
Engineering Top-Down Weight-Balanced Trees∗

Lukas Barth†Dorothea Wagner†

Abstract

Weight-balanced trees are a popular form of self-
balancing binary search trees. Their popularity is due
to desirable guarantees, for example regarding the re-
quired work to balance annotated trees.

While usual weight-balanced trees perform their
balancing operations in a bottom-up fashion after a
modification to the tree is completed, there exists a top-
down variant which performs these balancing operations
during descend. This variant has so far received only
little attention. We provide an in-depth analysis and
engineering of these top-down weight-balanced trees,
demonstrating their superior performance. We also
gaining insights into how the balancing parameters
necessary for a weight-balanced tree should be chosen —
with the surprising observation that it is often beneficial
to choose parameters which are not feasible in the sense
of the correctness proofs for the rebalancing algorithm.

1 Introduction

Weight-balanced trees (WBT s), originally introduced
as binary search trees of bounded balance or BB [α]-
trees by Nievergelt and Reingold [14], later gained more
attention through the seminal work by Knuth [9], which
also coined the name weight-balanced trees that is better
known today. WBTs are balancing binary search trees.
As many other flavours of balancing binary search trees,
they employ rotations to correct imbalances caused by
modifications to the tree. The specialty of weight-
balanced trees is that the balancing is done based on
the weight of subtrees, which is the number of nodes in
the respective subtree.

This entails some interesting properties, such as the
fact that it can be shown that rotations around heavy
nodes, i.e., nodes that are roots of subtrees of a large
weight, occur only rarely (see Mehlhorn [12]). Using
this analysis, weight-balanced trees can serve as basis

∗This work was supported by the German Research Founda-
tion (DFG) as part of the Research Training Group GRK 2153:

Energy Status Data – Informatics Methods for its Collection,
Analysis and Exploitation.

†Karlsruhe Institute of Technology, Germany,
{firstname}.{lastname}@kit.edu

for augmented binary search trees, i.e., trees that carry
additional annotations at every node. Usually, e.g. in
the case of dynamic segment trees, these annotations
depend on a node’s children, thus the annotation must
be repaired if the children are changed. If the effort
to repair the annotation at a node after rotation cor-
relates with the weight of the subtree rooted in that
node, weight-balanced trees can be used to show amor-
tized bounds on the necessary work. Annotated trees
that require this property are often used in computa-
tional geometry, examples include Kurt Mehlhorn’s Seg-
ment Trees (Mehlhorn [13, VIII.5.1.3]) or Interval Trees
(Mehlhorn [13, VIII.5.1.1]). Also, the weight annota-
tion that every node in a weight-balanced tree carries
can be used to efficiently implement order statistic trees
(Cormen et al. [6, Chapter 15.1]).

These advantages of weight-balanced trees have
led to them receiving ample attention throughout the
literature. Adams [1] gives a functional implementation
of weight-balanced trees and claims they perform as
well as red-black trees, however does not provide a
practical evaluation. With weight-balanced trees, a set
of balancing parameters (see Section 2.1) play a crucial
role. While Nievergelt and Reingold introduced the
technique and conjectured its correctness, the balancing
technique does not work for the whole range of balance
parameters they state in their paper. Later, Blum
and Mehlhorn [4] not only point out this incorrectness,
but also give a rigorous proof for a smaller space of
the balancing parameters. Hirai and Yamamoto [8]
use a computer-assisted proof system to discover the
whole space of feasible balancing parameters. Cho
and Sahni [5] present a variation of weight-balanced
trees, which rotates subtrees even if they are not out
of balance if the rotation reduces path lengths, thus
reducing the expected average node depths within the
tree. Roura presents two variations, one that uses
logarithmic subtree sizes for balancing [16] and one
that uses the inverse of the Fibonacci function for
balancing [17].

This work focuses on analyzing the advantages of
two variations in the weight-balanced trees: first, using
a top-down balancing scheme, i.e., repairing the balance
constraint while descending the tree for an insertion

(resp. removal), instead of having a second bottom-up
pass over the traversed tree path. Second, the effect
that the choice of balancing parameters (especially
“infeasible” parameters) has. The idea of top-down
rebalancing has also been explored for other types of
balanced binary search trees, such as red-black trees
(Tarjan [18]) or weak AVL trees (Haeupler et al. [7]).
Rebalancing weight-balanced trees from the top down
has an interesting history: While the original proposal
(although incorrect, as Blum and Mehlhorn have shown)
by Nievergelt and Reingold was already a top-down
algorithm, the supplied proof by Blum and Mehlhorn
only works for a bottom-up rebalancing. Later, Lai
and Wood [10] have provided a top-down rebalancing
algorithm and shown its correctness. This is the
foundation for our contribution. However, the top-
down variant of weight-balanced trees has received little
attention so far. To our knowledge, no empirical
analysis of top-down weight-balanced trees has been
done yet.

Our Contribution In this paper, we provide a
comprehensive experimental evaluation of top-down as
well as bottom-up weight-balanced trees and the pos-
sible choices for the balancing parameters, resulting in
recommendations when to use which tree variant based
on the expected usage pattern. We gain the insight that
top-down weight-balanced trees should be preferred over
bottom-up weight-balanced trees, and most of the time
they can compete with the performance of red-black
trees. Moreover, we gain the surprising insight that
regarding the choice of balancing parameters, it often
is beneficial to chose parameters that violate the theo-
retical guarantees in favor of a better empirical balance.
We also publish thoroughly engineered implementations
of all evaluated trees.

2 Top-Down Weight-Balanced Trees

In this section, we describe the top-down balancing ap-
proach for weight-balanced trees. We start by introduc-
ing notation and recapitulating the workings of bottom-
up weight-balanced trees in Section 2.1.

