if any), presuming that p has
at most one child. That is precisely the desired behavior. It removes the item
with key k from the map while maintaining all other ancestor-descendant
relationships in the tree, thereby assuring the upkeep of the binary search
tree property. (See Figure 11.5.)

• If position p has two children, we cannot simply remove the node from T
since this would create a “hole” and two orphaned children. Instead, we
proceed as follows (see Figure 11.6):

◦ We locate position r containing the item having the greatest key that is
strictly less than that of position p, that is, r = before(p) by the notation
of Section 11.1.1. Because p has two children, its predecessor is the
rightmost position of the left subtree of p.

◦ We use r’s item as a replacement for the one being deleted at position p.
Because r has the immediately preceding key in the map, any items in
p’s right subtree will have keys greater than r and any other items in p’s
left subtree will have keys less than r. Therefore, the binary search tree
property is satisfied after the replacement.

◦ Having used r’s as a replacement for p, we instead delete the node at
position r from the tree. Fortunately, since r was located as the right-
most position in a subtree, r does not have a right child. Therefore, its
deletion can be performed using the first (and simpler) approach.

As with searching and insertion, this algorithm for a deletion involves the
traversal of a single path downward from the root, possibly moving an item between
two positions of this path, and removing a node from that path and promoting its
child. Therefore, it executes in time O(h) where h is the height of the tree.
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Figure 11.5: Deletion from the binary search tree of Figure 11.4b, where the item
to delete (with key 32) is stored at a position p with one child r : (a) before the
deletion; (b) after the deletion.
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Figure 11.6: Deletion from the binary search tree of Figure 11.5b, where the item
to delete (with key 88) is stored at a position p with two children, and replaced by
its predecessor r : (a) before the deletion; (b) after the deletion.


