
RRB Vector: A Practical General Purpose Immutable Sequence

Nicolas Stucki† Tiark Rompf ‡ Vlad Ureche† Phil Bagwell ∗
†EPFL, Switzerland: {first.last}@epfl.ch
‡Purdue University, USA: {first}@purdue.edu

Abstract
State-of-the-art immutable collections have wildly differing per-
formance characteristics across their operations, often forcing pro-
grammers to choose different collection implementations for each
task. Thus, changes to the program can invalidate the choice of
collections, making code evolution costly. It would be desirable to
have a collection that performs well for a broad range of operations.

To this end, we present the RRB-Vector, an immutable se-
quence collection that offers good performance across a large num-
ber of sequential and parallel operations. The underlying innova-
tions are: (1) the Relaxed-Radix-Balanced (RRB) tree structure,
which allows efficient structural reorganization, and (2) an opti-
mization that exploits spatio-temporal locality on the RRB data
structure in order to offset the cost of traversing the tree.

In our benchmarks, the RRB-Vector speedup for parallel opera-
tions is lower bounded by 7×when executing on 4 CPUs of 8 cores
each. The performance for discrete operations, such as appending
on either end, or updating and removing elements, is consistently
good and compares favorably to the most important immutable se-
quence collections in the literature and in use today. The memory
footprint of RRB-Vector is on par with arrays and an order of mag-
nitude less than competing collections.

Categories and Subject Descriptors E.1 [Data Structures]: Ar-
rays; E.1 [Data Structures]: Trees; E.1 [Data Structures]: Lists,
stacks, and queues

Keywords Data Structures, Immutable, Sequences, Arrays,
Trees, Vectors, Radix-Balanced, Relaxed-Radix-Balanced

1. Introduction
In functional programs, immutable sequence data structures are
used in two distinct ways:

• to perform discrete operations, such as accessing, updating,
inserting or deleting random collection elements;
• for bulk operations, such as mapping a function over the entire

collection, filtering using a predicate or grouping using a key
function.

∗ Phil Bagwell passed away on October 6, 2012. He made significant con-
tributions to this work, and to the field of data structures in general.

Bulk operations on immutable collections lend themselves to
implicit parallelization. This allows the execution to proceed either
sequentially, by traversing the collection one element at a time, or
in parallel, by delegating parts of the collection to be traversed
in different execution contexts and combining the intermediate
results. Therefore, the bulk operations allow programs to scale
to multiple cores without explicit coordination, thus lowering the
burden on programmers.

Most state-of-the-art collection implementations are tailored to
some specific operations, which are executed very fast, at the ex-
pense of the others, which are slow. For example, the ubiquitous
Cons list is extremely efficient for prepending elements and access-
ing the head of the list, performing both operations in O(1) time.
However, it has a linearO(n) cost for reading and updating random
elements. And although sequential scanning is efficient, requiring
O(1) time per element, it cannot benefit from parallel execution,
since both splitting and combining take sequentialO(n) time, can-
celling out any gains from the parallel execution.

This non-uniform behavior across different operations forces
programmers to carefully choose the collections they use based on
the operations required by the task at hand. This ad-hoc choice also
stifles code evolution, as new features often rely on different opera-
tions, forcing the programmers to revisit their choice of collections.
Furthermore, having different collection choices for each module
prevents good end-to-end performance, since data must be passed
from one collection to another, adding overhead.

Instead of asking programmers to choose a collection which
performs well for their needs, it would be much better to provide
a default collection that performs well across a broad range of
operations, both discrete and bulk. Having such a collection readily
available would allow programmers to rely on it without worrying
about performance, except in extremely critical places, and would
encourage modules to standardize their interfaces around it.

To this end, we present the RRB-Vector, an immutable indexed
sequence collection that inherits and improves the fast discrete op-
erations of tree-based structures while supporting efficient paral-
lel execution by providing fast split and combine primitives. The
RRB-Vector is a good candidate for a default immutable collec-
tion, thanks to its good all-around performance, allowing programs
to use it without the risk of running into unexpected linear or supra-
linear overheads.

Bulk data parallel operations on the RRB-Vector are executed
with effectively-constant1 sequential overheads thanks to the under-
lying wide Relaxed-Radix-Balanced (RRB) tree structure. The key
property is the relaxed balancing requirement, which allows effi-
cient structural changes without introducing extremely unbalanced
states. Data parallel operations, such as map, are executed in three
phases: (1) the RRB-Vector is split into chunks in an effectively-

1 Proportional to a logarithm of the size with a large base. In practice our
choice of index representation as signed integer limits to log32(231) + 1
which corresponds to approximately 6.2 indirections.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ICFP’15, August 31 – September 2, 2015, Vancouver, BC, Canada
ACM. 978-1-4503-3669-7/15/08...$15.00
http://dx.doi.org/10.1145/2784731.2784739

342

constant sequential operation, (2) each execution context traverses
one or more chunks, with an amortized-constant overhead per el-
ement and (3) the intermediate results are concatenated in a final
effectively-constant sequential operation.

Discrete operations, such as appends on either side, updates
and deletions are performed in amortized-constant time. This is
achieved thanks to a lightweight fragmented representation of the
tree that reduces the propagation of updates to branches, thus ex-
ploiting locality of operations. This provides an adapted and more
efficient treatment compared to the widely-used tree structural shar-
ing [11], thus lowering the asymptotic complexity from effectively
constant to amortized constant. In the worst case, if operations are
called in an adversarial manner, the behavior remains effectively
constant and the additional overhead is limited to a range check
and a single set of assignment operations.

We implemented the RRB-Vector data structure in Scala2 and
measured the performance of its most important operations. On 4
cores, bulk operation performance is at least 2.3× faster compared
to sequential execution, scaling better with heavier workloads. Dis-
crete operations take either amortized- or effective-constant time,
with good constants: compared to mutable arrays, sequential reads
are at most 2× slower, while random access is 2-3.5× slower.

We compare our RRB-Vector implementation to other im-
mutable collections such as red-black trees, finger trees, copy-on-
write arrays and the current Vector implementation in the Scala
library. Overall, the RRB-Vector is at most 2.5× slower than
the best collection for each operation and consistently delivers
good performance across all benchmarks. The memory footprint
of RRB-Vector is on-par with copy-on-write arrays and an order
of magnitude better than red-black trees and finger trees.

We claim the following contributions:

• We present the Relaxed-Radix-Balanced (RRB) tree data struc-
ture and show how it enables the efficient splitting and concate-
nation operations necessary for data parallel operations (§3);
• We describe the additional structural optimizations that exploit

spatio-temporal locality on RRB-Trees (§4);
• We discuss the technical details of our Scala RRB-Vector im-

plementation (which is under consideration for inclusion in the
Scala standard library as a replacement for the current Vector
collection) in hope that other language implementers will ben-
efit from our experience (§5);
• We evaluate the performance of our implementation and com-

pare the results of 7 different core operations across 5 different
immutable collections (§6).

2. Background: Vectors as Balanced Trees
In this section we present a base version of the immutable Vector,
which is based on Radix-Balanced trees3. This simple version pro-
vides logarithmic complexities: O(logm(n)) on random accesses
and O(m · logm(n)) while updating, appending at either end, or
splitting. The constant m is the branching factor (ideally a power
of two).

2.1 Radix-Balanced Tree Structure
A Radix-Balanced tree is a shallow and complete (or perfect) m-ary
tree located only in the leaves. The nodes have a fixed branching
size m, and are either internal nodes linking to sub-trees or leaves
containing elements. In practice the branching used is 32 [4, 37],
but as we will later see, the node size can be any power of 2,
allowing efficient radix-based implementations. Figure 1 shows

2 https://github.com/nicolasstucki/scala-rrb-vector
3 Base structure for Relaxed-Radix-Balanced Vector.