2.1 Weight-Balanced Trees We denote a tree T
with node set V and edge set E as T = (V,E). Every
node v can have a left (resp. right) child, which we
denote by L(v) (resp. R(v)), and say L(v) = ⊥
(resp. R(v) = ⊥) if v has no left (resp. right) child.
Additionally, in a weight-balanced tree, each node has
an associated weight. Note that different notions as to
what the weight of a node is are found throughout the
literature. For us, the weight of v, denoted as |v|, is
the number of nodes in the subtree rooted in v plus

one.1 Thus, a leaf has weight 2. Also, since in the case
L(v) = ⊥ the left subtree has zero nodes, it results that
|L(v)| = 1.

The balance criterion for weight-balanced trees lim-
its the relative difference between the weight of the left
subtree and the right subtree at every node. The bal-
ance criterion and the balancing mechanism use two pa-
rameters, 〈∆,Γ〉.2 Balance is achieved at node v if both

|L(v)| ·∆ ≥ |R(v)| and(2.1)

|R(v)| ·∆ ≥ |L(v)|.(2.2)

Note that the Γ parameter is not directly relevant for
the balance criterion. If the balance criterion is violated
during a modification of the tree, the Γ parameter is
used to determine the correct balancing procedure. In
[4], Blum and Mehlhorn show that if 〈∆,Γ〉 are chosen in
a particular way, and rotations are applied as described
in [14], this balance criterion is an invariant of the data
structure at every node. The proof is technical and
tedious, so we do not summarize it here.

Insertion and Deletion in Bottom-Up
Weight-Balanced Trees The first pass for insertion
and deletion in bottom-up weight-balanced trees is
performed as with unbalanced binary search trees. For
an insertion, follow the search path for the new node
until you walk out of a leaf. This is the position where
to insert the new node. For a deletion of v, if v is a leaf,
just delete it. If it has only one child, replace v by its
only child, splicing the node out of the tree. Otherwise,
find the largest node in L(v) (resp. the smallest node in
R(v)), and swap v with that node. Now, v has at most
one child and we can proceed as above. The insertion
procedure is also shown in Algorithm 1.

During the above, we do not pay attention to any
balance criterion. Thus, after insertion and deletion,
the balance might be violated at several nodes on the
path from the tree’s root to the position of insertion or
deletion. In bottom-up weight-balanced trees, we repair
the tree by traversing that path back up, repairing
imbalances using single rotations and double rotations
as necessary.

Rebalancing Operation Whenever the balance
criterion at a node v is violated, a single or double rota-
tion as depicted in Figure 1 is performed to reestablish
balance. Since the process is symmetric for the right
and left subtrees, we only discuss the case that the right
subtree has become too heavy (because of an insertion
into R(v) or a deletion from L(v)).

1Note that this corresponds to the number of ⊥ entries in the
subtree rooted in v.

2We are using the notation from Hirai and Yamamoto [8].

Original

v
l

r

rl rr

rll rlr

Double RotationSingle Rotation

v

l

r

rl
rr

rll rlr

v

l

r

rl

rrrll rlr

Figure 1: The result of a single left rotation around v and a double rotation, first right around r, then left around
v. Note that the node names differ from the notation in text to provide consistent labels before and after rotation.
Also, the notation is reversed from the function notation to yield more natural node names. For example, rll
corresponds to L(L(R(v))). Triangles indicate (possibly empty) subtrees that have been omitted.

Given a 〈∆,Γ〉 pair as defined above, the first
decision at v is whether to perform a rotation at all. A
rotation is performed if (in the case of a possible right-
overhang) |L(v)| · ∆ < |R(v)|. A left rotation around
v will certainly reduce the weight of v’s right subtree,
essentially removing R(v) and the subtree rooted in
R(R(v)) from below v. However if L(R(v)) is too heavy,
after the rotation, the balance at the old R(v) could
be violated. Thus, if |L(R(v))| > |R(R(v))| · Γ, we
perform a double rotation as shown in Figure 1.3 This
procedure has been shown to always reestablish balance
at all involved nodes by Blum and Mehlhorn if 〈∆,Γ〉 is
chosen appropriately.

Balancing Parameter Space When talking
about the balancing parameters 〈∆,Γ〉, we often call
them feasible or infeasible. A parameter set 〈∆,Γ〉
is feasible (for bottom-up rebalancing resp. top-down
rebalancing) if the respective balancing algorithm has
been shown to be correct for 〈∆,Γ〉, i.e., if it is guar-
anteed that all nodes satisfy (2.1) and (2.2) after rebal-
ancing. Otherwise, the parameter set is called infeasible.
Note that an infeasible parameter set still yields a valid
binary search tree.

Regarding the feasible values for 〈∆,Γ〉, the first
thing to note is that the two correctness proofs from
Blum and Mehlhorn as well as Lai and Wood [10] use
a different notation than 〈∆,Γ〉. In these proofs, the
balancing factor is α, and the balancing criterion is

α ≤ |L(v)|
|L(v)|+ |R(v)|

≤ (1− α)

Looking at only one side of both types of bal-
ance constraints (the other side is symmetric), from
|L(v)|/(|L(v)| + |R(v)|) ≥ α and ∆|L(v)| ≥ |R(v)|, we
get that ∆ = (1−α)/α. In fact, using the upper bound

3Note that the node names in the figure differ from the node

names in text to allow for consistent names before and after
rotation.

on α given by Blum and Mehlhorn, α ≤ 1−
√

2/2, this
leads to ∆ ≥ 1 +

√
2. Note that the larger the value for

α (and the smaller the value for ∆), the better we ex-
pect the tree to be balanced, i.e., we expect the smallest
average node depths for these values. For their correct-
ness proofs, both Blum and Mehlhorn as well as Lai and
Wood fix the second balance parameter (the parameter
deciding whether to use single or double rotation, call
it γ) to γ = 1/(2 − α). Again, taking the two differ-
ent forms of constraints for a double rotation, namely
|L(v)| > Γ|R(v)| and |L(v)|/(|L(v)| + |R(v)|) > γ, it
follows that Γ = γ/(1− γ) and therefore Γ = 1/(1−α).
With this, for α = 1−

