
322 Chapter 12 Binary Search Trees 

2 9 

5 

13 17 

15 19 

18 

12 

Figure 12.3 Inserting a node with key 13 into a binary search tree. The simple path from the root 
down to the position where the node is inserted is shown in blue. The new node and the link to its 
parent are highlighted in orange. 

trailing pointer y , because by the time it ûnds the NIL where ´ belongs, the search 
has proceeded one step beyond the node that needs to be changed. Lines 8313 set 
the pointers that cause ´ to be inserted. 

Like the other primitive operations on search trees, the procedure TREE-I NSERT 
runs in O.h/ time on a tree of height h. 

Deletion 

The overall strategy for deleting a node ´ from a binary search tree T has three 
basic cases and, as we’ll see, one of the cases is a bit tricky. 
 If ´ has no children, then simply remove it by modifying its parent to replace ´ 

with NIL as its child. 
 If ´ has just one child, then elevate that child to take ´’s position in the tree by 

modifying ´’s parent to replace ´ by ´’s child. 
 If ´ has two children, ûnd ´’s successor y 4which must belong to ´’s right 

subtree4and move y to take ´’s position in the tree. The rest of ´’s original 
right subtree becomes y ’s new right subtree, and ´’s left subtree becomes y ’s 
new left subtree. Because y is ´’s successor, it cannot have a left child, and y ’s 
original right child moves into y ’s original position, with the rest of y ’s original 
right subtree following automatically. This case is the tricky one because, as 
we’ll see, it matters whether y is ´’s right child. 

The procedure for deleting a given node ´ from a binary search tree T takes as 
arguments pointers to T and ´. It organizes its cases a bit differently from the three 
cases outlined previously by considering the four cases shown in Figure 12.4. 
 If ´ has no left child, then as in part (a) of the ûgure, replace ´ by its right child, 

which may or may not be NIL. When ´’s right child is NIL, this case deals with 



12.3 Insertion and deletion 323 

q q 

z (a) r 

q q 

z 

l 

(b) 

q 

z 

l 

(c) 

q 

y 

l y 

q 

z 

l 

(d) 

r 

q 

z 

l r 

y 

q 

l r 

y 

r 

l 

x 

x 

x y 

x 

x 

NIL 

NIL 

NIL 

NIL 

NIL 

Figure 12.4 Deleting a node ´, in blue, from a binary search tree. Node ´ may be the root, a left 
child of node q, or a right child of q. The node that will replace node ´ in its position in the tree 
is colored orange. (a) Node ´ has no left child. Replace ´ by its right child r , which may or may 
not be NIL. (b) Node ´ has a left child l but no right child. Replace ´ by l . (c) Node ´ has two 
children. Its left child is node l , its right child is its successor y (which has no left child), and y’s 
right child is node x. Replace ´ by y, updating y’s left child to become l , but leaving x as y’s right 
child. (d) Node ´ has two children (left child l and right child r ), and its successor y ¤ r lies within 
the subtree rooted at r . First replace y by its own right child x, and set y to be r ’s parent. Then set y 
to be q’s child and the parent of l . 



324 Chapter 12 Binary Search Trees 

the situation in which ´ has no children. When ´’s right child is non-NIL, this 
case handles the situation in which ´ has just one child, which is its right child. 

 Otherwise, if ´ has just one child, then that child is a left child. As in part (b) 
of the ûgure, replace ´ by its left child. 

 Otherwise, ´ has both a left and a right child. Find ´’s successor y , which lies 
in ´’s right subtree and has no left child (see Exercise 12.2-5). Splice node y 
out of its current location and replace ´ by y in the tree. How to do so depends 
on whether y is ´’s right child: 
B If y is ´’s right child, then as in part (c) of the ûgure, replace ´ by y , leaving 
y ’s right child alone. 

B Otherwise, y lies within ´’s right subtree but is not ´’s right child. In this 
case, as in part (d) of the ûgure, ûrst replace y by its own right child, and 
then replace ´ by y . 

As part of the process of deleting a node, subtrees need to move around within 
the binary search tree. The subroutine TRANSPLANT replaces one subtree as a 
child of its parent with another subtree. When TRANSPLANT replaces the sub- 
tree rooted at node u with the subtree rooted at node v, node u’s parent be- 
comes node v’s parent, and u’s parent ends up having v as its appropriate child. 
TRANSPLANT allows v to be NIL instead of a pointer to a node. 

TRANSPLANT .T; u; v/ 
1 if u: p = = NIL 
2 T: root D v 
3 elseif u = = u: p: left 
4 u: p: left D v 
5 else u: p: right D v 
6 if v ¤ NIL 
7 v: p D u: p 

Here is how TRANSPLANT works. Lines 132 handle the case in which u is the 
root of T . Otherwise, u is either a left child or a right child of its parent. Lines 334 
take care of updating u: p: left if u is a left child, and line 5 updates u: p: right if u 
is a right child. Because v may be NIL, lines 637 update v: p only if v is non-NIL. 
The procedure TRANSPLANT does not attempt to update v: left and v: right . Doing 
so, or not doing so, is the responsibility of TRANSPLANT’s caller. 

The procedure TREE-DELETE on the facing page uses TRANSPLANT to delete 
node ´ from binary search tree T . It executes the four cases as follows. Lines 132 
handle the case in which node ´ has no left child (Figure 12.4(a)), and lines 334 



12.3 Insertion and deletion 325 

handle the case in which ´ has a left child but no right child (Figure 12.4(b)). Lines 
5312 deal with the remaining two cases, in which ´ has two children. Line 5 ûnds 
node y , which is the successor of ´. Because ´ has a nonempty right subtree, its 
successor must be the node in that subtree with the smallest key; hence the call to 
TREE-MINIMUM.´: right /. As we noted before, y has no left child. The procedure 
needs to splice y out of its current location and replace ´ by y in the tree. If y is 
´’s right child (Figure 12.4(c)), then lines 10312 replace ´ as a child of its parent 
by y and replace y ’s left child by ´’s left child. Node y retains its right child 
(x in Figure 12.4(c)), and so no change to y: right needs to occur. If y is not ´’s 
right child (Figure 12.4(d)), then two nodes have to move. Lines 739 replace y as a 
child of its parent by y ’s right child (x in Figure 12.4(c)) and make ´’s right child 
(r in the ûgure) become y ’s right child instead. Finally, lines 10312 replace ´ as a 
child of its parent by y and replace y ’s left child by ´’s left child. 

TREE-DELETE .T; ´/ 
1 if ´: left == NIL 
2 TRANSPLANT .T; ´; ´: right / // replace ´ by its right child 
3 elseif ´: right == NIL 
4 TRANSPLANT .T; ´; ´: left / // replace ´ by its left child 
5 else y D TREE-MINIMUM.´: right / // y is ´’s successor 
6 if y ¤ ´: right // is y farther down the tree? 
7 TRANSPLANT .T; y; y: right / // replace y by its right child 
8 y: right D ´: right // ´’s right child becomes 
9 y: right : p D y // y ’s right child 
10 TRANSPLANT .T; ´; y/ // replace ´ by its successor y 
11 y: left D ´: left // and give ´’s left child to y, 
12 y: left: p D y // which had no left child 

Each line of TREE-DELETE, including the calls to TRANSPLANT, takes constant 
time, except for the call to TREE-MINIMUM in line 5. Thus, TREE-DELETE runs 
in O.h/ time on a tree of height h. 

In summary, we have proved the following theorem. 

Theorem 12.3 
The dynamic-set operations I NSERT and DELETE can be implemented so that each 
one runs in O.h/ time on a binary search tree of height h. 