0 1 … m-1

0 1 … m-1 0 1 … m-1

0 1 … m-1

0 1 … m-1

0 1 … m-1 0 1 … m-1 0 1 … m-1 0 1 … m-1

Figure 1. Radix-Balanced tree structure

this structure for m children on each node. Logically each node
is a copy-on-write array that contains subtrees or elements.

Apart from the tree itself, a Vector keeps the tree height as
a field, in order to improve performance. This height is upper
bounded by logm(n−1)+1 for nodes of m branches. For example,
if m is 32, the tree becomes quite shallow and the complexity to
traverse it from root to leaf is considered as effectively constant4

when taking into account that the number of elements will never
be larger than the maximum index representable with 32 bit signed
integers, which corresponds to a maximum height of 7 levels5.

Usually the number of elements in a Vector does not exactly
match a full tree (mi for some i > 0). To mark the start and end
of the elements in the tree, the vector keeps these indices as fields.
All subtrees on the left and right that are outside of the filled index
range are represented by empty references.

2.2 Core Operations
Indexing Elements are fetched from the tree using radix search

on the index. If the tree has a branching factor of 32, the index can
be split bitwise in blocks of 5 (25 = 32) and used to know the path
that must be taken from the root down to the element. The indices
at each level L can be computed with (index >> (5 ·L))&31. For
example the index 526843 would be:

526843 = 00 00000
0

00000
0

10000
16

00010
2

01111
15

11011
27

0 … 16 … 31

0 … 27 … 31

0 … 31

0 1 2 … 31

0 … 15 … 31

Figure 2. Accessing element at index 526843 in a tree of depth 5.
Empty nodes represent collapsed subtrees.

This scheme can be generalized to any branching size m where
m = 2i for 0 < i ≤ 31. The formula is:

(index >> (i · L))&(m− 1)

It is also possible to generalize for other values of m using the
modulo, division and power operations. In that case the formula
would become (index/(mL)) mod m.

The base implementation of the indexing operation requires a
single traversal from the root to the leaf containing the element,
with the path taken defined by the index of the element and ex-
tracted using efficient bitwise operations. With this traversal of the
tree, the complexity of the operation is O(logm(n)).

The same radix-based traversal of the tree is used in the rest of
the operations to find the leaf corresponding to a given index. It can
be optimized for the first and last leaf by removing computations to
improve performance on operations on the ends.

4 There exists a small enough constant bound (due to practical limitations).
5 Maximum height of log32(231) + 1, which is 6.2.

343

1 type Node = Array[AnyRef]
2 val Node = Array

1 val i = // bits in blocks of the index
2 val mask = (1 << i) - 1
3 def get(index: Int): A = {
4 def getRadix(idx: Int, nd: Node, level: Int): A = {
5 if (depth == 0) nd(idx & mask)
6 else {
7 val indexInLevel = (idx >> (level * i)) & mask
8 getRadix(idx, nd(indexInLevel), level-1)
9 }

10 }
11 getRadix(index, vectorRoot, vectorDepth)
12 }

Updating Since the structure is immutable, the updated
operation has to recreate the entire path from the root to the element
being updated. The leaf update creates a fresh copy of the leaf
array with one updated element. Then, the parent of the leaf is also
updated with the reference to the new leaf, then the parent’s parent,
and so on all the way up to the root.

1 def updated(index: Int, elem: A) = {
2 def updatedNode(node: Node, level: Int): Node = {
3 val indexInNode = // compute index
4 val newNode = copy(node)
5 if(level == 0) {
6 newNode(indexInNode) = elem
7 } else {
8 newNode(indexInNode) =

updatedNode(node(indexInNode), level-1)
9 }

10 newNode
11 }
12 new Vector(updatedNode(vectorRoot, vectorDepth),

...)
13 }

Therefore the complexity of this operation is O(m · logm(n)),
since it traverses and recreates O(logm(n)) nodes of size O(m).
For example, if some leaf has all its elements updated from left to
right, the branch will be copied as many times as there are updates.
We will later explain how this can be optimized by allowing tran-
sient states that avoid re-creating the path to the root tree node with
each update (described in §4).

Appending front and back The implementation of appended
front/back has two cases, depending on the current state of the
Radix-Balanced tree: If the first/last leaf is not full the element is
inserted directly and all nodes of the first/last branch are copied.
If the leaf is full we must find the lowest node in the last branch
where there is still room left for a new branch. Then a new branch
that only contains the new element is appended to it.

In both cases the new vector object will have the start/end index
decreased/increased by one. When the root is full, the depth of the
vector will also increase by one.

1 val m = // branching factor
2 def appended(elem: A, whr: Where): Vector[A] = {
3 def appended(node: Node, level: Int) = {
4 val indexInNode = // compute index based on

start/end index
5 if (level == 1)
6 copyAndUpdate(node, indexInNode, elem)
7 else
8 copyAndUpdate(node, indexInNode,
9 appended(node(indexInNode), level-1))

10 }
11 def newBranch(depth: Int): Node = {
12 val newNode = Node.ofDim(m)
13 val idx = whr match {
14 case Frt => m-1
15 case Bck => 0
16 }

17 newNode(idx) =
18 if (depth == 1) elem
19 else newBranch(depth-1)
20 newNode
21 }
22 if (needNewRoot()) {
23 val newRoot = whr match {
24 case Frt => Node(newBranch(depth), root)
25 case Bck => Node(root, newBranch(depth))
26 }
27 new Vector(newRoot, depth+1, ...)
28 } else {
29 new Vector(appendedFront(root, depth), depth, ...)
30 }
31 }

In the code above, isTreeFull and needNewRoot are op-
erations that compute the answer using efficient bitwise operations
on the start/end index of the vector.

Since the algorithm traverses and creates new nodes from the
root to a leaf, the complexity of the operation is O(m · logm(n)).
Like the updated operation, it can be optimized by keeping tran-
sient states of the immutable vector (described in §4).

Splitting The core operations to remove elements in a Radix-
Balanced tree are the take and drop operations. They are used to
implement many other operations such as splitAt, tail, init
and others.

The take and drop operations are similar. The first step is
traversing the tree down to the leaf where the cut will be done.
Then the branch is copied and cleared on one side. The tree may
become shallower during this operation, in which case some of the
nodes on the top will be dropped instead of being copied. Finally,
the start and end are adjusted according to the changes on the tree.

1 def take(index) = split(index, Right)
2 def drop(index) = split(index, Left)
3 def split(index: Int, removeSide: Side) = {
4 def splitRec(node: Node, level: Int): (Node, Int) =

{
5 val indexInNode = // compute index
6 if (level == 0) {
7 (copyAndSplitNode(node, indexInNode,

removeSide), 1)
8 } else removeSide match {
9 case Left if indexInNode == node.length - 1 =>

10 splitedRec(node(indexInNode), level - 1)
11 case Right if indexInNode == 0 =>
12 splitedRec(node(indexInNode), level - 1)
13 case _ =>
14 val newNode = copyAndSplitNode(node,

indexInNode, removeSide)
15 val (newSubnode, depth) =

splitedRec(node(indexInNode), level-1)
16 newNode(indexInNode) = newSubnode
17 (newNode, level)
18 }
19 }
20 val (newRoot, newDepth) = splitRec(vectorRoot,

vectorDepth)
21 new Vector(newRoot, newDepth, ...)
22 }

The computational complexity of any split operation is O(m ·
logm(n)) due to the traversal and copying of nodes on the branch
where the cut index is located. O(logm(n)) for the traversal of
the branch and then O(m · logm(n2)) for the creation of the new
branch, where n2 is the size of the new vector (with 0 ≤ n2 < n).