√
2/2, it follows that Γ =

√
2, and

with that the most common (and maximally balanced)
choice for 〈∆,Γ〉 = 〈1 +

√
2,
√

2〉.
However, Hirai and Yamamoto [8] have shown that

in the bottom-up balancing case, the feasible space for
〈∆,Γ〉 is in fact a nonempty polytope, i.e., the linear
dependency between ∆ and Γ (resp. α and γ) is not
necessary. The only integral choice for 〈∆,Γ〉 within
the polytope is 〈3, 2〉. Integral values for 〈∆,Γ〉 are
interesting since (as Roura [16] shows), using floating
point arithmetic, or even worse, computing

√
2 during

balancing, is a major factor slowing down weight-
balanced trees. Note that with the relationship between
∆ and Γ (resp. α and γ) established by Blum and
Mehlhorn, the Γ value for ∆ = 3 would have been
Γ = 4/3.

The correctness proof for top-down balancing from
Lai and Wood holds only for α ≤ 1/4, meaning that
we expect the best balanced top-down weight-balanced
trees for α = 1/4, which translates to 〈∆,Γ〉 = 〈3, 4/3〉.
Note that even though this means that ∆ = 3 is
feasible for top-down balancing, the aforementioned
〈3, 2〉 possibly is not a feasible choice in the top-down
case, since it is unclear how the feasible polytope looks
like.

2.2 From Bottom-Up to Top-Down Weight-
balanced trees as described above perform two full
traversals of the path from the tree’s root to a leaf
(resp. to-be-deleted node) for each insertion and dele-
tion: One traversal down to perform the deletion or
insertion, and one traversal up to check for and repair
the balance. However, whenever we know that we will
definitely delete a node (e.g., because we know that the
value to be deleted is in the set represented by the tree),
or that we will definitely insert a node (e.g., because
we allow multiple nodes with the same value to be in-
serted), it is possible to perform necessary repair oper-
ations on the first traversal towards the leaves.

Algorithm 1 shows pseudocode for such an inser-
tion. Note that while Insert descends the tree towards
the insertion position for n, RepairDuringInsertion is
called at every node, performing rotations as if n was al-
ready inserted into the appropriate subtree, but without
that subtree being rebalanced before. The pseudocode
omits some technical details, such as correctly adjusting
the weights of the nodes that become ancestors of v be-
cause of a rotation, and correctly descending in case of
a rotation. Consider as an example for a more compli-
cated procedure the case that n > v, n > R(v), that the
insertion causes |R(v)| > |L(v)|·∆ and that |L(R(v))| >
|R(R(v))| · Γ. Then, RepairDuringInsertion calls a
double rotation (see Figure 1), after which n should of
course still be inserted below the old R(R(v)) (rr in
Figure 1). However, that node is not a descendant of v
anymore.

Note that this approach does not lead to the same
trees as the bottom-up approach. In the bottom-
up approach, during rebalancing at node v, balance
is already established at L(v), R(v) and all nodes
below. In the top-down approach, this balance can
be violated by up to one node. For the top-down
procedure, Lai and Wood show that even though the
lower nodes cannot yet be assumed to be balanced, the
above procedure balances all involved nodes, if 〈∆,Γ〉 is
chosen appropriately.

The approach outlined here assumes that every
insertion and removal always changes the tree. This
is not necessarily the case, as a removal of a value that
is not in the tree will fail, and so will insertion if the
tree is used to implement a set (instead of a multiset)
and the value is already in the tree. The case that the
tree is not modified can naively be accommodated by
having a second pass over the modified path in that
case. Obviously, with this naive solution, top-down
rebalancing is only a useful approach if the number of
modifying insertions and removals is way higher than
the number of non-modifying ones. However, careful
analysis by Lai and Wood [10] shows that for a correct

Algorithm 1: Top-down insertion of a node n.

Function RepairDuringInsertion(n, v):
if n ≤ v then

if |L(v)|+ 1 > |R(v)| ·∆ then // +1
b/c we insert into left subtree

if (n ≤ L(v) and
|R(L(v))| > (|L(L(v))|+ 1) · Γ) or

(n > L(v) and
|R(L(v))|+ 1 > |L(L(v))| · Γ)) then

doubleRotation(v);
else

singleRotation(v);

else
/* Omitted, symmetric to the case

n ≤ v */

Function Insert(n):
v ← root;
while true do
|v| ← |v|+ 1;
RepairDuringInsertion (n, v);
if n ≤ v then

if L(v) = ⊥ then
L(v)← n;
return;

else
v ← L(v);

else
/* Omitted, symmetric to the

case n ≤ v */

choice of rebalancing parameters, top-down rebalancing
keeps the balancing criterion intact even if the algorithm
aborts the operation during descend, either because a
key to be deleted is not in the tree or because a key to
be inserted is already in the tree.4

3 Evaluation

We now provide an in-depth experimental evaluation of
the various flavours of weight-balanced trees. This eval-
uation encompasses multiple parts: First, we measure
the time that operations such as inserting into and re-
moving from the trees take in Section 3.1. Since the time
necessary to search for a vertex in a tree is only depen-
dent on the depth of the respective node, and measur-
ing the average node depth is less noisy than measuring
the time a search takes, we use this measure instead of
measuring search timings in Section 3.2. Also in that
section we look at how much the balancing criterion is

4Lai and Wood call this a redundant operation.

violated when one chooses balancing parameters outside
the feasible space. All these analyses are done for differ-
ent kinds of test data, resembling a broad spectrum of
use cases. To study the various rebalancing schemes in
even more realistic scenarios, we use sequences of tree
operations captured during the execution of an opti-
mization algorithm utilizing a balancing search tree in
Section 3.3. Finally, we take a look at the total number
and weight of rotated nodes in Section 3.4.

