
Fourth Edition

Data Structures
and Algorithm
Analysis in

C++
M a r k A l l e n We i s s

Florida International University

Boston Columbus Indianapolis New York San Francisco

Upper Saddle River Amsterdam Cape Town Dubai London

Madrid Milan Munich Paris Montreal Toronto Delhi

Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore

Taipei Tokyo

Editorial Director, ECS: Marcia Horton Cover Designer: Bruce Kenselaar

Executive Editor: Tracy Johnson Permissions Supervisor: Michael Joyce

Editorial Assistant: Jenah Blitz-Stoehr Permissions Administrator: Jenell Forschler

Director of Marketing: Christy Lesko Cover Image: c© De-kay | Dreamstime.com

Marketing Manager: Yez Alayan Media Project Manager: Renata Butera

Senior Marketing Coordinator: Kathryn Ferranti Full-Service Project Management: Integra Software

Marketing Assistant: Jon Bryant Services Pvt. Ltd.

Director of Production: Erin Gregg Composition: Integra Software Services Pvt. Ltd.

Senior Managing Editor: Scott Disanno Text and Cover Printer/Binder: Courier Westford

Senior Production Project Manager: Marilyn Lloyd

Manufacturing Buyer: Linda Sager

Art Director: Jayne Conte

Copyright c© 2014, 2006, 1999 Pearson Education, Inc., publishing as Addison-Wesley. All rights reserved.

Printed in the United States of America. This publication is protected by Copyright, and permission should be

obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission

in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain

permission(s) to use material from this work, please submit a written request to Pearson Education, Inc.,

Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request

to 201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks.

Where those designations appear in this book, and the publisher was aware of a trademark claim, the

designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Weiss, Mark Allen.

Data structures and algorithm analysis in C++ / Mark Allen Weiss, Florida International University. — Fourth

edition.

pages cm

ISBN-13: 978-0-13-284737-7 (alk. paper)

ISBN-10: 0-13-284737-X (alk. paper)

1. C++ (Computer program language) 2. Data structures (Computer science) 3. Computer algorithms. I. Title.

QA76.73.C153W46 2014

005.7′3—dc23

2013011064

10 9 8 7 6 5 4 3 2 1

www.pearsonhighered.com

ISBN-10: 0-13-284737-X

ISBN-13: 978-0-13-284737-7

4.3 The Search Tree ADT—Binary Search Trees 139

will be insert(x,p->left) or insert(x,p->right). Either way, t is now a reference to either
p->left or p->right, meaning that p->left or p->right will be changed to point at the new
node. All in all, a slick maneuver.

4.3.4 remove
As is common with many data structures, the hardest operation is deletion. Once we have
found the node to be deleted, we need to consider several possibilities.

If the node is a leaf, it can be deleted immediately. If the node has one child, the node
can be deleted after its parent adjusts a link to bypass the node (we will draw the link
directions explicitly for clarity). See Figure 4.24.

The complicated case deals with a node with two children. The general strategy is to
replace the data of this node with the smallest data of the right subtree (which is easily
found) and recursively delete that node (which is now empty). Because the smallest node
in the right subtree cannot have a left child, the second remove is an easy one. Figure 4.25
shows an initial tree and the result of a deletion. The node to be deleted is the left child of
the root; the key value is 2. It is replaced with the smallest data in its right subtree (3), and
then that node is deleted as before.

The code in Figure 4.26 performs deletion. It is inefficient because it makes two passes
down the tree to find and delete the smallest node in the right subtree when this is appro-
priate. It is easy to remove this inefficiency by writing a special removeMin method, and we
have left it in only for simplicity.

If the number of deletions is expected to be small, then a popular strategy to use is
lazy deletion: When an element is to be deleted, it is left in the tree and merely marked
as being deleted. This is especially popular if duplicate items are present, because then the
data member that keeps count of the frequency of appearance can be decremented. If the
number of real nodes in the tree is the same as the number of “deleted” nodes, then the
depth of the tree is only expected to go up by a small constant (why?), so there is a very
small time penalty associated with lazy deletion. Also, if a deleted item is reinserted, the
overhead of allocating a new cell is avoided.

6

2 8

1 4

3

6

2 8

1 4

3

Figure 4.24 Deletion of a node (4) with one child, before and after

140 Chapter 4 Trees

6

2 8

1 5

3

 4

6

3 8

1 5

3

4

Figure 4.25 Deletion of a node (2) with two children, before and after

1 /**

2 * Internal method to remove from a subtree.

3 * x is the item to remove.

4 * t is the node that roots the subtree.

5 * Set the new root of the subtree.

6 */

7 void remove(const Comparable & x, BinaryNode * & t)

8 {

9 if(t == nullptr)

10 return; // Item not found; do nothing

11 if(x < t->element)

12 remove(x, t->left);

13 else if(t->element < x)

14 remove(x, t->right);

15 else if(t->left != nullptr && t->right != nullptr) // Two children

16 {

17 t->element = findMin(t->right)->element;

18 remove(t->element, t->right);

19 }

20 else

21 {

22 BinaryNode *oldNode = t;

23 t = (t->left != nullptr) ? t->left : t->right;

24 delete oldNode;

25 }

26 }

Figure 4.26 Deletion routine for binary search trees