3. Immutable Vectors as Relaxed Radix Trees
Relaxed-Radix-Balanced vectors use a new tree structure that ex-
tends the Radix-Balanced trees to allow fast concatenation of vec-
tors without losing performance on other core operations [4]. Re-
laxing the vector consists in using a slightly unbalanced extension
of the tree that combines balanced subparts. This vector still en-

344

sures the logm(n) bound on the height of the tree and on the oper-
ations presented in the previous section.

3.1 Relaxed-Radix-Balanced Tree Structure
The basic difference in the structure is that in an Relaxed-Radix-
Balanced (or RRB) tree, we allow nodes that contain subtrees that
are not completely full. As a consequence, the start and end index
are no longer required, as the branches on the ends can be truncated.
The structure of the RRB trees does not ensure by itself that the tree
height is bounded by logm(n). This bound is maintained by each
operation using an additional invariant on the tree balance. In our
case the concatenation operation is the only one that can affect the
inner structure (excluding ends) of the tree and as such it is the only
one that needs to worry about this invariant.

Tree balance As the tree will not always be perfectly balanced,
we define an additional invariant on the tree that will ensure an
equivalent logarithmic bound on the height. We use the relation
between the maximum and minimum branching factor mmax and
mmin at each level. These give corresponding maximum height
hmax and least height hmin needed to represent a given number of
elements n. Then hmin = logmmax(n) and hmax = logmmin(n)
or as hmin = 1

lg(mmax)
·lg(n) and hmax = 1

lg(mmin)
·lg(n). Trees

that are better balanced will have a height ratio, hr = lg(mmin)
lg(mmax)

,
that is closer to 1, perfect balance. In our tree we use mmax =
mmin + 1 to make hr as close to 1 as possible. In practice (using
m = 32) in the worst case scenario there is an increase from around
6.2 to 6.26 in the maximum possible height (i.e. 7 levels in both
cases).

Sizes metadata When one of these trees (or subtrees) is
unbalanced, it is no longer possible to know the location of an
index just by applying radix manipulation on it. To avoid losing
the performance of traversing down the tree in such cases, each
unbalanced node will keep metadata on the sizes of its subtrees. The
sizes are kept in a separate6 copy-on-write array as accumulated
sizes. This way, they represent the location of the ranges of the
indices in the current subtree. To avoid creating additional objects
in memory, these sizes are attached at the end of the node. To have a
homogeneous representation of nodes, the balanced subtrees have
an empty reference attached at the end. For leaves, however, we
make an exception: since they will always be balanced, they only
contain the data elements but not the size metadata.

0 1 … m-1 m

0 1 … m-1 0 1 … m-1

0 1 … m-1 m

0 1 … m-1 m

0 1 … m-1

0 1 … m-1

0 1 … m-1 0 1 … m-1 0 1 … m-1

Figure 3. Relaxed radix balanced tree structure

3.2 Relaxed Core Operations
Algorithms for the relaxed version assume that the tree is unbal-
anced and use a relaxed version of the code for Radix-Balanced
trees. But, as soon as a balanced subtree is encountered the more
efficient radix based algorithm is used. We also favor the creation
of balanced trees/subtrees when possible to improve performance
on subsequent operations.

Indexing When the tree is relaxed it is not possible to com-
pute the sub-indices directly from the index. By keeping the accu-
mulated sizes in the node the computation of sub-indices becomes
trivial. The sub-index is the same as the first index in the sizes array

6 To be able to share them across different vectors. This is a common case
when using updated.

where index < sizes[subIndex]. The fastest way to find it is by
using binary search to reduce the search space and when it is small
enough to take advantage of cache lines and switch to linear search.

1 def getBranchIndex(sizes: Array[Int], indexInTree:
Int): Int = {

2 var (lo, hi) = (0, sizes.length)
3 while (linearThreshold < hi - lo) {
4 val mid = (hi + lo) / 2
5 if (sizes(mid) <= indexInTree) lo = mid
6 else hi = mid
7 }
8 while (sizes(lo) <= indexInTree) lo += 1
9 lo

10 }

Note that to traverse the tree down to the leaf where the index
is located, the sub-indices are computed from the sizes as long
as the tree node is unbalanced. If the node is balanced, then the
more efficient radix based method is used from there to the leaf,
to avoid accessing the additional array in each level. In the worst
case the complexity of indexing will becomeO(log2(m)·logm(n))
where log2(m) is a constant factor that is only added on unbalanced
nodes.
1 def get(index: Int): A = {
2 def getRadix(idx, Int, node: Node, depth: Int) = ...
3 def get(idx: Int, node: Node, depth: Int) = {
4 val sizes = // get sizes from node
5 if(isUnbalanced(sizes)) {
6 val branchIdx = getBranchIndex(sizes, idx)
7 val subIdx = indexInTree-sizes(branchIdx)
8 get(subIdx, node(branchIdx), depth-1)
9 } else getRadix(idx, node, depth)

10 }
11 get(index, root, depth)
12 }

Updating and Appending For each one of these operations,
the only fundamental difference with the Radix-Balanced tree is
that when a node of a branch is updated the sizes must be updated
with it (if needed). In the case of updating, the structure does not
change and as such it always keeps the same sizes object reference.
The traversal down the tree is done using the new abstraction used
in the relaxed version of indexing.

In the case of appending to the back, an updated unbalanced
node must increment the accumulated size of its last subtree by
one. When a new branch is appended, a new size is appended to the
sizes. The newBranch operation is simplified by using truncated
nodes and letting the node on which it gets appended handle any
index shifting required.

1 def appended(elem: A, whr: Where): Vector[A] = {
2 ...
3 def newBranch(depth: Int): Node = {
4 val newNode = Node.ofDim(1)
5 newNode(0) = if (depth == 1) elem else

newBranch(depth-1)
6 newNode
7 }
8 ...
9 }

In the case of appending front, an updated node must increment
the accumulated size of each subtrees by one. When a new branch
is appended, a 1 is appended on the front of the sizes and all other
accumulated sizes are incremented by one.

The complexity of these operations is still O(m · logm(n)),
log2(m) · logm(n) for the traversal plus m · logm(n) for the branch
update or creation.

Splitting While splitting, the traversal down the tree is done
using the relaxed version of indexing. The splitting operation just
truncates the node on the left/right. In addition, when encountering
an unbalanced node, the sizes are truncated and adjusted. The

345

complexity of this operation is still O(m · logm(n)), log2(m) ·
logm(n) for the traversal plus m · logm(n) for the branch update.

3.3 Concatenation
The concatenation algorithm used on RRB-Vectors is a slightly
modified version of the one proposed in the RRB-Trees technical
report [4]. This version favors nodes of size m over m− 1 making
the trees more balanced. With this approach, we sacrifice a bit of
performance for concatenations but we gain performance on all
other operations: better balancing implies higher chance of using
fast radix operations on the trees.

From a high level, the algorithm merges the rightmost branch
of the vector on the LHS with the leftmost branch of the vector on
the RHS. While merging the nodes, each of them is rebalanced in
order to ensure the O(logm(n)) bound on the height of the tree
and avoid the degeneration of the structure. The RRB version of
concatenation has a time complexity ofO(m2 · logm(n)) where m
is constant.