We implemented all trees in C++, our implementa-
tion including all the benchmarking code can be found
at:

https://github.com/tinloaf/ygg/releases/tag/

version_used_for_alenex20

Additionally, we publish all raw results obtained from
our experiments as a separate data publication [2]. See
Section A in the appendix for further details.

All measurements are taken on a machine with
192 GBs of DDR4 memory and two eight-core Intel R©

Xeon R© Gold 6144 CPUs, which have 32 KB of L1
data cache per core, 1 MB of L2 cache per core and
a total of 25 MB of L3 cache per CPU. However, we
did not run multiple benchmarks concurrently. The
size of our trees’ nodes is 40 bytes. In the following
experiments, the largest tested trees usually have size
≈ 4× 106, which leads to a memory footprint of around
150 MB, well above L3 cache sizes. We therefore expect
to see the effects of caching for the larger tested trees,
and little to no caching effects for trees of at most
6× 105 ≈ 25 MB/40 B nodes.

In the following evaluation, we compare the fol-
lowing balanced binary search trees: First, a (bottom-
up) red-black tree as baseline, denoted red-black. Sec-
ond, the basic version of a weight-balanced tree, with
bottom-up balancing, denoted bottom-up. Third, the
top-down weight-balanced tree, denoted top-down. For
the top-down weight-balanced trees, we evaluate differ-
ent choices for the balancing parameters 〈∆,Γ〉: First,
the choices listed and explained in Section 2.1: 〈1 +√

2,
√

2〉 (the original parameter set given by Blum and
Mehlhorn [4]), 〈3, 2〉 (the integral parameters suggested
by Hirai and Yamamoto [8]) and 〈3, 4/3〉 (the param-
eters from the top-down correctness proofs by Lai and
Wood [10]). Note that even though the first two are not
feasible in the sense of the top-down correctness proof
by Lai and Wood, we still use them for the top-down
balancing technique. Similarly, we try the additional
choice of 〈2, 3/2〉. Even though ∆ = 2 is not a feasible
choice for top-down or bottom-up balancing, we want
to evaluate how this smaller ∆ value (which we expect
to lead to a better balance) performs in practice. For an
even more extreme example, we also evaluate 〈3/2, 5/4〉.

3.1 Timing Operations We first benchmark the
two basic operations insertion and deletion. Our aim
is to measure the time these operations take on trees
of various sizes for different distributions of nodes’
keys. Specifically, for each benchmark we first create
a random tree of a certain base size (the base tree),
and then remove five percent of the nodes resp. insert
five percent new nodes. For all benchmarks, we employ
four different methods to generate nodes’ keys: First
in the uniform case, we generate keys uniformly at
random. Second, we assume that the search tree may
be used to index data that pertains to physical or
social sciences. In this case, Zipf’s Law (see [15])
states that this data, e.g. text corpora, often follow a
Zipf distribution. We accommodate this fact with the
zipf case, in which nodes’ keys are picked using a Zipf
distribution. Third, it seems prudent to study cases
with a heavy concentration of the keys in one or two
areas of the key space. For this, we use the skewed

distribution suggested by Mäkinen [11] in his analysis of
top-down splay trees. In this distribution, every third
value is drawn from a uniform distribution over the
whole key space, and the other two thirds are drawn
from two uniform distributions each spanning only 10%
of the key space. Finally, an obvious benchmark case
for balancing search trees is partially pre-sorted data. In
the pre-sorted case, we first take a sequence of sorted
numbers, and then randomly permute half of them. For
the deletion benchmark, the node to be deleted is picked
uniformly at random in each case.

Note that we do not discuss each plot individually
in this section, but only those from which interesting
insights can be drawn. The plots that are not mentioned
in the text can be found in Appendix B.

To account for randomness effects and measurement
noise, we run each experiment for each base tree size
on 10 different base trees, and in turn repeat the
experiment itself on each base tree until the experiment
ran for at least one second on each base tree.

Figure 2a shows the time (averaged over all the
iterations explained above) it takes to insert 5% new
nodes into the seven different trees of various base sizes,
for the uniform case. We first see that the bottom-up
variant (with 〈1 +

√
2,
√

2〉) is about 30% (resp. 0.2µs)
slower than the corresponding top-down variant. We
then see that the red-black tree and the 〈2, 3/2〉, 〈3, 4/3〉
and the top-down 〈1+

√
2,
√

2〉 variants all show almost
the same performance. Interestingly, the variant with
the tightest balancing parameter, 〈3/2, 5/4〉 performs
as bad as the bottom-up variant. Note that in this
(and all following) plots, shaded areas indicate standard
deviation. Where no shaded area is visible, the standard
deviation is too small to be visible.

https://github.com/tinloaf/ygg/releases/tag/version_used_for_alenex20
https://github.com/tinloaf/ygg/releases/tag/version_used_for_alenex20

0 100 200 300 400
Tree Size (×104)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ti
m

e
(

s)
Insert / Uniform

(a) Nodes’ keys chosen from a uniform distribu-
tion.

0 100 200 300 400
Tree Size (×104)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Ti
m

e
(

s)

Insert / Zipf

1 + 2, 2
bottom-up

2, 3/2
3, 4/3

red-black

1 + 2, 2
top-down

3, 2
3/2, 5/4

(b) Nodes’ keys chosen from a Zipf distribution.

Figure 2: Times to insert 5% new nodes into trees of various sizes. The x axis specifies the size of the base
tree. The y axis reports the time needed for a single insertion in microseconds. Shaded areas indicate standard
deviation.

