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4.3 The Search Tree ADT—Binary Search Trees 139

will be insert(x,p->left) or insert(x,p->right). Either way, t is now a reference to either
p->left or p->right, meaning that p->left or p->right will be changed to point at the new
node. All in all, a slick maneuver.

4.3.4 remove
As is common with many data structures, the hardest operation is deletion. Once we have
found the node to be deleted, we need to consider several possibilities.

If the node is a leaf, it can be deleted immediately. If the node has one child, the node
can be deleted after its parent adjusts a link to bypass the node (we will draw the link
directions explicitly for clarity). See Figure 4.24.

The complicated case deals with a node with two children. The general strategy is to
replace the data of this node with the smallest data of the right subtree (which is easily
found) and recursively delete that node (which is now empty). Because the smallest node
in the right subtree cannot have a left child, the second remove is an easy one. Figure 4.25
shows an initial tree and the result of a deletion. The node to be deleted is the left child of
the root; the key value is 2. It is replaced with the smallest data in its right subtree (3), and
then that node is deleted as before.

The code in Figure 4.26 performs deletion. It is inefficient because it makes two passes
down the tree to find and delete the smallest node in the right subtree when this is appro-
priate. It is easy to remove this inefficiency by writing a special removeMin method, and we
have left it in only for simplicity.

If the number of deletions is expected to be small, then a popular strategy to use is
lazy deletion: When an element is to be deleted, it is left in the tree and merely marked
as being deleted. This is especially popular if duplicate items are present, because then the
data member that keeps count of the frequency of appearance can be decremented. If the
number of real nodes in the tree is the same as the number of “deleted” nodes, then the
depth of the tree is only expected to go up by a small constant (why?), so there is a very
small time penalty associated with lazy deletion. Also, if a deleted item is reinserted, the
overhead of allocating a new cell is avoided.
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Figure 4.24 Deletion of a node (4) with one child, before and after
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Figure 4.25 Deletion of a node (2) with two children, before and after

1 /**

2 * Internal method to remove from a subtree.

3 * x is the item to remove.

4 * t is the node that roots the subtree.

5 * Set the new root of the subtree.

6 */

7 void remove( const Comparable & x, BinaryNode * & t )

8 {

9 if( t == nullptr )

10 return; // Item not found; do nothing

11 if( x < t->element )

12 remove( x, t->left );

13 else if( t->element < x )

14 remove( x, t->right );

15 else if( t->left != nullptr && t->right != nullptr ) // Two children

16 {

17 t->element = findMin( t->right )->element;

18 remove( t->element, t->right );

19 }

20 else

21 {

22 BinaryNode *oldNode = t;

23 t = ( t->left != nullptr ) ? t->left : t->right;

24 delete oldNode;

25 }

26 }

Figure 4.26 Deletion routine for binary search trees