1 def concatenate(left: Vector[A], right: Vector[A]) =
{

2 val newTree = mergedTrees(left.root, right.root)
3 val maxDepth = max(left.depth, right.depth)
4 if (newTree.hasSingleBranch)
5 new Vector(newTree.head, maxDepth)
6 else
7 new Vector(newTree, maxDepth+1)
8 }
9 def mergedTrees(left: Node, right: Node, depth: Int)

= {
10 if (depth==1) {
11 mergedLeaves(left, right)
12 } else {
13 val merged =
14 if (depth==2) mergedLeaves(left.last,

right.first)
15 else mergedTrees(left.last, right.first, depth-1)
16 mergeRebalance(left.init, merged, right.tail)
17 }
18 }
19 def mergedLeaves(left: Node, right: Node) = {
20 // create a balanced new tree of height 2
21 // with all elements in the nodes
22 }

The concatenation operation starts at the bottom of the branches
by merging the leaves into a balanced tree of height 2 using
mergedLeaves. Then, for each level on top of it, the newly
created merged subtree and the remaining branches on that level
will be merged and rebalanced into a new subtree. This new sub-
tree always adds a new level to the tree, even though it might get
dropped later. New sizes of nodes are computed each time a node
is created based on sizes of children nodes.

Figure 4. Concatenation example: Rebalancing level 0

Figure 5. Concatenation example: Rebalancing level 1

The rebalancing algorithm has two proposed variants. The first
consists of completely rebalancing the nodes on the two top levels
of the subtree. The second also rebalances the top two level of
the subtree but it only rebalances the minimum amount of nodes

that ensures the logarithmic bound. The first one leaves the tree
better balanced, while the second is faster. As we aim to have
good performance on all operations we use the first variant7. The
following snippet of code shows a high level implementation for
this first variant. Details for the second variant can be found in [4]
in case that concatenation is prioritized over all other operations.

1 def mergeRebalance(left: Node, center: Node, right:
Node) = {

2 // join all branches
3 val merged = left ++ centre ++ right
4 var newRoot = new ArrayBuilder
5 var newSubtree = new ArrayBuilder
6 var newNode = new ArrayBuilder
7 def checkSubtree() = {
8 if(newSubtree.length == m) {
9 newRoot += computeSizes(newSubtree.result())

10 newSubtree.clear()
11 }
12 }
13 for (subtree <- merged; node <-subtree) {
14 if(newNode.length == m) {
15 checkSubtree()
16 newSubtree += computeSizes(newNode.result())
17 newNode.clear()
18 }
19 newNode += node
20 }
21 checkSubtree()
22 newSubtree += computeSizes(newNode.result())
23 computeSizes(newRoot.result)
24 }

Figures 4, 5, 6 and 7 show a concrete step by step (level by
level) example of the concatenation of two vectors. In the example,
some of the subtrees were collapsed. This is not only to make the
diagrams fit, but also to expose only the nodes that are referenced
during the execution of the algorithm. Nodes with colors represent
new nodes and changes, to help track them from figure to figure.

Figure 6. Concatenation example: Rebalancing level 2

Figure 7. Concatenation example: Rebalancing level 3

The concatenation algorithm chosen for the RRB Vector is the
one that is slower but that is better at rebalancing. The reason be-
hind this decision is that with better balanced trees all other oper-
ations on the trees are more efficient. In fact, choosing the least
efficient option does not need to be seen as a reduction in per-
formance, because the improvement is in relation to the Relaxed-
Balanced tree concatenation of linear complexity. An interesting
consequence of this choice is that all trees (or subtrees) of size at
most m2 (the maximum size of a two level RRB tree) that were
created by concatenation will be completely balanced.

It is important to have a smart rebalancing implementation, due
to the m2 elements that can possibly be accessed. The first crucial
factor is the speed of copying the nodes. With an implementation
that takes advantage of spatial locality by using arrays (§5.2), the
amount of work required can be reduced to m fast node copies

7 Performance of operations using the second variant was analyzed in [37].

346

rather than m2 element copies. Another crucial but obvious imple-
mentation detail is to never duplicate a node if it does not change.
This requires a small amount of additional logic and comes with a
benefit on memory used and in good cases can reduce the number
of node copies required, potentially reducing the effective work to
o(m ∗ logm(n)) if there is a good alignment.

When improving the vector on locality (§4), concatenating a
small vector using the concatenation algorithm is less efficient than
appending directly on the other tree. That case is identified by a
simple bound on the lengths, and then all elements from the smaller
vector are appended to the larger one.

Other Operations Having efficient concatenation and spitting
allows us to also implement several other operations that change
the structure of the tree. Some of there operations are: inserting an
element/vector in any position, deleting an element/subrange of the
vector and patching/replacing part of the vector. The complexity
of these operations are bounded by the complexity of the core
operations used.

Parallelizing the Vector To parallelize operations we use the
fork-join pool model from Java [18, 31]. In this model process-
ing is achieved by splitting the work into smaller parts until they
are deemed small enough to ensure good parallelism. This can be
achieved using the efficient splitting of the RRB-Tree. For certain
operations, like map, filter and reduce, the results obtained in
parallel must be aggregated, such as concatenating the partial vec-
tors produced by the parallel workers. The aggregation can oc-
cur in several steps, where partial results from different workers
are aggregated in parallel, recursively, until a single result is pro-
duced. The overhead associated with the distribution of work is
O(m2 · logm(n)).

4. Improvements on Operation Locality and
Amortization of Costs

In this section we present different approaches aimed at improving
the performance using explicit caching on the subtrees in a branch.
This is a new generalization of the Clojure [15] (and current Scala)
optimizations on their Radix-Balanced vectors. All optimizations
we describe rely on the vector object keeping a set of fields that
track the entire branch of the tree, from the root to a leaf. Figure 4
shows such an RRB-vector with the levels numbered starting from
0 at the bottom. The explicit caches focus on the nodes reaching
from the root to the tree0 leaf.

tree0

tree2

tree1

Figure 8. Branch trees in cache.

To know on which branch the vector is focused there is also a
focus index field. It can be the index of any element in the cur-
rent tree0. To follow the simple implementations scheme of im-
mutable objects in concurrent contexts, the focus is also immutable.
Therefore each vector object will have a single focused branch dur-
ing its existence. Each method that creates a new vector must de-
cide which focus to set.

These optimizations depend heavily on the radix operations for
efficiency. To avoid losing these completely on unbalanced RRB
trees we will only use these operation on a balanced subtree of the
branch. The vector will keep extra meta data on the start and end
index of this subtree as well as its height. In the case of a balanced

RRB tree this covers the entire tree and will effectively only use the
more efficient radix based operations.

4.1 Faster Access
One of the uses of the focused branch is as a direct access to
a cached branch. If the same leaf node is used in the following
operation, there is no need for vertical tree traversal which is key to
amortize operation to constant time. In the case another branch is
needed, it can be fetched from the lowest common node of the two
branches.

To know which is the level of the lowest common node in a
vector of branching size m (where m = 2i and i is the number
of bits in the sub-indices), only the focused index and the index
being fetched are needed. The operation indexYfocus will return
a number that is bounded to the maximum number of elements
in a tree of that level. The actual level can be extracted with
some if statements. This operation bounded by the same number
of operations that will be needed to traverse the tree back down
through the new branch. This is computed in O(logm(n)) without
accesses to memory.

1 val i = // nubmer of bits of sub-indices
2 def lowestCommonLevel(idx: Int, focus: Int): Int = {
3 val xor = idx ^ focus
4 if (xor < (1<<(1*i))) 0
5 else if (xor < (1<<(2*i))) 1
6 else if (xor < (1<<(3*i))) 2
7 ...
8 else 5
9 }

When deciding which will be the focused branch of a new vector
two heuristics are used: If there was an update operation on some
branch where that operations could be used again, that branch is
used as focus. If the first one can’t be applied, the focus is set to the
first element as this helps key collection operations (such as getting
an iterator).