When performing the same experiment with node
keys chosen from a Zipf distribution (shown in Fig-
ure 2b), results look very different: Here, the two
strongly balanced variants (〈2, 3/2〉 and 〈3/2, 5/4〉) out-
class all other variants. Also, all but the top-down
variant outclass the red-black tree, with a factor of 3
between the best balanced weight-balanced tree and
the red-black tree. Results for the skewed distribu-
tion (shown in Figure 8a in Appendix B) are less pro-
nounced, but similar. For the pre-sorted case, the
results are very similar to the uniform case and can be
found in Figure 8b in Appendix B.

Since we implemented all mentioned trees ourselves,
the question of how efficient our implementations are as
a whole comes to mind. For the insertion benchmark,
we added the C++ STL’s std::multiset5 and Boost’s
intrusive::multiset to the comparison. The plot can
be found in Appendix B, Figure 10. As can be seen, all
our trees perform slightly better than std::multiset,
but slightly worse than boost::intrusive::multiset.
We may therefore assume that our implementations are
properly optimized.

Next, we look at the deletion operation. Figure 3a
shows the uniform case. We see that the 〈2, 3/2〉 variant
has a slight advantage over the red-black tree and
all other variants. For deletion, the pre-sorted case
(shown in Figure 3b) is especially interesting: Here, all

5STL bundled with GCC 8.1, which implements std::multiset
as a red-black tree.

Deletion Insertion

uniform 〈2, 3/2〉X 〈3, 4/3〉/〈2, 3/2〉X
skewed 〈3, 4/3〉× 〈3, 4/3〉/〈2, 3/2〉×
zipf 〈3, 2〉× 〈3/2, 5/4〉X
pre-sorted 〈3, 4/3〉X 〈3, 4/3〉/〈2, 3/2〉X

Table 1: Summary of the benchmark findings, speci-
fying which weight-balanced tree variant was the best
for each of our benchmark cases. Where two variants
could virtually not be distinguished, we specify both. A
checkmark signifies that in this case, the best weight-
balanced tree outperformed the red-black tree, a cross
the opposite.

weight-balanced trees, but especially the 〈3, 2〉 variant,
clearly outperform the red-black tree. On the other side
of the spectrum, for the skewed and zipf cases (shown
in Appendix B, Figure 9), the red-black tree has a slight
advantage over the weight-balanced trees.

Our benchmark findings are summarized in Table 1.
From the results, we can deduce that one should always
use the top-down variant, and should never use 〈1 +√

2,
√

2〉 as balancing parameter. Whether ∆ = 2 or
∆ = 3 is the wiser choice depends on the expected
usage pattern. We can also see that the race between
red-black trees and weight-balanced trees is a toss-up:
While weight-balanced trees seem to be ahead in the
uniform and pre-sorted cases, red-black trees exhibit

0 100 200 300 400
Tree Size (×104)

0.0

0.2

0.4

0.6

0.8

Ti
m

e
(

s)

Delete / Uniform

(a) Node keys generated from a uniform distribu-
tion.

0 100 200 300 400
Tree Size (×104)

0.0

0.2

0.4

0.6

0.8

Ti
m

e
(

s)

Delete / Pre-Sorted

1 + 2, 2
bottom-up

2, 3/2
3, 4/3

red-black

1 + 2, 2
top-down

3, 2
3/2, 5/4

(b) Node keys generated in the pre-sorted fashion.

Figure 3: Times to delete 5% nodes from trees of various sizes. The x axis specifies the size of the base tree. The
y axis reports the time needed for a single deletion in microseconds. Shaded areas indicate standard deviation.

10 15 20 25
Tree Size (×105)

18.0

18.5

19.0

19.5

20.0

20.5

Av
er

ag
e

No
de

 D
ep

th

(a) Node keys generated from a uniform distribu-
tion.

10 15 20 25
Tree Size (×105)

18

19

20

21

22

23

Av
er

ag
e

N
od

e
D

ep
th

red-black
1 + 2, 2

top-down
3, 4/3
3/2, 5/4
1 + 2, 2

bottom-up
3, 2
2, 3/2

(b) Node keys generated from a Zipf distribution.

Figure 4: Average node depth for various trees. The x axis specifies the size of the tree, the y axis the average
node depth. All nodes in every tree were randomly generated, removed once, had their key changed, and were
reinserted. The solid lines indicate average values, the shaded areas the standard deviation.

0 2 4 6 8 10
Operation Count (×105)

0

500

1000

1500

2000

2500

3000

3500

N
um

be
r

of
 u

nb
al

an
ce

d
no

de
s

1 + 2, 2
3, 2

2, 3/2

Figure 5: Number of unbalanced nodes on the y axis
versus number of remove / insert operations on random
trees of size 106 on the x axis. The solid line reports
the mean value, the shaded area indicates the standard
deviation.

better performance in the skewed and zipf cases.

3.2 Tree Balance Aside from insertion and deletion
times, an interesting metric is the average depth of
a node. The average depth determines the expected
length of the search path for that node, which not
only influences insertion and removal speeds, but even
more strongly the search performance. In fact, we
do not benchmark runtimes for searches within the
trees, since the average depth of the nodes should be
the only influencing parameter, with everything else
being measurement noise. To analyze the average node
depth, we again create random trees of various sizes.
Since just creating a tree does not involve the remove
operation, and we also want to evaluate the effects of
this operation, we iterate over all nodes after creating
the tree, and first remove each node from the tree,
change its key, and then reinsert it. After this, we
compute the average depth of all nodes. Figure 4a
shows the results for keys being drawn from a uniform
distribution.

We see that red-black trees and weight-balanced
trees using 〈1 +

√
2,
√

2〉 as balance parameters are
virtually equally well balanced. The weight-balanced

tree using 〈2, 2/3〉 has a slight advantage over them —
as we expected, since ∆ = 2 enforces a stricter balance
than ∆ = 1 +

√
2. However, the 〈3/2, 5/4〉 variant is

the worst in terms of balance, even though it is using
the smallest ∆. This suggests that choosing parameters
that are too far outside of the space of feasible choices
for 〈∆,Γ〉, the balancing criterion is violated too badly
for the smaller ∆ to make up for it.