The vector iterator and builder use this to switch from one leaf
to the next one with the minimal number of steps. In fact, this
effectively amortizes out the cost of traversing the tree structure
over the accesses in the leaves as each edge of the tree will only
be accessed once. In the case of RRB tree iteration there is an
additional abstraction for switching from one balanced subtree to
the next one.

4.2 Amortizing Costs using Transient States
Transient states are the key to providing amortized constant-time
appending, local updating and local splits. To achieve this, we de-
couple the tree by creating an equivalent tree that does not contain
redundant edges on the current focused branch. The information
missing in the edges of the tree is represented and can be recon-
structed from the trees in the focused branch.

Figure 9. Transient tree with current focus branch marked in white
and striped nulled edges.

Without transient states when a leaf is updated, the entire branch
must be updated. On the other hand, if the state is transient, it is
only necessary to update the subtree affected by the change. In the
case of updates on the same leaf, only the leaf must be updated.

When appending or updating consecutive indices, m−1
m

opera-
tions must only update the leaf, then m−1

m2 need to update two lev-

347

els of the tree and so on. These operations will thus be amortized
to constant time if they are executed in succession. This is due to
the bound given by average number of node update per operation:∑∞

k=1
k·(m−1)

mk = m
m−1

.
There is a cost associated to the transformation from canonical

to transient state and back. This cost is equivalent to one update of
the focused branch. The transient state operations only start paying
off after 3 consecutive operations. With 2 consecutive operations
they are matched and with 1 there is a loss in performance.

Canonicalization The transient state aims to improve perfor-
mance of some operations by amortizing costs. But, the transient
state is not ideal for performance of other operations. For example
an indexing operation on an unbalanced vector may lack the size
information it requires to efficiently access certain indices. And an
iterator relies on a canonical tree for performance. It is possible to
implement these operations on a transient state, but this involves
both code duplication and additional overhead on each call.

The solution we used involves converting the transient represen-
tation to a canonical one. This conversion, called canonicalization,
is applied when an operation that requires the cannonical form is
called on an instance of the immutable vector. The mutation of the
vector is not visible from the outside and only happens at most once
(Figure 10). This transformation only affects the nodes that are on
the focused branch, as it copies each one (except the leaf) and links
the trees. If the node is unbalanced, the size of the subtree in focus
is inserted. This transformation could be seen as a lazy initialization
of the current branch.

Figure 10. Objects states and effect of operations.

Vector objects can only be in the transient state if they were
created this way. For example, the appending operations will create
a new object that is in transient state and focused on the last/first
branch. If the source object was not focusing the last branch, then
it is canonicalized (if needed) before change of branch operation.
Vectors of depth 1 are special cases, they are always in canonical
form and their operations are equivalent to those in transient form.

4.3 Comparison
In table 1 we show the difference in complexities between the
Radix-Balanced Vector and the Relaxed-Radix-Balanced Vector. In
table 2 we compare the RRB-Vector to other possible implementa-
tions. The operations in the table represent all different complexi-
ties that can be reached for the core operations. The operations are
divided into four categories: (i) fetching, (ii) updating, (iii) insert-
ing , and (iv) removing. In (i) there is the indexing or random access
given an element index and the sequential scanning of elements.
Category (ii) is divided into normal (or random) update and has a
special case for updates that are done locally. The category (iii) is
divided into building (with/without result size), concatenation and
insertions of element (or vectors) and has a special case for inser-
tions on ends (appended front/back and small concat). Remov-
ing (iv) is divided into splits (split, take, drop, . . .), splits
ends (tail/init, drop(n)/take(n) with n in the first/last
leaf) and a general removal of elements in a range of indices.

Table 1. Comparison between the Radix and Relaxed Radix Vec-
tors. In this table all aC have logm worst case scenario.

Radix-Balanced Vector RRB Vector With m = 32

indexing logm logm eC
scanning aC aC aC

update m · logm m · logm eC
update local aC aC aC

concat/insert L m2 · logm L v.s. eC
insert ends aC aC aC
building aC aC aC

split m · logm m · logm eC
split ends aC aC aC

remove L m2 · logm L v.s. eC

We use the notation eC as effective constant time when we
have logm(n) complexities assuming that n will be bounded by
the index integer representation and m is large enough. In our case
Int is a 32-bit signed integer and m = 32, giving us the bound
logm(n) < 7 and hence argue that this is bounded by a constant. In
table 1, aC (amortized constant) has a worst case scenario of logm
or m · logm, in other terms it has is eC in the worst case. In table 2,
for the RRB Vector the aC has a worst case of eC, for COW Array
aC has linear worst case and for the rest of aC-s have a worst case
of log2. C and L are constant and linear time respectively.

5. Implementation
5.1 Scala Indexed Sequences
Our implementation of the RRB-Vector8 is based on the Scala Col-
lection [26] IndexedSeq, which acts as a decorator exposing
many predefined generic operations which are based on just a few
core primitives. For example, most operations that involve the en-
tire collection (such as map, filter and foreach) use iterators
and builders. To improve performance, we overwrote several of the
decorator operations to use the efficient vector primitives directly,
without going through the IndexedSeq code.

Parallel RRB Vector The implementation of the parallel RRB
Vector is a trivial wrapper over the sequential RRB Vector using
the Scala Parallel Collections API [25, 33, 34]. This only requires
the presence of the split and combine operations, which, in our
case, are simply splitting an iterator on the tree and combining
using concatenation. Both of these use the efficient core RRB tree
operations. When splitting, we additionally have heuristics that
yield a well aligned concatenation and create a balanced tree.

5.2 Arrays as Nodes
One of the aims of Scala Collections [25, 26, 33, 34] is the elimina-
tion of code duplication, and one of the mechanisms to achieve this

8 Along with all other sequences we compare against.

Table 2. Comparisons with other data structures that could be used
to implement indexed sequences.

RRB Vector COW Array FingerTree RedBlack Tree

indexing eC C log2 log2
scanning aC C aC aC

update eC L log2 log2
update local aC L log2 log2

concat/insert eC L log2 L
insert ends aC L aC log2
building aC C/aC aC log2

split eC L log2 log2
split ends aC L aC log2
remove eC L log2 L

348

is the use of generic types [9, 22]. But this also has a drawback: the
need to box primitive values in order for them to be stored in the
collection. We implemented all our sequences in this context.

All nodes are stored in arrays of type Array[AnyRef], since
this allows us to quickly access elements (which are boxed any-
way due to generics9) without dispatching on the primitive array
type. A welcome side effect of this decision is that elements are
already boxed when they are passed to the Vector, thus accessing
and storing them does not incur any intermediate boxing/unbox-
ing operations, which would add overhead. However, it is known
that using the boxed representation for primitive types is inefficient
when operating on the values themselves, so the sizes of unbal-
anced nodes are stored in Array[Int] objects, guaranteeing the
most compact and efficient data representation.

Most of the memory used in the vector data structure will be
composed of arrays. There are three key operations used on these
arrays: creation, update and access. Since the arrays are used with
copy-on-write semantics, actual update operations are only allowed
when the array is initialized. This also implies that each time there
is a modification on some part of an array, a new array must be
created and the old elements must be copied.

The size of the array will affect the performance of the vector.
With larger arrays in the nodes the access times will be reduced
because the depth of the tree will decrease. But, on the other
hand, increasing the size of the arrays will slow down the update
operations, as they have to copy the entire array to execute the
element update, due to the copy-on-write semantics.

For an individual reference to an RRB-Vector of size n and
branching of m, the memory usage will composed by the arrays
located in the leaves10 and the ones that form the tree structure.
In our case we save references and hence we need d n

m
e arrays

of m references11. The structure requrires at least the references
to the child nodes and in the worst case scenario an additional
integer the size of each child. Going up level by level, the reference
count decreases by a factor of m and hence the total is bounded
by

∑logm(n)
k=2 d n

mk e <
∑∞

k=2d
n

mk e ≤ n+m
m·(m−1)

refrences. For the
sizes of the nodes, given our choice of rebalancing algorithm, they
will only appear on nodes that are of height 3 or larger and hence
the sizes will be bounded by

∑logm(n)
k=3 d n

mk e <
∑∞

k=3d
n

mk e ≤
n+m

m2·(m−1)
integers.

5.3 Running on a JVM
In practice, Scala compiles to Java bytecode and executes on a Java
Virtual Machine (JVM), where we used the Oracle Java SE dis-
tribution [29] as a reference. This imposes additional characteris-
tics of performance that can’t be evaluated on the algorithmic level
alone, and ask for a more nuanced discussion.

One of the JVM components that directly affects vectors is the
garbage collector (or GC). Vector operations tend to create a large
number of Array objects, some of which are only necessary for a
short time. These objects will use up memory and thus degrade
overall performance as the GC is invoked more often. For this
reason our code is optimized to avoid the redundant creation of
intermediary objects, delaying the GC cycles and thus improving
performance.

Instead of directly compiling bytecode to native code, the JVM
uses a just in time compilation (JIT) mechanism in order to take ad-
vantage of run-time profiling information. At first it runs the com-
piled bytecode inside an interpreter and collects execution statis-
tics (profiles). Later, once a method has executed enough times, it

9 A limitation that could be circumvented by Miniboxing [40].
10 Note that the memory used in the leaves is equivalent to the memory used
for an array that contains all the elements.
11 It could be any kind of data.

compiles it using the statistics to guide optimizations. The Vector
code tries to gain performance by aligning with the JIT heuristics
and hence taking advantage of its optimizations. The most impor-
tant such optimization is inlining, which eliminates the overhead of
calling a method and, furthermore, enables other optimizations to
improve the inlined code. Critical parts of the Vector code are care-
fully designed to to match the heuristics of the JVM. In particular,
a heuristic that arose commonly is that only methods of size less
than 35 bytes are inlined, which meant we had to split the code into
several methods to stay below this threshold.

6. Evaluation
6.1 Methodology
ScalaMeter [30] is used to measure performance of operations on
different implementations of indexed sequences.

To have reproducible results with low error margins, ScalaMe-
ter was configured on a per benchmark basis. Each test is run on
32 different JVM instances to average out badly allocated VMs.
On each JVM, 32 measurements were taken and they were filtered
using outlier elimination to remove those runs that where excep-
tionally different. This could happen if a more thorough garbage
collection cycle occurs in a particular run, due to JIT compilation
or if the operating system switches to a more important task dur-
ing the benchmark process [12]. Before taking measurements, the
JVM is warmed up by running the benchmark code several times,
without taking the measurements into account. This allows us to
measure the time after the JIT compilation has occurred, when the
system is in a steady state.

There are three main directions in the performance compar-
isons. The first compares the Radix-Balanced vectors with well-
balanced RRB Vectors, with the goal of having an equivalent per-
formance, even if the RRB Vectors have an inherent additional
overhead. The second axis shows the effects of unbalanced nodes
on RRB-Tree. For this we compare the same perfect balanced vec-
tor with an extremely unbalanced vector. The later vector is gener-
ated by concatenating pseudo-random small vectors together. The
amount of unbalanced nodes is in part affected by the size of the
vector. The third axis is the comparison between vectors in general
and other well known functional and/or immutable data structures
used to implement sequences. We used a copy-on-write (COW) ar-
rays, finger trees [16] (FingerTreeSeq12) and red black trees [13]
(RedBlackSeq13).

6.2 Results
For the results of this sections, benchmarks where executed on a
Java HotSpot(TM) 64-Bit Server VM on a machine with an Intel(R)
Core(TM) i7-4770 CPU @ 3.40GHz with 32GiB on RAM. Each
benchmarking VM instance was setup with 16GiB of heap memory.
The parallel vector split-combine was executed on a machine with
4 Intel(R) Xeon(R) Processors, of type E5-4640 @ 2.40GHz with
128GiB on RAM.

Iterating The benchmark in Figure 11 shows the time it takes
to scan the whole sequence using a specialized iterator. Unsurpris-
ingly, the results show that the best option is the array. But the vec-
tor is only 1-2× slower, closer to 1× in the most common cases.
It is also possible to see that vectors are 7-15× faster than other
deeper trees, mainly due to the reduction in indirections and in-
creased locality.

Building The benchmark in Figure 12 shows the time it takes
to build a sequence using a specialized builder. In general, the

12 Adapted version of https://github.com/Sciss/FingerTree where
abstractions that did not involve sequences where removed.
13 Adaptation of the standard Scala Collections RedBlackTree where keys
are used as indices.

349

Figure 11. Iterating through the sequence

Figure 12. Building a sequence.

builder for these sequences does not know the size of the resulting
sequence. In the case of array builder there is the possibility of
giving it a hint of the result size (Hinted in the benchmarks). In
this case the vector wins against all other implementations. It is
faster than other trees because they require re-balancing during the
building, whereas the vector behaves more like an array building
by allocating chunks of memory and filling them. Array building
requires resizing of the array whenever it is filled or the result is
returned, which implies a copy of the whole array. By contrast, the
vector only requires a copy of the last branch when returned. This is
the main reason the vector is able to outperform the array building
process. Also, the standard array builder uses the hint as such and
therefore still requires some copies of the array.

Indexing Figure 13 shows the time taken to access 10k ele-
ments in consecutive indices while Figure 14 shows the same for
randomly chosen indices. From the algorithmic point of view they
are exactly the same, the difference is in how the memory is kept in
the processor caches. It shows that in either cases the vector access
behaves effectively as constant time like the array, where the finger
trees and red black trees degenerate with randomness. A vector of
depth 3 is 2-3.5× slower than the array, the cost of accessing the
arrays in the 3 levels of the branches.

Figure 13. Accessing 10k consecutive indices

Figure 14. Accessing 10k random indices

Updating Figure 15 shows the time taken to update 10k
elements in consecutive indices and Figure 16 shows the same for
randomly chosen indices. In this case the array is clearly the worst
option because it creates a new version and copies the contents with
each update. The vector behaves effectively as having constant time
while taking advantage of locality and degenerates slightly with
randomness. The vector is 4.3× faster on local updates and 1-2.3×
faster on random updates than the red black tree.

Concatenating Figures 17 and 18 show the time it takes to
concatenate two sequences (two points of view of the same 3D
plot). The two axes on the bottom represent the sizes of the LHS
(left hand side) and RHS (right hand side) of the concatenation
operation. It can be seen that the RRB Vector and finger trees are
almost equivalent in performance (bottom planes). The array up to
a result size of 4096 is able to concatenate faster thanks to locality,
but then grows linearly with the result size (middle plane). The
vector without efficient concatenation (on Radix-Balanced trees)
behaves just like the array but with worse constant factors (top
plane). The red black tree was omitted from this graph due its
inefficient concatenation operation.