Using a Zipf distribution instead of a uniform
distribution for the nodes’ keys (shown in Figure 4b)
reveals that while the various weight-balanced trees are
almost unaffected by the heavily skewed distribution,
the red-black tree handles it a lot worse, with more than
10% difference between the best weight-balanced tree
and the red-black tree. Interestingly, the skewed case,
shown in Figure 11 in Appendix B, shows results very
similar to the uniform case.

The fact that in Figure 4, the values for the top-
down weight-balanced tree with 〈1+

√
2,
√

2〉 do not dif-
fer much from the bottom-up weight-balanced tree with
the same balancing parameters (which are infeasible for
a top-down balancing approach), and that the (infeasi-
ble) parameter pair 〈2, 3/2〉 outperforms all other trees,
hint at the fact that even infeasible balancing param-
eters for a top-down balancing approach may produce
little to no balance violations in practice. We examine
this claim by continually counting the number of nodes
at which balance is violated while repeatedly removing
and re-inserting (with a changed value) random nodes
from resp. into a random tree. Figure 5 shows the results
for a tree of size 106. We repeat the experiment with 10
different seeds, the line indicates the mean, the shaded
areas indicate the standard deviation. We see that for
all three6 evaluated variants, the number of nodes at
which balance is violated stabilizes after approximately
4× 105 removals and insertions.7 We also see that even
for the worst of the parameter choices, 〈2, 3/2〉, only
about 0.35% of all nodes are unbalanced after 106 oper-
ations. This behavior can be explained by the fact that
unbalanced nodes will likely be rebalanced by the next
operation that passes over them. Thus, we also expect
the unbalanced nodes to have large depths, since nodes
close to the root are passed over very frequently.

3.3 Real-Life Sequences After the experiments on
randomly generated data, we finally take a look at tree
operations generated from an algorithm that heavily re-
lies on balancing binary trees. To this end, we instru-
mented the SWAG algorithm by Barth and Wagner [3].

6We excluded 〈3/2, 5/4〉 here, since it breaks the balancing so
badly that it distorts the plot.

7One removal and one insertion count as one operation.

3, 2 2, 3/2 3, 4/3 1 + 2, 2
Tree Variant

0.650

0.675

0.700

0.725

0.750

0.775

0.800

0.825

Ti
m

e
(n

or
m

al
ize

d)

Figure 6: Times elapsed during the execution of each captured sequence, normalized to the time it took the
bottom-up weight balanced tree with 〈1 +

√
2,
√

2〉. Every dot is one sequence.

This is a scheduling algorithm that in its innermost
loop uses a dynamic segment tree, which is built on
top of a balancing binary search tree. Note that the
algorithm only deletes from and inserts into the tree
and never performs any searches.8 We collected a to-
tal of 514 sequences of tree operations. To benchmark
our weight-balanced trees, we replay each sequence ten
times for every weight-balanced tree variant. Figure 6
shows the results, where every dot is the time (averaged
over the ten iterations) it took the tree indicated by the
x axis to execute one sequence, normalized to the time
it took the bottom-up 〈1 +

√
2,
√

2〉 variant to execute
the same sequence. We see that in this specific use case,
the 〈3, 2〉 variant suggested by Hirai and Yamamoto (for
the bottom-up variant) performs the best, being about
30% faster than the bottom-up variant — again, we see
the best results for a parameter choice that is infeasible
for top-down rebalancing. The top-down feasible vari-
ant 〈3, 4/3〉 performs slightly worse. But even the worst
variant, 〈1 +

√
2,
√

2〉 still is more than 23% faster than
the bottom-up variant. Note that we have excluded the
〈3/2, 5/4〉 variant here. It has its mean at approximately
1.15 and would distort the plot.

3.4 Rotated Node Weight For the final evaluation
step, we consider that weight-balanced trees are often
chosen because the total weight of the nodes rotated
around can be theoretically bounded. This is useful if
rotations around larger nodes are expensive, for example
because of annotations that need to be repaired. We
explore their behavior in this regard by creating random
trees of size 106, performing a number of operations

8While this might seem useless, the information needed by the

scheduling algorithm is computed in an annotation at the root of
the tree.

(where every operation consists of one node removal
and reinsertion with changed key) on them and counting
how many rotations occurred, and what the total weight
of the rotated nodes is. Figure 7a shows how the
number of rotations increases with increasing number
of operations, Figure 7b shows the same for the total
weight of the rotated nodes. Note that we excluded
the 〈3/2, 5/4〉 variant here, since ∆ = 3/2 is such
a strong balancing requirement that the number of
rotations is about 20 times larger than for all the other
variants, thus including it would have distorted the
plot. The most striking point is that both numbers
are significantly smaller for the variants with ∆ = 3,
usually roughly half the number of rotations (resp. total
rotation weight) than for the other variants or the
red-black tree. The less strict balancing requirement
apparently drastically reduces the number of necessary
rotations. Whether one uses top-down or bottom-up
balancing does not seem to make a serious difference.

It is also notable that the red-black tree, although
not possessing a similar theoretical guarantee, does not
perform significantly worse in terms of rotation count
or weight than the weight-balanced trees with ∆ < 3,
although its total rotation weight has a much larger
standard deviation. Consistent with the finding for
∆ = 3, the weight-balanced tree with ∆ = 2 performs
the worst in terms of rotations.

4 Conclusion

In the paper on hand, we evaluated and engineered top-
down weight-balanced trees. A rigorous evaluation has
shown that using a top-down balancing approach in-
stead of a bottom-up approach in fact leads to a sig-
nificant performance increase, if one chooses the cor-
rect balancing parameters. The correct choice of bal-
ancing parameters can even make weight-balanced trees

2000 4000 6000 8000 10000
Operation Count

0

2000

4000

6000

8000

10000

Ro
ta

tio
n

Co
un

t

(a) Total number of of performed rotations (on
the y axis) after a number of operations (on the
x axis).