Appending Figures 19 and 20 show the time it takes to
append 256 elements on by one. In the first case we append them

350

Figure 15. Updating on 10k consecutive indices

Figure 16. Updating on 10k random indices

to the front and in the second to the back of the sequence. The
large number of elements was chosen in order show the amortized
time of the operation on the vectors. In this case the array is
clearly the worst option because it creates a new version and copies
the contents with each append. The vector is around 2.5× slower
than the finger trees, a structure that specifically focuses on these
operations. The vector can be 1-2× faster than a red black tree.

Splitting Figures 21 and 22 show the time it takes to split a
sequence on the left and on the right. We fixed the cut point to
the middle of the sequence to be able to compare the time it takes
to take or drop the same number of elements. It can be seen that
splitting a vector is more efficient than other structures. Even more,
the vector behaves with an effectively constant time.

Parallel Vector Split-combine Overhead The benchmarks in
Figure 23 and 24 show the amount of overhead associated with the
parallelization of the vector with and without efficient concatena-
tion. They show the typical overhead of a parallel map, filter or
other similar operations that create a new version of the sequence.
The benchmark computes a map operation using the identity func-
tion, such that the execution time is dominated by the time it takes
to split and combine the sequence rather than the function compu-
tations. As a base for comparison we used the sequential map on

Figure 17. Concatenating two sequences (point of view 1). RRB
Vector and Finger Tree are the planes at the bottom, COW Array is
the plane in the middle and Vector is the plane on the top.

Figure 18. Concatenating two sequences (point of view 2). More
informationg on the first point of view on figure 17.

both versions, where the results are identical. Then we parallelized
it on fork-join thread pools of 1, 2, 4, 8, 16, 32 and 64 thread on a 64
threaded (32 cores) machine. Without concatenation, there is a loss
of performance on when passing from sequential to parallel and al-
though the performance increases with the addition of threads, even
with 64 threads it’s only slightly better than the sequential version.
By contrast, with our new vector, the gain in performance starts
with one thread in the pool (dedicated thread) and then increases.
Giving a 1.55× increase with 2 threads, 2.46× for 4 thread, 3.52×
for 8 thread, 4.60× for 16 thread, 5.52× for 32 thread (core limit)
and 7.18× for 64 thread (hardware thread limit).

Memory Overhead Figure 25 shows the memory overhead of
the data structures used in the benchmarks. This overhead is the
additional space used in relation to the COW Array. The overhead
of a vector is 17.5× smaller than the finger tree and 40× smaller
than the red black trees.

7. Related Work
Related data structures There is a strong relation between

RRB Trees and various data structures in the literature. Patricia
tries [24] are one of the earliest documented uses of radix trees, per-
forming lookups and updates one bit or character at a time. Wider
radix trees were used to build space efficient sparse arrays, Array
Mapped Tries (AMT) [1], and on top of that Hash Array Mapped
Tries (HAMT) [2], which have been popularized and adapted to an

351

Figure 19. Appending front 256 elements one by one

Figure 20. Appending back 256 elements one by one

immutable setting in Clojure [15]. Radix trees are also used as in-
dex structures for in-memory databases [19]. In databases B-Trees
[6] are a ubiquitous index data structure that are similar to RRB
Trees, in the sense that they are wide trees and allow a certain de-
gree of slack to enable efficient merging. However the chosen trade-
offs are different and B-Trees are not normally used as sequence
data structures. Ropes [5] are a sequence data structure with effi-
cient concat and rebalancing operations. Immutable sequence data
structures include VLists [3], Finger Trees [16] and various kinds
of random access lists [27].

Parallelism Parallel execution is achieved in the RRB-Vector
by relying on the fork-join pools in Java [18, 31]. The vector is
split into chunks which are processed in parallel. The overhead of
splitting can be offset by using cooperative tasks [14, 21], but, in the
case of RB-Vector the cost of splitting is much smaller compared
to the cost of combining (assembling) the partial results returned
by parallel execution contexts. This is where the RRB trees make a
difference: by allowing efficient structural changes, it enables the
concatenation to occur in effectively constant time, much better
than the previous O(n) for the Scala Vector.

RRB Trees The core data structure was first described in a
technical report [4] as a way to improve the concatenation of im-

Figure 21. Taking the first half of the sequence

Figure 22. Dropping the first half of the sequence

mutable vector like the ones found in Scala Collections [26] and
Clojure [15]. Allowing the implementation of an additional wide
range of efficient structural modification on the vectors. Later, a
concrete version for Scala where in all optimization on locality are
adapted to RRB vectors was implemented. This is the implemen-
tation used in this paper and presented with more technical details
in [37] on the implementation in Scala. Another related project is
[20], where more detailed mathematical proofs where shown for
the RRB Trees and their operations. They also introduce a different
approach on transience using semi-mutable vectors with efficient
snapshot persistence and provide a C implementation.

Scala Library In Scala, most general purpose data structures
are contained in Scala Collections [26]. This framework aims to re-
duce code duplication to a minimum using polymorphism, higher-
order functions [8], higher kinded types [23], implicit parameters
[28] and other language features. It also aims to simplify the inte-
gration of new data structures with a minimum of effort. In addi-
tion, the Scala Parallel Collection API [31–34] allows parallel col-
lections to integrate seamlessly with the rest of the library. Behind
the scenes, Scala Parallel Collections use the Java fork-join pools
[18] as a backend for implicit parallelism in the data structure op-
erations.

352

Figure 23. Parallel (non-RRB) Vector overhead on a map opera-
tion

Figure 24. Parallel RRB Vector overhead on a map operation

Low level optimizations We took into account the capabili-
ties of the VM to do escape analysis and inlining of the compiled
bytecode. These are influenced by the concrete implementation of
the Java Hotspot VM compilers (C1 and C2) [17, 29]. At the com-
piler level there are optimizations techniques that remove the cost
of type generic abstractions such as specialization [10], Minibox-
ing [39, 40] or Scala Blitz [33]. This last one can go further do
fusion on collection [7]. Additionally it is possible to use staging
techniques [35, 36, 38] to further optimize the code.

Benchmarks Running code on a virtualized environment like
the JVM where the factors that influence performance are not under
our control and can vary from execution to execution complicates
the benchmarking process [12]. In Scala there is a tool (ScalaMeter
[41]) designed to overcome these issues.

8. Conclusions
In this paper we presented the RRB-Vector, an immutable se-
quence collection that offers good performance across a broad
range of sequential and parallel operations. The underlying innova-
tions are the Relaxed-Radix-Balanced (RRB) Tree structure, which
allows efficient structural changes and an optimization that exploits

Figure 25. Memory overhead of the sequences in relation to arrays

spatio-temporal locality on the RRB data structure in order to offset
the cost of navigating from the tree root to the leaves.

The RRB-Vector implementation in Scala speeds up bulk op-
eration performance on 4 cores by at least 2.33× compared to se-
quential execution, scaling better with light workloads. Discrete
operations take either amortized- or effective-constant time, with
good constants: compared to mutable arrays, sequential reads are at
most 2× slower, while random access is 2-3.5× slower. The imple-
mentation of the project is open-source14 and is being considered
for inclusion in the Scala standard library.

Acknowledgements
We would like to thank the ICFP reviewers for their feedback and
suggestions, which allowed us to improve the paper both in terms of
clarity and in terms of breadth. We are grateful to Martin Odersky
for allowing the Master Thesis [37] that forms the base of this paper
to be supervised in the LAMP laboratory at EPFL. We would also
like to thank Vera Salvisberg for her thorough review of both the
paper and the code, which led to remarkable improvements the
quality of the final submission. Last but not least, we would like
to thank Sébastien Doeraene for allowing Nicolas to dedicate time
to improving this paper while he was working on Scala.js.