2000 4000 6000 8000 10000
Operation Count

0

10000

20000

30000

40000

To
ta

l R
ot

at
io

n
W

ei
gh

t red-black

1 + 2, 2
bottom-up

1 + 2, 2
top-down
3, 2
2, 3/2
3, 4/3

(b) Total node weight of rotated nodes (on the y axis) after a number
of operations (on the x axis).

Figure 7: Rotation count and rotated node weight for several kinds of trees of size 106 after various numbers of
operations. Solid lines report the mean value, while shaded areas indicate the standard deviation.

more performant than red-black trees, which is surpris-
ing considering the fact that red-black trees are used
widely, while weight-balanced trees have received lit-
tle attention in practice. However, the balancing pa-
rameters should be chosen with the intended use for
the weight-balanced tree in mind. If little modification
and a lot of searches are expected, we recommend us-
ing 〈2, 3/2〉 because of its superior average node depth.
Even stronger balanced choices such as 〈3/2, 5/4〉 do
not look advisable. One should also consider the ex-
pected distribution of nodes’ keys. For strongly skewed
distributions, as for example the zipf case, smaller ∆
values such as 〈2, 3/2〉 tend to be advantageous. Also,
for these distributions, weight-balanced trees should be
chosen over red-black trees, as our analysis of average
node depth has shown.

In case that the weight-balanced tree is annotated
and rotations, especially around large nodes, are costly,
using 〈3, 2〉 or even larger ∆ values is likely to be the
best of the evaluated choice. In fact, our benchmark of
insert and deletion suggests that 〈3, 2〉 and 〈3, 4/3〉 are
overall fairly performant choices, even if their average
path lengths might be slightly inferior. It never seems
to be a good choice to use the classic 〈1 +

√
2,
√

2〉
variant. Summarizing these recommendations, it is
surprising that empirically, many times the best choice
for balancing parameters are parameters for which the
theoretical guarantees do not hold, especially in the top-
down rebalancing case. Of course, these parameters are
only a viable choice if one does not have to worry about
artificially crafted adversarial instances.

In the future, it would be interesting to determine

the space of feasible balancing parameters for top-
down weight-balanced trees similar to how Hirai and
Yamamoto have done for bottom-up weight-balanced
trees.

References

[1] Stephen Adams. Functional Pearls Efficient sets —
a balancing act. Journal of Functional Program-
ming, 3(4):553–561, October 1993. doi:10.1017/

S0956796800000885.
[2] Lukas Barth and Dorothea Wagner. Dataset ac-

companying “Engineering Top-Down Weight-Balanced
Trees”. KITOpen Repository, 2019. doi:10.5445/IR/

1000098852.
[3] Lukas Barth and Dorothea Wagner. Shaving peaks by

augmenting the dependency graph. In Proceedings of
the Tenth ACM International Conference on Future
Energy Systems, pages 181–191. ACM, 2019. doi:

10.1145/3307772.3328298.
[4] Norbert Blum and Kurt Mehlhorn. On the average

number of rebalancing operations in weight-balanced
trees. Theor. Comput. Sci., 11:303–320, 1980. doi:

10.1016/0304-3975(80)90018-3.
[5] Seonghun Cho and Sartaj Sahni. A new weight

balanced binary search tree. International Journal
of Foundations of Computer Science, 11(03):485–513,
2000. doi:10.1142/S0129054100000296.

[6] Thomas H. Cormen, Charles E. Leiserson, and
Ronald L. Rivest. Introduction to Algorithms. The
MIT Press, 1989.

[7] Bernhard Haeupler, Siddhartha Sen, and Robert E.
Tarjan. Rank-balanced trees. ACM Trans. Algorithms,
11(4):30:1–30:26, June 2015. doi:10.1145/2689412.

http://dx.doi.org/10.1017/S0956796800000885
http://dx.doi.org/10.1017/S0956796800000885
http://dx.doi.org/10.5445/IR/1000098852
http://dx.doi.org/10.5445/IR/1000098852
http://dx.doi.org/10.1145/3307772.3328298
http://dx.doi.org/10.1145/3307772.3328298
http://dx.doi.org/10.1016/0304-3975(80)90018-3
http://dx.doi.org/10.1016/0304-3975(80)90018-3
http://dx.doi.org/10.1142/S0129054100000296
http://dx.doi.org/10.1145/2689412

[8] Yoichi Hirai and Kazuhiko Yamamoto. Balanc-
ing weight-balanced trees. Journal of Functional
Programming, 21(3):287–307, 2011. doi:10.1017/

S0956796811000104.
[9] Donald E. Knuth. The Art of Computer Programming,

Volume 3: (2Nd Ed.) Sorting and Searching. Addison
Wesley Longman Publishing Co., Inc., Redwood City,
CA, USA, 1998.

[10] Tony W. Lai and Derick Wood. A top-down up-
dating algorithm for weight-balanced trees. Int. J.
Found. Comput. Sci., 4(4):309–324, 1993. doi:10.

1142/S0129054193000201.
[11] Erkki Mäkinen. On top-down splaying. BIT

Numerical Mathematics, 27(3):330–339, Sep 1987.
URL: https://doi.org/10.1007/BF01933728, doi:

10.1007/BF01933728.
[12] Kurt Mehlhorn. Data structures and algorithms 1:

Sorting and searching. In EATCS Monographs on
Theoretical Computer Science, 1984.

[13] Kurt Mehlhorn. Data structures and algorithms 3:
Multi-dimensional searching and computational geom-
etry. In EATCS Monographs on Theoretical Computer
Science, 1984.