References
[1] P. Bagwell. Fast and Space-efficient Trie Searches. Technical report,

EPFL, 2000.
[2] P. Bagwell. Ideal hash trees. Technical report, EPFL, 2001.
[3] P. Bagwell. Fast Functional Lists, Hash-Lists, Deques and Variable

Length Arrays. In Implementation of Functional Languages, 2002.
[4] P. Bagwell and T. Rompf. RRB-Trees: Efficient Immutable Vectors.

Technical report, EPFL, 2011.
[5] H.-J. Boehm, R. Atkinson, and M. Plass. Ropes: An alternative to

strings. Software: Practice and Experience, 25(12):1315–1330, 1995.
[6] D. Comer. The ubiquitous b-tree. ACM Comput. Surv., 11(2):121–137,

1979.
[7] D. Coutts, R. Leshchinskiy, and D. Stewart. Stream fusion: From lists

to streams to nothing at all. In Proceedings of the 12th ACM SIG-
PLAN International Conference on Functional Programming, ICFP
’07, pages 315–326, New York, NY, USA, 2007. ACM.

[8] I. Dragos. Optimizing Higher-Order Functions in Scala. In
ICOOOLPS, 2008.

14 https://github.com/nicolasstucki/scala-rrb-vector

353

[9] I. Dragos. Compiling Scala for Performance. PhD thesis, IC, 2010.
[10] I. Dragos and M. Odersky. Compiling Generics through User-directed

Type Specialization. In ICOO0LPS ’09. ACM, 2009.
[11] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data

structures persistent. J. Comput. Syst. Sci., 38(1):86–124, Feb. 1989.
[12] A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigorous java

performance evaluation. In Proceedings of the 22Nd Annual ACM
SIGPLAN Conference on Object-oriented Programming Systems and
Applications, OOPSLA ’07, pages 57–76, New York, NY, USA, 2007.
ACM.

[13] S. Hanke. The Performance of Concurrent Red-Black Tree Algo-
rithms. In J. Vitter and C. Zaroliagis, editors, Algorithm Engineering,
volume 1668 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 1999.

[14] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming.
Apr. 2008.

[15] R. Hickey. The Clojure programming language, 2006.
[16] R. Hinze and R. Paterson. Finger Trees: A Simple General-purpose

Data Structure. J. Funct. Program., 16(2), 2006.
[17] T. Kotzmann, C. Wimmer, H. Mössenböck, T. Rodriguez, K. Russell,

and D. Cox. Design of the Java HotSpot&Trade; Client Compiler for
Java 6. ACM Trans. Archit. Code Optim., 5(1), May 2008.

[18] D. Lea. A Java Fork/Join Framework. In Proceedings of the ACM
2000 Conference on Java Grande, JAVA ’00, New York, NY, USA,
2000. ACM.

[19] V. Leis, A. Kemper, and T. Neumann. The adaptive radix tree: Artful
indexing for main-memory databases. In C. S. Jensen, C. M. Jermaine,
and X. Zhou, editors, 29th IEEE International Conference on Data
Engineering, ICDE 2013, Brisbane, Australia, April 8-12, 2013, pages
38–49. IEEE Computer Society, 2013.

[20] J. N. L’orange. Improving RRB-Tree Performance through Tran-
sience. Master’s thesis, Norwegian University of Science and Tech-
nology, June 2014.

[21] Moir and Shavit. Concurrent data structures. In Mehta and Sahni,
editors, Handbook of Data Structures and Applications, Chapman &
Hall/CRC. 2005.

[22] A. Moors. Type Constructor Polymorphism for Scala: Theory and
Practice (Type constructor polymorfisme voor Scala: theorie en prak-
tijk). PhD thesis, Informatics Section, Department of Computer Sci-
ence, Faculty of Engineering Science, May 2009. Joosen, Wouter and
Piessens, Frank (supervisors).

[23] A. Moors, F. Piessens, and M. Odersky. Generics of a Higher Kind.
Acm Sigplan Notices, 43, 2008.

[24] D. R. Morrison. PATRICIA-practical algorithm to retrieve information
coded in alphanumeric. J. ACM, 15(4):514–534, Oct. 1968.

[25] M. Odersky. Future-Proofing Collections: From Mutable to Persistent
to Parallel. In Compiler Construction, volume 6601 of Lecture Notes
in Computer Science. Springer-Verlag New York, Ms Ingrid Cunning-
ham, 175 Fifth Ave, New York, Ny 10010 Usa, 2011.

[26] M. Odersky and A. Moors. Fighting bit Rot with Types (Experience
Report: Scala Collections). In R. Kannan and K. N. Kumar, edi-
tors, IARCS Annual Conference on Foundations of Software Technol-
ogy and Theoretical Computer Science, volume 4 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), Dagstuhl, Germany, 2009.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[27] C. Okasaki. Purely Functional Data Structures. Cambridge University
Press, New York, NY, USA, 1998.

[28] B. C. d. S. Oliveira, A. Moors, and M. Odersky. Type Classes as
Objects and Implicits. In OOPSLA ’10. ACM, 2010.

[29] M. Paleczny, C. Vick, and C. Click. The java hotspottm server com-
piler. In Proceedings of the 2001 Symposium on JavaTM Virtual
Machine Research and Technology Symposium - Volume 1, JVM’01,
pages 1–1, Berkeley, CA, USA, 2001. USENIX Association.

[30] A. Prokopec. ScalaMeter. https://scalameter.github.io/.

[31] A. Prokopec. Data Structures and Algorithms for Data-Parallel Com-
puting in a Managed Runtime. PhD thesis, IC, Lausanne, 2014.

[32] A. Prokopec and M. Odersky. Near optimal work-stealing tree sched-
uler for highly irregular data-parallel workloads. In Languages and
Compilers for Parallel Computing, Lecture Notes in Computer Sci-
ence, pages 55–86. Springer International Publishing, 2014.

[33] A. Prokopec, D. Petrashko, and M. Odersky. Efficient Lock-Free
Work-stealing Iterators for Data-Parallel Collections. 2015.

[34] A. Prokopec, T. Rompf, P. Bagwell, and M. Odersky. On a generic
parallel collection framework, 2011.

[35] T. Rompf and M. Odersky. Lightweight Modular Staging: A Prag-
matic Approach to Runtime Code Generation and Compiled DSLs.
Communications Of The Acm, 55, 2012.

[36] T. Rompf, A. K. Sujeeth, K. J. Brown, H. Lee, H. Chafi, and K. Oluko-
tun. Surgical precision JIT compilers. In M. F. P. O’Boyle and K. Pin-
gali, editors, ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’14, Edinburgh, United Kingdom -
June 09 - 11, 2014, page 8. ACM, 2014.

[37] N. Stucki. Turning Relaxed Radix Balanced Vector from Theory into
Practice for scala collections. Master’s thesis, EPFL, 2015.

[38] W. Taha and T. Sheard. MetaML and Multi-Stage Programming with
Explicit Annotations. In Theoretical Computer Science. ACM Press,
1999.

[39] V. Ureche, E. Burmako, and M. Odersky. Late data layout: Unifying
data representation transformations. In Proceedings of the 2014 ACM
International Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA ’14, pages 397–416, New
York, NY, USA, 2014. ACM.

[40] V. Ureche, C. Talau, and M. Odersky. Miniboxing: Improving the
Speed to Code Size Tradeoff in Parametric Polymorphism Transla-
tions. In OOPSLA’13, OOPSLA ’13, pages 73–92, New York, NY,
USA, 2013. ACM.

[41] B. Venner, G. Berger, and C. C. Seng. Scalatest. http://www.
scalatest.org/.

354