[14] Jürg Nievergelt and Edward M. Reingold. Binary

search trees of bounded balance. SIAM Journal on
Computing, 2(1):33–43, 1973. doi:10.1137/0202005.

[15] David M.W. Powers. Applications and explanations of
Zipf’s law. In Proceedings of the joint conferences on
new methods in language processing and computational
natural language learning, pages 151–160. Association
for Computational Linguistics, 1998.

[16] Salvador Roura. A new method for balancing bi-
nary search trees. In Fernando Orejas, Paul G. Spi-
rakis, and Jan van Leeuwen, editors, Automata, Lan-
guages and Programming, 28th International Collo-
quium, ICALP 2001, Crete, Greece, July 8-12, 2001,
Proceedings, volume 2076 of Lecture Notes in Com-
puter Science, pages 469–480. Springer, 2001. doi:

10.1007/3-540-48224-5_39.
[17] Salvador Roura. Fibonacci BSTs: A new balancing

method for binary search trees. Theoretical Computer
Science, 482:48 – 59, 2013. doi:https://doi.org/10.
1016/j.tcs.2012.11.027.

[18] Robert E. Tarjan. Efficient top-down updating of
red-black trees. Princeton University, Department of
Computer Science, 1985.

http://dx.doi.org/10.1017/S0956796811000104
http://dx.doi.org/10.1017/S0956796811000104
http://dx.doi.org/10.1142/S0129054193000201
http://dx.doi.org/10.1142/S0129054193000201
https://doi.org/10.1007/BF01933728
http://dx.doi.org/10.1007/BF01933728
http://dx.doi.org/10.1007/BF01933728
http://dx.doi.org/10.1137/0202005
http://dx.doi.org/10.1007/3-540-48224-5_39
http://dx.doi.org/10.1007/3-540-48224-5_39
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2012.11.027
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2012.11.027

A Code and Data Publication

All evaluated trees as well as all benchmarking code is implemented in C++17. We publish the code (including
all benchmarking code) at

https://github.com/tinloaf/ygg/

Note that this is an ongoing project subject to changes. The exact code revision used in this paper can be accessed
at

https://github.com/tinloaf/ygg/releases/tag/version_used_for_alenex20

The code includes a file README.md with build instructions. After building, the directory “benchmark” contains
all binaries necessary to reproduce our benchmarks. The file BENCHMARKING.md contains instructions on how to
run the benchmarks.

We also publish all raw results we obtained from the benchmarks in a separate data publication [2]. This
publication can be accessed at

https://publikationen.bibliothek.kit.edu/1000098852

It also contains a detailled description of the data format output by the various benchmarking tools.

https://github.com/tinloaf/ygg/
https://github.com/tinloaf/ygg/releases/tag/version_used_for_alenex20
https://publikationen.bibliothek.kit.edu/1000098852

B Omitted Benchmark Plots

0 100 200 300 400
Tree Size (×104)

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e
(

s)

Insert / Skewed

(a) Nodes’ keys chosen as for the skewed case.

0 100 200 300 400
Tree Size (×104)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ti
m

e
(

s)

Insert / Pre-Sorted

1 + 2, 2
bottom-up

2, 3/2
3, 4/3

red-black

1 + 2, 2
top-down

3, 2
3/2, 5/4

(b) Nodes’ keys chosen as for the pre-sorted case.

Figure 8: Times to insert 5% new nodes into trees of various sizes. The x axis specifies the size of the base
tree. The y axis reports the time needed for a single insertion in microseconds. Shaded areas indicate standard
deviation.

0 100 200 300 400
Tree Size (×104)

0.0

0.2

0.4

0.6

0.8

Ti
m

e
(

s)

Delete / Skewed

(a) Nodes’ keys chosen as for the skewed case.

0 100 200 300 400
Tree Size (×104)

0.02

0.04

0.06

0.08

0.10

0.12

Ti
m

e
(

s)

Delete / Zipf

1 + 2, 2
bottom-up

2, 3/2
3, 4/3

red-black

1 + 2, 2
top-down

3, 2
3/2, 5/4

(b) Nodes’ keys chosen as for the zipf case.

Figure 9: Times to delete 5% nodes from trees of various sizes. The x axis specifies the size of the base tree. The
y axis reports the time needed for a single deletion in microseconds. Shaded areas indicate standard deviation.

0 100 200 300 400
Tree Size (×104)

0.0

0.2

0.4

0.6

0.8

Ti
m

e
(

s)

Insert / Uniform

1 + 2, 2
bottom-up

2, 3/2
3, 4/3

boost::intrusive::multiset

std::multiset

1 + 2, 2
top-down

3, 2
3/2, 5/4

red-black

Figure 10: Times to insert 5% new nodes into trees
of various sizes. The x axis specifies the size of the
base tree. The y axis reports the time needed for a
single insertion in microseconds. Shaded areas indicate
standard deviation. Node keys are chosen uniformly at
random. Note that this plot includes std::multiset

and boost::intrusive::multiset.

10 15 20 25
Tree Size (×105)

18.0

18.5

19.0

19.5

20.0

20.5
Av

er
ag

e
N

od
e

D
ep

th

red-black
1 + 2, 2

top-down
3, 4/3
3/2, 5/4

1 + 2, 2
bottom-up
3, 2
2, 3/2

Figure 11: Average node depth for trees of various
sizes, with keys chosen for the skewed case. The x
axis specifies the size of the tree, the y axis the average
node depth. All nodes in every tree were randomly
generated, removed once, had their key changed, and
were reinserted. The solid lines indicate average values,
the shaded areas the standard deviation.

	Introduction
	Top-Down Weight-Balanced Trees
	Weight-Balanced Trees
	From Bottom-Up to Top-Down

	Evaluation
	Timing Operations
	Tree Balance
	Real-Life Sequences
	Rotated Node Weight

	Conclusion
	Code and Data Publication
	Omitted Benchmark Plots

